The Distributed Information Search Component (Disco) and the
World Wide Web *

Anthony Tomasic
INRIA Rocquencourt Bull

Rocquencourt, France Grenoble, France

Anthony.Tomasic@inria.fr

Hubert Naacke
INRIA Rocquencourt
Rocquencourt, France

Hubert.Naacke@Qinria.fr

Abstract

The Distributed Information Search COmponent (Disco)
is a prototype heterogeneous distributed database that ac-
cesses underlying data sources. The DISCO prototype cur-
rently focuses on three central research problems in the con-
text of these systems. First, since the capabilities of each
data source is different, transforming queries into subqueries
on data source is difficult. We call this problem the weak
data source problem. Second, since each data source per-
forms operations in a generally unique way, the cost for per-
forming an operation may vary radically from one wrapper
to another. We call this problem the radical cost problem.
Finally, existing systems behave rudely when attempting to
access an unavailable data source. We call this problem the
ungraceful failure problem.

Disco copes with these problems. For the weak data
source problem, the database implementor defines precisely
the capabilities of each data source. For the radical cost
problem, the database implementor (optionally) defines cost
information for some of the operations of a data source.
The mediator uses this cost information to improve its cost
model. To deal with ungraceful failures, queries return par-
tial answers. A partial answer contains the part of the final
answer to the query that was produced by the available data
sources. The current working prototype of DISCO contains
implementations of these solutions and operations over a
collection of wrappers that access information both in files
and on the World Wide Web.

1 Introduction

The Disco (Distributed Information Search COmponents)
[1, 2] project is developing a research prototype of com-
ponents for searching and integrating information over dis-
tributed heterogeneous data sources. The data sources can

*This work is done within the Groupement d’Intérét Economique
Dyade, a consortium established by Bull and INRIA, France.

Rémy Amouroux

Remy.Amouroux@dyade.fr

Philippe Bonnet Olga Kapitskaia
Bull INRIA Rocquencourt
Grenoble, France

Philippe.Bonnet@dyade.fr

Rocquencourt, France

Olga.Kapitskaia@inria.fr

Louiga Raschid
University of Maryland
College Park, Maryland, USA

louiga@umiacs.umd.edu

W W W
Figure 1: Disco architecture. Boxes represent stateless
components, and disks components with state. A stands for

application, M for mediator, W for wrapper, and D for data
source. Arcs represent exchange of queries and answers.

be databases, files, dedicated data servers (e.g. a multi-
media server or an information retrieval engine), or HTML
pages. Thus, data can be structured, semi-structured or un-
structured. The target applications of Disco are those of
Internet and Intranet which typically require integration of
large numbers of data sources. The main objective of Disco
is to provide uniform and optimized access to the underlying
data sources using a common declarative query language.
To scale up to large numbers of data sources, Disco
adopts a mediator [3] distributed architecture of specialized
components (common to many existing projects, e.g. [4, 5,
6]) consisting of applications, mediators, wrappers and data
sources, as shown in Figure 1. End users interact with ap-
plications (A) written by application programmers. Appli-
cations access a uniform representation of the underlying
sources through a uniform (SQL-like) declarative query lan-
guage. Mediators (M) encapsulate a representation of mul-
tiple data sources for this query language. They typically
resolve conflicts involving the dissimilar representation of
knowledge of different data models and schema, and con-
flicts due to the mismatch in querying power of each data



source. This architecture permits mediators to be developed
independently and to be combined, providing a mechanism
to deal with the complexity introduced by a large number of
data sources. To permit multiple data sources to be accessed
in a uniform way, mediators accept queries and transform
them into subqueries that are distributed to data sources.
In Disco subqueries are expressed in an algebraic language
that supports relational operations.

To deal with the heterogeneous nature of data sources,
wrappers (W) give a structured view of the data source and
transform subqueries from the mediator to the particular
language of the data source (D). A wrapper supports the
functionality of transforming queries appropriate to the par-
ticular data source, and reformatting answers (data) appro-
priate to each mediator. The database implementor (DBI)
writes wrappers for each type of data source.

The Disco prototype examines three central research
problems in the context of this architecture. First, since
the capabilities of each data source is different, some data
sources may not support the entire algebra of operations
used by the mediator. This lack of support introduces prob-
lems into the transformation of the query into subqueries.
We call this problem the weak data source problem. Second,
since each wrapper implements the algebraic operations for
a data source in a generally unique way, the cost for per-
forming an operation may vary radically from one wrapper
to another. Thus, the construction of the best transforma-
tion of queries into subqueries, from the performance point
of view, is also not straightforward. We call this problem
the radical cost problem. Finally, since data sources may be
unavailable during query processing, it may be impossible to
produce the answer to a query. Generally existing systems
behave rudely by either stalling while waiting for the data
source, or generate an error, or silently ignore the unavail-
able data source. We call this problem the ungraceful failure
problem.

The design of Disco provides special features to deal
with these three problems. To deal with the weak data
source problem, the DBI defines precisely the capabilities
of each data source [7]. That is, when a new wrapper is con-
structed, the DBI chooses a subset of the algebraic language
that the wrapper supports. When the mediator registers the
wrapper (before query processing), the wrapper transmits a
description of the subset that it supports to the mediator.
The mediator incorporates this information automatically
in the query transformation process. To deal with the rad-
ical cost problem, the DBI can optionally choose to define
cost information for some or all of the algebraic operations
supported by the wrapper [8]. The cost information is also
transmitted to the mediator when the wrapper is registered.
The wrapper specific cost information overrides the general
cost information used by the mediator to produce a more ac-
curate cost model. The cost model is used by the Disco op-
timizer to produce the best possible query processing plan.
To deal with the ungraceful failure, queries return partial
answers [9]. A partial answer contains the part of the final
answer to the query that was produced by the available data
sources. A partial answer also contains a query representing
the finished and unfinished parts of the answer. When the
unavailable data sources become available, the partial an-
swer can be resubmitted as a new query to obtain the final
answer to the original query.

2 Query Language

Consider a system that contains two data sources r0 and r1.
Suppose the r0 data source contains a person relation with
a person Mary whose salary is 200, and r1 contains a person
relation with a person Sam whose salary is 50. A mediator
models r0 and r1 as extents person0 and personl, of type
Person.

To access the data sources, users express queries in the
Disco query language, a simple relational-like language. For
example, the query

select x.name,y.name
from x in person0O, y in personl
where x.salary > y.salary

constructs a bag of the names of the persons from r0 who
have a salary greater than someone in rl. The answer to
this query is a bag of strings Bag(("Mary","Sam")).

3 Mediator deployment

Interactions between mediators and wrappers occurs in two
phases: the registration phase and the query processing phase.
During the registration phase, the mediator registers various
wrappers. During registration, the wrapper communicates
the local schema it supports, the capabilities for query pro-
cessing, and any specific cost information. The mediator
administrator defines a global schema and views to connect
the global schema to local schemas. The application is writ-
ten with respect to the global schema.

During the query processing phase, the application issues
a query to the mediator, the mediator transforms the query
into a plan consisting of subqueries and a composition query.
The plan has been optimized with respect to the cost infor-
mation imported from the wrappers and the plan respects
the capabilities of a wrapper. The mediator then executes
the plan by issuing the subqueries to the wrappers. The
available wrappers process the subqueries by communicating
with the associated data source and returning subanswers.
If all wrappers are available, the mediator combines the sub-
answers by using the composition query and returns the an-
swer to the application. The application displays the answer
to the user. If some wrappers are unavailable, the mediator
returns a partial answer to the application. The application
extracts some information from this partial answer and dis-
plays the partial information to the user (what information
is extracted depends on which wrappers are available).

4 Wrapper interface

For the DBI, Disco provides a flexible wrapper interface.
Disco interfaces to wrappers at the level of an abstract uni-
versal algebraic machine (UAM) of logical operators. When
the DBI implements a new wrapper, she chooses a (sub)set
of logical operators of the UAM to support. The DBI imple-
ments the translation of the logical operators to the under-
lying source and the reformatting of the answers. She also
implements a register call in the wrapper interface. The
mediator uses the register call to get the local schema. For
data source r0, this is

interface Person (extent personO) {
attribute string name;
attribute integer salary;

}



The register call also returns the capabilities For example,
for the r0 data source, the sentences

scan [ALL]
project [ALL]
select [person0 1 {bind name}]

specify that the wrapper accepts the following logical ex-
pressions as queries

scan (person0)
project([namel,0)
project([salaryl,0)
project([name,salary],0)
select ([name=A],0)

where 0 is any valid UAM expression for this wrapper and
A is a constant. Finally, the register call returns cost infor-
mation as specified by the DBI. To express costs, the local
schema is augmented with cost equations. For example, the
following interface

interface Person (extent person0) {
attribute string name;
attribute integer salary;
cardinality {count_page = 1,
count_object = 1,
object_size = 100}
}

describes the size of the person0 extent as consisting of 1
(4K byte) page, 1 object, with an average object size of 100
bytes.

5 Partial Answers

During query processing, the mediator handles unavailable
data sources. As each wrapper is contacted for issuing a sub-
query, the wrapper communication layer will either return
a connection to the wrapper or it will return an error. If
an error is returned, the mediator continues [10] query pro-
cessing by contacting the remaining available wrappers and
processing as much of the query plan as possible. The me-
diator then returns to the application a partial answer — an
object that contains the partially evaluated plan. The ap-
plication then invokes various methods on this object. One
method returns the list of sources that were available dur-
ing the processing of this partial answer. Another method
returns a new query. It can be resubmitted, and if the previ-
ously unavailable data sources are now available, the answer
to the original query will be returned. The new query will
contact only the previously unavailable data sources to com-
plete processing of the query. If unavailable data sources still
exist, another partial answer is returned.

6 Demonstration

The demonstration of the DISCO prototype consists of an
application, a mediator, three wrappers, and three data
sources. The application is a Java applet that issues queries
to the mediator and displays answers. The mediator is
a resource executing under the Jigsaw HTTP server soft-
ware [11]. The mediator, also written in Java, accepts queries
from the application and issues subqueries to the three wrap-
pers. The wrappers are Java Remote Method Invocation
(RMI) servers that contact data sources. Two data sources
are files, and the third is a WWW site. Thus, in response to
a subquery, the wrappers for the file data sources read the

associated files. The wrapper associated with the WWW
reads the available HTML files, parses them and generates
the appropriate answer. Communication between the ap-
plication and the mediator is accomplished by the Jigsaw
applet protocol (not CGI), communication between the me-
diator and wrappers is accomplished using RMI, and the
communication between one wrapper and the WWW site is
via HTTP.

To demonstrate the functionalities of Disco, we vary the
capabilities of the wrappers, the values in the exported cost
information, and availability of the wrappers for query pro-
cessing. Each change produces a corresponding change in
behavior in the mediator. In addition, changes in the avail-
ablity of wrappers produces a corresponding change in the
behavior of the application.

References

[1] A. Tomasic, L. Raschid, and P. Valduriez, “Scal-
ing heterogeneous databases and the design of disco,”
tech. rep., number 2704, INRIA, Rocquencourt, France,
1995. Extended version of ICDCS ’96 paper.

[2] A. Tomasic, L. Raschid, and P. Valduriez, “Scaling het-
erogeneous databases and the design of disco,” Pro-
ceedings of the International Conference on Distributed
Computing Systems, pp. 449-457, 1996.

[3] G. Wiederhold, “Intelligent integration of information,”
in Proceedings of the ACM SIGMOD International
Conference on Management of Data, 1993.

[4] A. Dogac et al., “METU interoperable database sys-
tem,” in Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, 1996.

[6] M. Tork Roth et al., “The garlic project,” in Proceed-
ings of the ACM SIGMOD International Conference on
Management of Data, 1996.

[6] D. Quass et al., “LORE: A lightweight object repository
for semistructured data,” in Proceedings of the ACM
SIGMOD International Conference on Management of
Data, 1996.

[7] O. Kapitskaia, A. Tomasic, and P. Valduriez, “Dealing
with discrepancies in wrapper functionality,” tech. rep.,
INRIA, Rocquencourt, France, 1997. In preparation.

[8] H. Naacke, G. Gardarin, and A. Tomasic, “Leveraging
mediator cost models with heterogeneous data sources,”
tech. rep., INRIA, Rocquencourt, France, 1997. In
preparation.

[9] P. Bonnet and A. Tomasic, “Partial answers for un-
available data sources,” tech. rep., INRIA, Grenoble,
France, 1997. In preparation.

[10] L. Amsaleg, M. J. Franklin, A. Tomasic, and T. Urhan,
“Scrambling query plans to cope with unexpected de-
lays,” in International Conference on Parallel and Dis-
tribution Information Systems (PDIS), (Miami Beach,
Florida), 1996.

[11] “Jigsaw HTTP server software and related activity.”
http://www.w3.org/pub/WWW /Jigsaw/Activity.html.



