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sources they index� and to forward queries they receive to other knowledgeable brokers� Reference �
��
describes a system that allows sites to forward queries to likely sources 
based� in this case� on what
information has been received from that source in the past��
While there have been many proposals for how to summarize database contents and how to use the

summaries to answer queries� there have been very few performance studies in this area� Reference ����
includes a simulation study of the e�ectiveness of having brokers exchange content summaries� but is not
concerned with what these content summaries are� nor with the costs of storing and exchanging them�
Reference ��� studies the inference network approach experimentally� Likewise� �
�� 
�� 
�� examine the
e�ectiveness and storage e�ciency of GlOSS without worrying about costs of access and update�
On a related topic� the fusion track of the TREC conference ��	� �
� has produced papers on the

�collection fusion� problem ���� ���� These papers study how to merge query results from multiple data
sources into a single query result so as to maximize the number of relevant documents that users get
from the distributed search� Reference ��� also studies this problem�
The representation of summary information for distributed text databases is clearly important for

a broad range of query systems� Our article goes beyond existing work in addressing the storage of this
information� and in studying the performance of accesses and updates to this information�

� Conclusion

The investigation reported in this paper represents an important step toward makingGlOSS a useful tool
for large scale information discovery� We showed that GlOSS can� in fact� e�ectively distinguish among
text databases in a large system with hundreds of databases� We further identi�ed partitioned hashing
and grid �les as useful data structures for storing the summary information that GlOSS requires� We
showed that partitioned hashing o�ers the best average case performance for a wide range of workloads�
but that performance can degrade dramatically as the amount of data stored grows beyond initial
estimates� The grid �le can be tuned to perform well� and does not require any initial assumption
about the ultimate size of the summary information� Our work on tuning grid �les demonstrates that
good performance can be achieved even for highly skewed data�
We examined how the characteristics of the GlOSS summaries make the policy for splitting blocks

of the grid �le a critical factor in determining the ultimate row and column access costs� and evaluated
several speci�c policies using databases containing U�S� Patent O�ce data� Our investigation showed
that if the expected ratio of row accesses to column accesses is very high 
greater than about 
			�
 in
our experiment�� the best policy is to always split between words� Some existing distributed information
retrieval services exceed this high ratio� If the ratio is very low or if updates exceed queries� the best
policy is to split between databases whenever possible� Between these extremes� a policy of splitting
between databases with a given probability can be used to achieve the desired balance between row and
column access costs� For a given probability 
and expected number of database splits� ds�� this policy
performs better than policies that prepartition the database scale ds times� or that always divide on
the database scale up to ds times� If it is important to have a �rm bound on query costs� policies that
prepartition or divide the database scale a �xed number of times can be used�
More work is needed to explore the utility of the GlOSS summaries as a representation of summary

information for brokers� Their e�ectiveness should be studied in a more realistic environment with real
databases and matching queries� where the queries involve disjunction as well as conjunction� There
is more work to be done on the storage of these summaries as well� An unfortunate aspect of the
grid �les is their need for a relatively large directory� Techniques have been reported for controlling
directory size ���� we must examine whether those techniques are applicable to the highly�skewed grid
�les generated by the GlOSS summaries� Compression techniques ���� would have a signi�cant impact
on the performance �gures reported here� Finally� building an operational GlOSS server for a large
number of real databases is the only way to truly determine the right ratio between word and database
access costs�
On a broader front� many other issues remain to be studied� The vastly expanding number and scope

of online information sources make it clear that a centralized solution to the database discovery problem

��



� Related Work

Many approaches to solving the text database discovery problem have been proposed� These fall into
two groups� distributed browsing systems and query systems� In distributed browsing systems 
e�g��
���� ������ users follow pre�de�ned links between data items� While a wealth of information is accessible
this way� links must be maintained by hand� and are therefore frequently out of date 
or non�existent��
Finding information can be frustrating to say the least�
To address this problem� an increasing number of systems allow users to query a collection of �meta�

information� about available databases� The meta�information typically provides some summary of the
contents of each database� thus� these systems �t our generic concept of a broker� Of course� di�erent
systems use di�erent types of summaries� and their implementation varies substantially 
e�g�� ����� �
	��
����� ���� ��	�� ���� 

�� and ���� �����
Some systems provide manual mechanisms to specify meta�information 
e�g�� WAIS ����� Yahoo��

and ALIWEB��� and attach human�generated text summaries to data sources� Given a query� these
systems search for matching text summaries and return the attached data sources� Unfortunately�
human�generated summaries are often out of date� In e�ect� as the database changes the summaries
generally do not� In addition� English text summaries generally do not capture the information the user
wants�
Other systems construct meta�information automatically� These systems are generally of two types�

document�based systems generate meta�information from the documents at the data sources� cooperative
systems provide a broker architecture that the data source administrator maps to the data� Two
important issues that these systems have to address are retrieval e�ectiveness and scalability�
Document�based systems face a retrieval e�ectiveness problem� since each document is equal to

every other document� Given two databases that are equally relevant to a query� the database with
more documents will be more highly represented in the answer� We believe that GlOSS representations
of databases could improve retrieval e�ectiveness for this class of system� This application of GlOSS is
an area of future research�
Document�based systems are faced with a scalability problem when the number of documents grows�

The architecture of document�based systems generally comprises a centralized server 
e�g�� Lycos�� and
AltaVista���� In such a centralized architecture� a robot usually scans the collection of documents in a
distributed way� fetching every document to the central server� One solution to the scalability problem
is to index only document titles or� more generally� just a small fraction of each document 
e�g�� the
World�Wide Web Worm���� This approach sacri�ces important information about the contents of each
database� We believe that the retrieval e�ectiveness and scalability of document�based systems would
be dramatically improved if each data source generated a GlOSS summary instead of transmitting
the entire contents of each data source to the central server� As an example� a GlOSS�based meta�
information query facility has been implemented for WAIS servers��� Recently� reference ��� describes the
application of inference networks 
from traditional information retrieval� to the text database discovery
problem� Their approach summarizes databases using document frequency information for each term

the same type of information that GlOSS keeps about the databases�� together with the �inverse
collection frequency� of the di�erent terms�
Another approach to solving the e�ectiveness and performance problems is to design a more sophis�

ticated broker architecture� In principle� we can achieve greater e�ectiveness by creating brokers that
specialize in a certain topic� Scalability comes from removing the central server bottleneck� In Indie

shorthand for �Distributed Indexing�� �
	� �� and Harvest ���� each broker knows about some subset
of the data sources� with a special broker that keeps information about all other brokers� Reference
���� and WHOIS�� ���� allow brokers 
index�servers in WHOIS��� to exchange information about

�Yahoo is accessible at http���www�yahoo�com�
��ALIWEB is accessible at http���web�nexor�co�uk�aliweb�doc�aliweb�html�
��Lycos is accessible at http���www�lycos�com�
��AltaVista is accessible at http���www�altavista�digital�com�
��The World�Wide Web Worm is accessible at http���wwww�cs�colorado�edu�wwww�
��GlOSS is accessible at http���gloss�stanford�edu�

�




Ratio bw bdb Weighted Avg� Cost Block�Fill Factor

�
 � � ��� ���

	�
 � � ��� ���

		�
 
	 � ���� ���

			�
 
� � �	�� ���

Table 
�� The choices for bw and bdb that minimize the weighted average cost� for di�erent word�to�
database access ratios and for b � 
��

Ratio bw bdb Weighted Avg� Cost Block�Fill Factor

�
 � � ��� ���

	�
 � � ��� ���

		�
 � � ���� ���

			�
 

 
 ���� ���

Table 
�� The choices for bw and bdb that minimize the weighted average cost� for di�erent word�to�
database access ratios and for b � 
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� Comparing Grid Files to Partitioned Hashing for Storing

Summaries

A comparison of Tables � and � with Tables 
	 and 

 shows that with an ideal choice of parameters for
either structure� partitioned hashing and the grid �le are competitive data structures for storing GlOSS
summaries� The grid �le outperforms partitioned hashing only when word and database accesses are
equally frequent� Additionally� the implementation of partitioned hashing is generally simpler than grid
�les� However� for a number of practical reasons� we believe that the grid �le is better suited to this
application�
Firstly� to get optimum performance from partitioned hashing� it is critical to choose the total

number of buckets correctly� For instance� suppose that we overestimate the number of records of the
GlOSS summaries and set the number of bits that identify each bucket to b � 
� instead of to b � 
�
for the experiments of Section �� Table 
� shows that� as expected� the average block��ll factor drops
to about half the values for b � 
� 
see Table 
	�� because there are twice as many buckets now for
the same number of records� The best average access costs also deteriorate� for example� the weighted
average cost for the 
		�
 word�to�database access ratio grows to ���� 
from 
�����
 for the b � 
�
case�� Alternatively� if we underestimate the number of records of the GlOSS summaries and set b � 
��
we obtain the results in Table 
�� In this case� the average block��ll factor is higher than in the b � 
�
case� However� all of the average access costs are signi�cantly higher� For example� for the 
		�

word�to�database access ratio� the weighted average cost for b � 
� is �����	�� whereas it is 
�����

for b � 
�� These experiments show that it is crucial for the performance of partitioned hashing to
choose the right number of buckets in the hash table� Since we expect databases to grow over time�
even an initially optimal choice will degrade as database size increases� By contrast� the grid �le grows
gracefully� Dynamic versions of multi�attribute hashing like the ones in ���� solve this problem at the
expense of more complicated algorithms� resulting in techniques that are closely related to the grid �les�
Secondly� with partitioned hashing� the tradeo� between word and database access cost is �xed for

all time once a division of hash�value bits has been made� The only way to correct for an error is to
rebuild the hash table� By contrast� the value of the probabilistic splitting parameter for the grid �le
can be dynamically tuned� Although changing the parameter may not be able to correct for unfortunate
splits in the existing grid �le� at least future splitting decisions will be improved�
Finally� partitioned hashing treats all words the same� regardless of how many or how few databases

they occur in� and likewise treats all databases the same� regardless of the number of words they contain�
By contrast� the cost of reading a row or column of the grid �le tends to be proportional to the number
of records it contains�
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�			


				


�			

�				

��			

�				

� � � � � 
	 

 
� 
�
bw

Weighted Average Cost 

		�
� �
�

�

�

�
� �

�

�

�

Weighted Trace Average Cost 

		�
� �

�

�

�

�
� � �

�

�

Figure 
	� Weighted average cost for a word�to�database access ratio of 
		�
� as a function of bw�


�



	

�	


		


�	

�		

��	

�		

� � � � � 
	 

 
� 
�
bw

Average Word Access Cost �
�

�

�

�

�
� � � �

Average Trace Word Access Cost �

�

�

�

�

�
� � � �

Figure �� Average word access costs as a function of bw�

Ratio bw bdb Weighted Avg� Cost Block�Fill Factor

�
 � � �
� ���

	�
 � � ��� ��	

		�
 
	 � 
��� ��


			�
 

 � ���� ���

Table 
	� The choices for bw and bdb that minimize the weighted average cost� for di�erent word�to�
database access ratios�

computed the weighted average cost for di�erent access ratios� as in Section ���� Figure 
	 shows the
results for a 
		�
 word�to�database access ratio 
i�e�� when accesses by word are 
		 times as frequent
as accesses by database�� For this ratio� the best choice is bw � 
	 and bdb � �� with a weighted average
cost of around 
�����
� Table 
	 summarizes the results for the di�erent access ratios� Table 

 shows
the corresponding results for the trace words� �

�References ��� and ���� study how to analytically derive the values of bw and bdb that would minimize the number of
buckets accessed for a given query distribution�
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then taking b
iwA mod 
��bwc� where A � 	��
�	����������� Similarly� the hdb hash function maps
database numbers into integers between 	 and �bdb � 
� Given a database number idb� hdb maps it
into integer b
idbA mod 
��bdbc� We initially assign one disk block per hash�table bucket� If a bucket
over�ows� we assign more disk blocks to it�
Given a �xed value for b� we vary the values for bw and bdb� By letting bw be greater than bdb� we

favor access to the GlOSS records by word� since there will be fewer buckets associated with each word
than with each database� In general we just consider con�gurations where bw is not less than bdb� since
the number of words is much higher than the number of databases� and in our model the records will be
accessed more frequently by word than by database� In the following section� we analyze experimentally
the impact of the bw and bdb parameters on the performance of partitioned hashing for GlOSS�

��� Experimental Results

To analyze the performance of partitioned hashing for GlOSS� we ran experiments using the ���������
records for the �		 databases of Section �� For these experiments� we assumed that �
� records �t in
one disk block� that each bucket should span one block on average� and that we want each bucket to
be �	 full on average� Therefore� we should have around B � d���������

����	��
e � ���	 buckets� and we can

dedicate approximately b � 
� bits for the bucket addresses� 
Section � shows results for other values
of b��
To access all the records for a word w we must access all of the �bdb buckets with address pre�x hw
w��

Accessing each of these buckets involves accessing one or more disk blocks� depending on whether the
buckets have over�owed or not� Figure � shows the average word access cost as a function of bw 
b � 
�
and bdb � b � bw�� As expected� the number of blocks per word decreases as bw increases� since the
number of buckets per word decreases� Conversely� Figure � shows that the average database access
cost increases steeply as bw increases� In the extreme case when bw � 
� and bdb � 	� we need to access
every block in every bucket of the hash table� resulting in an expansion factor for databases of around
������� � In contrast� when bw � � and bdb � � we access� on average� around 

��� times as many
blocks for a database as we would need if the records were clustered by database�
Partitioned hashing does not distribute records uniformly across the di�erent buckets� For example�

all the records corresponding to database db belong in buckets with address su�x hdb
db�� Surprisingly�
this characteristic of partitioned hashing does not lead to a poor block��ll factor� the average block��ll
factor for b � 
� and the di�erent values of bw and bdb is mostly higher than 	��� meaning that on
average blocks were at least �	 full� These high values of block��ll factor are partly due to the fact
that only the last block of each bucket can be partially empty� all of the other blocks of a bucket are
completely full�
To measure the performance of partitioned hashing for access by word� we have so far computed

the average value of various parameters over all the words in the combined vocabulary of the �		
databases� Figure � also shows a curve using the words in the query trace of Section �� The average
trace word access cost is very similar to the average word access cost� Two aspects of partitioned
hashing and our experiments explain this behavior� Firstly� the number of blocks read for a word w
does not depend on the number of databases associated with w� we access all the �bdb buckets with
pre�x hw
w�� Consequently� we access a similar number of blocks for each word� 
For example� when
bw � � and bdb � � the number of blocks we access per word ranges between �� and ���� Secondly�
there are only �bw possible di�erent word access costs� because the hash function hw maps the words
into �bw di�erent values� Each trace word w will contribute a �random sample� 
hw
w�� of this set of
�bw possible costs� Furthermore� the number of words in the query trace 
���� word occurrences from
a set of 
�	� di�erent words� is signi�cant with respect to the number of di�erent access costs� for the
values of b that we used in our experiments� In summary� each hashed value hw
w� acts as a random
sample of a limited set of di�erent access costs� and we consider a high number of such samples�
To determine the best values for bw and bdb for an observed word�to�database access ratio� we

�Smarter bucket organizations can help alleviate this situation by sorting the records by database inside each bucket�
for example� However� all buckets of the hash table would still have to be examined to get the records for a database�


�



The best selections for various ratios are given in Tables � and �� for the weighted average cost
and weighted trace average cost� respectively� When access by word predominates� Word�always gives
the best performance� When access by database is as common as access by word 
or more common��
DB�always is the preferred policy� In between� the Probabilistic policy with an appropriate parameter
dominates the other choices�

��� Bounded Access Costs

If the databases summarized by GlOSS grow gradually over time� the weighted access costs for the grid
�le must grow as well� Using the recommended policies of Tables � and �� this increasing cost will be
distributed between word and database access costs so as to minimize the weighted average cost� The
response time for a given query� however� depends only on the word access costs for the terms it contains�
and will increase without bound as the grid �le grows� If such response time growth is unacceptable�
the Bounded and Prepartition policies can be used to put an upper limit on word access cost� in which
case query cost will depend only on the number of terms in the query�
The upper limit on word access cost for these policies is determined by the parameter value� With

the Prepartition policy� the word access cost is exactly the parameter value� e�g�� the cost is 
	
block accesses for any word for Prepartition

	�� The Bounded

	� policy gives the same upper limit�
but the average cost is lower 
about �� because for many words� the cost does not reach the bound�
However� Tables � and � in Section ��� show the penalty for the improved average word access cost�
about a fourfold increase in both directory size and database average access cost� The corresponding
tradeo�s for other values of the parameter can be deduced from Figures �� � and � in Section ����

��� Other Experiments

We did a number of other experiments to complete our evaluation of grid �les as a storage method for
GlOSS summaries� In particular� since we must be able to maintain 
update� the summaries e�ciently�
we tested each of the policies under simulated updates� We also ran our experiments with a smaller
block size to see how that a�ected our results� Details can be found in ��
�� The results were generally
acceptable and did not serve to di�erentiate the various policies� hence they are not repeated here�

� Using Partitioned Hashing for GlOSS

In this section we analyze partitioned 
or multi�attribute� hashing ���� as an alternative technique for
GlOSS to access its records e�ciently both by word and by database� We �rst describe how partitioned
hashing handles the GlOSS summaries� and then we show experimental results on its performance using
the data of Section ��

��� Partitioned�Hashing Basics

With partitioned hashing� the GlOSS records are stored in a hash table consisting of B � �b buckets�
Each bucket is identi�ed by a string of b bits� bw of these b bits are associated with the word attribute
of the records� and the bdb � b � bw remaining bits with the database attribute of the records� Hash
functions hw and hdb map words and databases into strings of bw and bdb bits� respectively� A record

w� db� f�� with word w and database db� is stored in the bucket with address hw
w�hdb
db�� formed
by the concatenation of the hw
w� and hdb
db� bit strings� To access all the records with word w� we
search all the buckets whose address starts with hw
w�� To access all the records with database db� we
search all the buckets whose address ends with hdb
db� ��
The hw hash function maps words into integers between 	 and �bw � 
� Given a word w � an � � � a��

hw does this mapping by �rst translating word w into integer iw �
Pn

i
� lettervalue
ai�� ��
i ����� and

�An improvementover this scheme is to apply themethodologyof ���� and use Gray codes to achieve better performance
of partial�match queries�
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Figure �� Weighted average cost for a word�to�database access ratio of 
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Ratio Policy Weighted Avg� Cost Block�Fill Factor

�
 DB�always 
�� ���

	�
 Probabilistic
�
��� ��� ���

		�
 Probabilistic
�	��� ��	� ���

			�
 Word�always ���� ���

Table �� The policy choices that minimize the weighted average cost� for di�erent word�to�database
access ratios�

Ratio Policy Weighted Trace Avg� Cost Block�Fill Factor

�
 DB�always �
� ���

	�
 Probabilistic
�
��� ��� ���

		�
 Probabilistic
�	��� ��	� ���

			�
 Word�always ���� ���

Table �� The policy choices that minimize the weighted trace average cost� for di�erent word�to�database
access ratios�
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Figure �� The average word access cost as the bound changes�

databases� an X�axis value of �	� in these �gures represents parameter values of 
	� 
	� and �	� for the
Bounded� Prepartition and Probabilistic policies� respectively�
Figure � reveals a hidden cost of the Bounded policy� an up�to�tenfold in�ation in the size of the

grid��le directory for parameter values midway between the extremes� Consider the parameter value
	�� in this �gure� The Bounded policy forces splits between databases to occur for the �rst �	 of
the databases� That is� as early as possible in the insertion process� whereas the other two policies
distribute them evenly� Under the Bounded policy� therefore� relatively few splits between words occur
early in the insertion process 
because the regions being split are typically only one database wide� but�
once the bound has been reached� many splits between words are required to subdivide the remaining
portion of the grid �le� Each of these latter splits introduces a number of additional directory entries
equal to the bound value� With a low bound value� there are few splits between databases� with a high
bound value� there are many splits between databases� but few splits between words to introduction
the additional directories entries� With the bound near the middle� these two e�ects complement each
other to produce a huge directory� With the other policies� the number of splits between words for each
group of databases is fairly constant across the width of the grid �le� and the total number of splits
between words 
and hence the directory size� is much smaller�

��� Weighted Average Costs

Table � presents no clear winner in terms of an overall policy choice� because the performance of a policy
can only be reduced to a single number once the ratio of accesses by word to accesses by database has
been determined� Only then can an appropriately weighted overall access cost be calculated� For
a word�to�database access ratio of 
		�
� Figure � shows the weighted average cost for each of the
policies� across the entire parameter range� 	 The lowest point on this set of curves represents the best
choice of policy and parameter for this access ratio� and corresponds to the Probabilistic policy with
a parameter of about �	���

	The Word�always and DB�always policies are represented by the points for Probabilistic�	
 and Probabilistic��
�
respectively�


�



Splits Total Block�Fill Directory
Policy Word DB Blocks Factor Size

Word�always ���� 
 ���� ��� ����
DB�always 

� 
�� ���	 ��� 
��	�

Probabilistic 
	��� �	� 
	
 ���� ��� �	�	�
Prepartition 

	� ���
 
	 ���� ��� ���
	

Bounded 

	� ���� 
	 ���� ��� ����	

Table �� Performance measurements for the base experiment for the �ve policies introduced in Sec�
tion ����

Policy Avg� Word Avg� DB Expansion Factor Avg� Trace
Cost 
Dev�� Cost 
Dev�� for DB 
Dev�� Word Cost 
Dev��

Word�always 
�		 
	�		� �����		 
	�		� �
	�	� 


������ 
�		 
	�		�
DB�always ����
 

����� 
	���� 


���� ���� 

����� 
	���	 
������

Probabilistic 
	��� ���	� 

��
�� 
����� 
������ 
��
� 
������ �	��
 

��	��
Prepartition 

	� 
	�		 
	�		� �
�	��
 
������� 
���	� 
������� 
	�		 
	�		�

Bounded 

	� ��	� 
	���� ������
 

�����
� ��	��� 

	������ ���� 

����

Table �� Performance measurements for the base experiment for the �ve policies introduced in Sec�
tion ����

contains complete frequency information for some number of words� i�e�� multiple rows of the grid �le�
The number of words in a data block depends on the number of databases in which the corresponding
words appear� As expected� the average word access cost is one block read� Clearly� this policy is the
most favorable one possible for access by word� To access all the records for a database� however� every
block must be read� The average database access cost therefore equals the total number of blocks in
the �le� This policy minimizes the size of the grid �le directory� since it reduces the directory to a
one�dimensional vector of pointers to the data blocks�
Next� consider the DB�always policy� Our measurements show that the database scale was split 
��

times� However� the size of the grid �le far exceeds the capacity of 
�� blocks� so splitting must occur
between words as well 
cf� Section ����� Such splits will take advantage of existing partitions of the word
scale� if they exist� otherwise the word scale of the directory will be split� Such splitting of the word
scale occurred 

� times during our experiment� leading to an average database access cost of 
	����
for this policy� At ���� times the minimumnumber of blocks that must be read� this is the best average
database access cost of the policies we measured� However� ����
 is the worst average word access cost�
and for the frequently occurring words of the trace queries� the cost is even higher�
As a point of comparison for the two extremes of the DB�always and Word�always policies� we

measured the Probabilistic policy� parameterized so that the word and database scales would be
chosen with equal probability� If the distribution of data were uniform between the two scales� this
policy would on average split each scale the same number of times� As the table shows� however� for our
data this policy behaves very much like the DB�always policy� For both of these policies� the skewed
nature of the data 
i�e�� the vastly larger number of distinct values on the word scale� makes many
attempts to split on the database scale unsuccessful� In e�ect� the database scale quickly becomes
�saturated� and large numbers of splits must occur in the word scale� For this parameter value� the
Probabilistic policy gives poorer average database access cost and slightly better average word access
cost� when compared to the DB�always policy� The di�erence is more pronounced for the average trace
word access cost� Block��ll factor varies very little�
Figures � and � show how the three tunable policies� Bounded� Prepartition and Probabilistic�

behave as the tuning parameter varies� In order to graph these results on a common set of axes� we
express the parameter as a fraction of the total number of databases� Thus� for our study of �		
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Mapping Splits Average Cost Total Block�Fill Directory
Word Database Policy Word DB Word DB Blocks Factor Size
alpha seq middle 

� 

� 
	���� 
	���� 
	��� ��� 
����
alpha seq right 
�� 

� ����� 

���� ���� ��� 
���	
alpha random middle �	� �� �
�	� 
����	 ���� ��� 
���	
alpha random right 
�� 
�	 ����� 
����� 
	��� ��� ����	
freq seq middle 

� 
�� ���	� 
	���� 
��	
 ��� �	���
freq seq right 

� 
�� ����
 
	���� ���	 ��� 
��	�
freq random middle 
�� 
�� ���
� 
����	 ���� ��	 �����
freq random right 
�� 
�� ����� 

���� 
	��� ��� ���
�

Table �� The DB�always policy for the di�erent mapping and splitting options�

Parameter Value
Databases 
columns� �		
Words 
rows� �	��	��
Records ���������

Records per block �
�
Database Insertion seq

Word Insertion freq

Block division right

Table �� Parameter values for the base set of experiments� See Section ��� for a description of the
parameters�

line � of the algorithm�� To examine this e�ect� we parameterized the algorithm in Figure � to choose
either the rightmost value or partition 
right� or the middle�most value or partition 
middle�� as per
the original algorithm�
We ran experiments for the eight combinations of mapping and splitting options above for the

DB�always� Word�always� Bounded� and Probabilistic policies� Table � shows the results for the
DB�always policy� but the conclusions we draw here apply to the other policies as well� Note that
the combination of options chosen can have a signi�cant e�ect on performance� The average word
access cost for the worst combination of options is 
�� times the average word access cost for the best
combination� For average database access cost� this factor is about 
��� Block��ll factor varies from a
worst case of 	��� to a best case of 	����
The table shows that the combination of frequency ordering for assignment of word identi�ers�

sequential insertion of databases� and the right option for block splitting achieves the lowest access
costs� both by word and by database� and has a block��ll factor only slightly poorer than the best
observed� Therefore� we used this combination for our subsequent experiments� The base parameters
for these experiments are summarized in Table ��

��� Comparison of Splitting Policies

We begin our comparison of the splitting policies by examining the basic behavior of each of the �ve
policies� Tables � and � provide performance measurements for each policy� for the parameterized
policies 
Probabilistic� Prepartition and Bounded� we present data for a single representative
parameter value� and defer discussion of other parameter values to later in this section�
We start with the Word�always policy� since its behavior is very regular� At the start of the

experiment� there is a single empty block� As databases are inserted� the block over�ows� and the word
scale is split at a point that balances the resulting blocks� By the time all �		 databases have been
inserted� the word scale has been split ���� times� In the resulting grid �le� each data block therefore







in November 
���� against a full�text patent database accessible at http���town�hall�org��
patent�patent�html� These queries contain ���� words that appear in at least one of our �		
databases 
counting repetitions�� This represents less than one percent of the total vocabulary�
but query words from the trace 
trace words� occur on average in ����� databases compared to
the average of ���� for all words� Thus trace words occur with relatively high frequency in the
databases�

Weighted �Trace� Average Cost This metric gives the overall cost of using the grid �le� given an
observed ratio between word and database accesses� It is calculated by multiplying the word�to�
database access ratio by the average 
trace� word access cost� and adding the average database
access cost� For example� if the ratio of word to database accesses is observed to be 
		�
� the
weighted average cost is 

		 ! average word access cost� � average database access cost�

Although the choice of splitting policy is the major factor in determining the behavior of the grid �le�
performance is also sensitive to a number of other� more subtle� variations in how the GlOSS summaries
are mapped onto the grid �le� We therefore discuss these variants before moving on to the main body
of our results�

��� Mapping GlOSS to a Grid File

To insert the GlOSS summary data for a database into a grid �le� one must �rst de�ne a mapping from
each word to an integer that corresponds to a row in the grid �le� We explored two alternatives for
this mapping� alpha and freq� In the alpha mapping� all the words in all the databases are gathered
into a single alphabetically ordered list� and then assigned sequential integer identi�ers� In the freq
mapping� the same set of words is ordered by frequency� instead of alphabetically� where the frequency
for a word is the sum of the frequencies for that word across all summaries� �

This di�erence in mapping has two e�ects� First� although the vast majority of rows have exactly
one record� the freq map clusters those rows having multiple records in the upper part of the grid �le�
and the top rows of the grid �le contain a record for every database� In the alpha map� the rows with
multiple records are spread throughout the grid �le� 
By contrast� the distribution of records across the
columns of the grid �le is fairly uniform��
The second e�ect is due to the fact that� as an artifact of its construction� the summary for each

database is ordered alphabetically� For the alpha mapping� therefore� 
word id� frequency� pairs are
inserted in increasing� but non�sequential� word�identi�er order� For example� db� might insert records


���� 
��
�� 
��

� and db� might insert records 

���� 
���	� 
��

�� In each case� the word identi�ers are
increasing� but they are non�sequential� By contrast� with the freqmapping� 
word id� frequency� pairs
are inserted in essentially random order� since the words are ordered alphabetically but the identi�ers
are ordered by frequency�
Similar considerations pertain to the order in which databases are inserted into the grid �le� We

considered sequential ordering 
seq� and random ordering 
random�� In the seq case� database 
 is
inserted with database identi�er 
� database � with database identi�er �� etc� In the random ordering�
the mapping is permuted randomly� The seq ordering corresponds to statically loading the grid �le
from a collection of summaries� The random ordering corresponds to the dynamic addition and deletion
of summaries as information is updated or exchanged among brokers�
A consequence of the seq ordering is that insertion of data into the grid �le is very deterministic� In

particular� we noticed that our default means of choosing a partition in the case of over�ow was a bad
one� Since databases are inserted left to right� the left�hand member of a pair of split blocks is never
revisited� subsequent insertions will always insert into the right�hand block� Thus� when the database
scale is split 
in line 

 of the algorithm in Figure ��� it would be advantageous to choose the rightmost
value in the block as the value to split on� Furthermore� if given a choice of pre�existing partitions to
use in splitting a block� it would be advantageous to choose the rightmost partition for splitting 
in

�In practice� one could approximate the freq mapping by using a prede�ned mapping table for relatively common
words� and assigning identi�ers in order for the remaining �infrequent
 words�


	



word over access by database� In between these two extremes lies a spectrum of other possibilities� The
Bounded policy allows the database scale of the grid �le directory to be split up to bound times� and
then resorts to splitting between words� Thus� it allows some splits between databases 
which favor
access by database�� while putting an upper bound on the number of block reads that might be needed
to access all the records for a word� If bound is set to in�nity� then Bounded behaves as DB�always�
whereas if bound is set to zero� then Bounded behaves as Word�always� The Probabilistic policy
splits between databases with probability prob�bound� Unlike the Bounded policy� which favors splitting
between databases initially� this policy allows the choice of splitting dimension to be made independently
at each split� The Prepartition policy works like Word�always� except that the database scale of the
directory is prepartitioned into m regions before any databases are inserted� to see if �seeding� the
database scale with evenly�spaced partitions improves performance� The size of each region is bm

db
c�

where db is the number of available databases�
Note that once a scale has been chosen� it may not be possible to split the block on that scale� For

instance� we may choose to split a block on the database scale� but the scale may have only a single
value associated with that block 
and consequently� every record in the block has the same database
value�� In this case� we automatically split on the other scale�

��	 Metrics for Evaluation

To evaluate the policies of Table �� we implemented a simulation of the grid �le in C�� on an IBM
RISC"�			 workstation and ran experiments using �		 of the �		 patent databases described in Section �

around 
�� gigabytes of data�� The resulting grid �le had �		 columns 
one for each of the �		
databases� and �	��	�� rows 
one for each distinct word appearing in the patent records�� The �le
contained ��������� total records� At four bytes per entry� we assumed that each disk block could hold
�
� records�
Our evaluation of the various policies is based on the following metrics 
cf� Section ��
��

DB Splits Number of splits that occurred in the database scale�

Word Splits Number of splits that occurred in the word scale�

Total Blocks The total number of blocks in the grid �le 
excluding the scales and the directory��

Block��ll factor The ratio of used block space to total block space� This measure indicates how
e�ectively data is packed into blocks�

Directory Size The number of entries in the database scale of the grid �le directory times number
of entries in the word scale� This measure indicates the overhead cost of the grid �le directory�
About four bytes would be needed for each directory entry in an actual implementation�

Average Word �or Database� Access Cost The number of blocks accessed in reading all the records
for a single word 
or database�� i�e�� an entire row 
or column� of the grid �le� averaged over all
words 
or databases� on the corresponding scale�

Expansion Factor for Words �or Databases� The ratio between the number of blocks accessed in
reading all the records for a single word or database and the minimumnumber of blocks that would
be required to store that many records� averaged over all words or databases on the corresponding
scale� This metric compares the access cost using the grid �le to the best possible access cost
that could be achieved� Note that since we assume that �
� records can be stored in a block� and
there are only �		 databases� all the records for a single word can always �t in one block� Thus
the minimum number of blocks required for each word is one� and the expansion factor for words
is always equal to the average word access cost�

Average Trace Word Access Cost and Expansion Factor for Trace Words Similar to the word
scale metrics� but averaged over the words occurring in a representative set of patent queries�
instead of over all words� For this measurement� we used 
��� queries issued by real users

�



�� Compute region and block for record


� If Record fits in block

�� Insert record

�� Else

�� If Usable partitions in database scale

�� Divide region in half on database scale

�� Else If Usable partitions in word scale


� Divide region in half on word scale

�� Else

�	� Split directory

��� Divide region on chosen scale

�
� Insert record

Figure �� Algorithm for inserting a record in a grid �le for GlOSS�

Policy Splitting dimension
DB�always Database

Word�always Word
Bounded If DB�splits � bound then Database else Word

Probabilistic If Random�� � prob�bound then Database else Word
Prepartition Like Word�always� after prepartitioning on Database

Table �� Di�erent policies for choosing the splitting dimension�

directory maps to the over�owed block� then the collection of directory entries pointing to the over�owed
block de�ne a region� This region of the directory contains at least one partition 
either between words
or between databases�� If the data corresponding to the entries on either side of the partition form non�
empty blocks� then we can use one such pre�existing partition to split the block without introducing
new entries into the directory� That is� the partition becomes a division between two new� smaller�
regions� For example� the insertion of the records 
panther� db	� �� and 
penguin� db	� �� into Figure 


�� causes the rightmost data block to over�ow and a new block to be created without changing the size
of the directory� The single partition becomes two regions for a total of four regions in the directory�
If more than one such partition exists� we favor those between databases over those between words� If
multiple partitions exist in a single dimension� we choose the one that splits the block most nearly in
half� 
See Section ��� for a variation of this policy that reduces the amount of unused space in blocks��
To be precise� Figure � shows the basic algorithm for inserting a record into the grid �le� Line


 computes the region and block where the record should be inserted according to the database and
word scales for the grid �le directory� Line � attempts to insert the record� If there is no over�ow� the
insertion succeeds� Otherwise� there is over�ow in the block� Line � checks the region in which the
record is being inserted for a partition in the database scale� If there is a partition� the region is divided
in half along a partition line� and the records in the block of the region are redistributed between the
old and new block� The new block is assigned to the new region� This process eliminates a partition of
the region by creating a new region� Lines ��� do the same for the word scale� If there are no qualifying
partitions 
line 
	�� we need to create one by introducing a new row 
or column� in the directory�
Table � describes several policies for choosing a splitting dimension� The DB�always policy always

attempts to split the block between databases� thus favoring access by database over access by word�
Conversely� the Word�always policy always attempts to split between words� thus favoring access by

directory organization ���� shows how to implement the directory on disk� We have not yet explored how these techniques
would work in our environment�
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Figure �� The successive con�gurations of a grid �le during record insertion for a prepartitioned grid
�le�

Figure � shows the successive con�gurations for a di�erent grid �le for the same input as Figure 
�
In this case� the grid �le directory has been prepartitioned along one dimension� Prepartitioning the
grid �le directory has resulted in a larger directory for the same input� The directory utilization in this
example is �

�
or �	 � We defer further discussion of the e�ect of prepartioning until Section ����

��� Splitting Blocks

The rule that is used to decide how to split a data block is called the splitting policy� The splitting
policy can be used to adjust the overall cost of using a grid �le to store our summary information� Our
goal is to �nd and evaluate splitting policies that are easily parameterized to support an observed ratio
between the frequency of word and database accesses� We describe two extreme splitting policies that
characterize the endpoints of the spectrum of splitting behavior� and then introduce three additional
parameterized policies that can be adjusted to minimize overall cost�
To insert a record into the GlOSS grid �le� we �rst �nd the block where the record belongs� using the

grid �le directory� If the record �ts in this block� then we insert it� � Otherwise� the block must be split�
either by dividing it between two words or by dividing it between two databases� Splitting between
databases tends to bene�t access by database� whereas splitting between words tends to bene�t access
by word� This choice of splitting dimension is therefore the basic tool for controlling relative access
costs�
To limit the growth of the grid �le directory� however� we always look for ways to split the block

that take advantage of pre�existing partitions in the directory� � If more than one entry in the grid �le

�We can compress the contents of each block of the grid �le by applying methods used for storing sparse matrices
e�ciently �
��� or by using the methods in ���� for compressing inverted �les� for example� Any of these methods will
e�ectively increase the capacity of the disk blocks in terms of the number of records that they can hold�

�Several alternative organizations for the grid �le directory control its growth and make it proportional to the data
size� These alternative organizations include the region�representation directory and the BR� directory �
�� The ��level
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Figure 
� The successive con�gurations of a grid �le during record insertion�

In 
��� we split the data block between databases� all records with databases in the 
db�� db�� range go
to one block� and all records with databases in the 
db�� db�� range go to the other block� We also split
the grid �le directory to contain two entries� one pointing to each of the data blocks�
To insert record 
bu�alo� db�� ��� we �rst locate the data block where the record belongs� by looking

at the directory� we �nd the pointer associated with range 
db�� db�� and 
a� z�� and the corresponding
data block� This data block already has two records in it� 
ostrich� db�� �� and 
zebra� db�� ��� so the
insertion of the new tuple causes the data block to over�ow� In 
��� we split the data block between
words� and we re�ect this splitting in the directory by creating a new row in it� The �rst row of the
directory corresponds to word range 
a�m�� and the second to word range 
n� z�� Thus� the over�owed
data block is split into one block with record 
bu�alo� db�� ��� and another block with records 
ostrich�
db�� �� and 
zebra� db�� ��� Note that both directory entries corresponding to database range 
db�� db��
point to the same data block� which has not over�owed and thus does not need to be split yet� These
two directory entries form a region� Regions may contain any number of directory entries� but are
always convex in our grid �les� We will refer to a division between directory entries in a region as
a partition of the region� The region in the example directory contains a single partition� We de�ne
directory utilization as the ratio of directory regions to directory entries� In this example� the directory
utilization is �

�
or �� �

To locate the portion of the directory that corresponds to the record we are looking for� we keep one
scale per dimension of the grid �le� These scales are one�dimensional arrays that indicate what partitions
have taken place in each dimension� For example� the word scale for the grid �le con�guration in 
�� is

a�m� z�� and the corresponding database scale is 
db�� db�� db���
Consider for a moment the behavior of grid �les for highly skewed data� For example� suppose the

sequence of records 
a� db�� 
�� 
a� db�� 
�� 
b� db�� 
�� 
b� db�� 
�� 
c� db�� 
�� 
c� db�� 
�� etc� is inserted
into the grid �le of Figure 
 
�� and we continue to split between words� The resulting directory would
exhibit very low utilization� since� for example� all the directory entries on the database dimension for
the database db	 would point to the same data block� In our application� the data is highly skewed and
we attack the problem of low directory utilization by adjusting the way data blocks are split to account
for the skew of the data�
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Partial match queries occur because we need to access the GlOSS records by word and by database� A
workload constructed entirely of partial match queries creates unique demands on the data structure
used to implement GlOSS�
Ideally we would like to simultaneously minimize the access cost in both dimensions� In general�

however� the costs of word and database access trade o�� Consequently� one must consider the relative
frequencies of these operations� and try to �nd a policy that minimizes overall cost� Unfortunately�
the relative frequencies of word and database access are di�cult to estimate� They depend on other
parameters� such as the number of databases covered by GlOSS� the intensity of query tra�c� the actual
frequency of summary updates� etc�
Just to illustrate the tradeo�s� let us assume that query processing is the most frequent operation�

and that a GlOSS server receives �		�			 query requests per day� Likewise� let us assume that we
update each database summary once a day� Given this scenario� and if GlOSS covers �		 databases�
the ratio of accesses by word to accesses by database would be about �		�
� and our data structure
might therefore favor the performance of accesses by word over that by database in the same proportion�
However� if the server received ��	�			 queries a day� or covered a di�erent number of databases� or
received updates more frequently� a vastly di�erent ratio could occur� Therefore� GlOSS needs a data
structure that can be tuned to adapt to the actual conditions observed in practice�
A simple data organization for GlOSS is to cluster the records according to their associated word�

and to build a tree based directory on the words 
e�g�� a sparse B� tree�� to provide e�cient access
by word �
��� thus yielding fast query processing� To implement GlOSS using this approach� we could
adapt any of the techniques for building inverted �les for documents 
e�g������ ����� ��	�� ����� However�
this approach does not support fast access by database� for updating summaries or exchanging them
with other brokers� To access all the words for a database� the entire directory tree must be searched�
Organizations for �spatial� data provide a variety of techniques that we can apply for GlOSS� In

particular� we are interested in techniques that e�ciently support partial match queries� Approaches
that index multiple dimensions using a tree�based directory� including quad trees� k�d trees� K�D�B
trees ����� R trees �
��� R� trees ����� and BV trees �
��� are not well suited for this type of access� To
answer a partial�match query� typically a signi�cant portion of the directory tree must be searched� A
similar problem arises with techniques like the ones based on the �z order� ��
�� In contrast� the directory
structure of grid �les ���� and the addressing scheme for partitioned or multi�attribute hashing ���� make
them well suited for answering partial�match queries�

� Using Grid Files for GlOSS

In this section we describe how grid �les ���� can be used to store the GlOSS summaries� and describe a
series of experiments that explore their performance� We show how to tune the grid �le to favor access
to the summary information by word or by database�

��� Grid File Basics

A grid �le consists of data blocks� stored on disk and containing the actual data records� and a directory
that maps multi�dimensional keys to data blocks� For GlOSS� the 
two�dimensional� keys are 
word�
database identi�er� pairs� Initially there is only one data block� and the directory consists of a single
entry pointing to the only data block� Records are inserted in this data block until it becomes full and
has to be split into two blocks� The grid �le directory changes to re�ect the splitting of the data block�
Figure 
 shows a grid �le where the data blocks have capacity for two records� In 

�� we have

inserted two records into the grid �le� 
llama� db	� 
� and 
zebra� db�� ��� There is only one data block

�lled to capacity� containing the two records� and only one directory entry pointing to the only data
block�
To insert record 
ostrich� db�� ��� we locate the data block where the record belongs by �rst reading

the directory entry corresponding to word ostrich and database db�� Since the data block is full� we
have to split it� We can split the data block between di�erent databases� or between di�erent words�
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Table �� Normalized cumulative recall for �		 databases for the INSPEC trace�

circumstances� with gradual improvement as the number of databases examined increases� The large
standard deviations arise because although GlOSS performs very well for the majority of queries� there
remains a stubborn minority for which performance is very poor� Nevertheless� using GlOSS gives a
dramatic improvement over randomly selecting databases to search� for a fraction of the storage cost of
a full�text index�
We felt these initial results were promising enough to pursue the use of GlOSS�s representation for

summary information� A more rigorous investigation is in progress� Ideally� we would like to use a real
set of test databases instead of one constructed by partitioning� and a matching set of queries submitted
against these same databases� including boolean disjunctions as well as conjunctions� We will try to
characterize those queries for which GlOSS performs poorly� and to study the impact of the number
of query terms on e�ectiveness� Other metrics will be included� For example� a metric that revealed
whether the matching documents were scattered thinly across many databases or concentrated in a few
large clumps would allow us to measure the corresponding impact on e�ectiveness� E�ectiveness can
also be measured using information retrieval metrics ���� In this case� GlOSS would be measured in
terms of its e�ectiveness in retrieving relevant documents� irrespective of the document location in one
database or another �
���

� Alternative Data Structures for GlOSS Summaries

The choice of a good data structure to store the GlOSS summaries depends on the type and frequency
of operations at the GlOSS servers� A GlOSS server needs to support two types of operations e�ciently�
query processing and summary updates� When a query arrives� GlOSS has to access the complete set
of document frequencies associated with each query keyword� When new or updated summaries arrive�
GlOSS has to update its data structure� operating on the frequencies associated with a single database�
E�cient access by database might also be needed if di�erent brokers exchange database summaries to
develop �expertise� ����� or if we allow users to do relevance feedback ���� and ask for databases �similar�
to some given database� The two types of operations pose con�icting requirements on the GlOSS data
structure� to process queries� GlOSS needs fast access to the table by word� whereas to handle frequency
updates� GlOSS needs fast access to the table by database�
Thus� our problem requires e�cient access to multi�dimensional data� For multi�dimensional data

structures� queries and updates are generally expressed as selections on the possible data values of
each dimension� Selections come in the form of constants� ranges of values� or a selection of all values
along a dimension� A point query selects constants across all dimensions� For example� retrieving the
GlOSS summary of the word information in db� from Table 
 is a point query� A region query selects
ranges of values across all dimensions� Retrieving summaries for all words between data and base from
databases � through � is a region query� GlOSS demands e�cient partial match queries and updates�
one dimension has a constant selected and the other dimension selects all values across the dimension�
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query at each database� GlOSS can produce these estimates from the GlOSS summaries in a variety
of ways� One possibility for GlOSS is to assume that the query words appear in documents following
independent and uniform probability distributions� and to estimate the number of documents matching
a query at a database accordingly� For example� for query �information AND retrieval�� the expected
number of matches in db� 
using the GlOSS summary information of Table 
� is

����

����
� ��

����
� 
��� � ���

and the expected number of matches in db� is
��

����
� ���

����
�
			 � �� GlOSS would then return db� as the

most promising database for the query� followed by db�� Several other estimation functions are given in
�
���
As mentioned in the introduction� GlOSS can be measured with respect to its e�ectiveness in lo�

cating the best databases for a given query� and it can be measured in terms of its computational
performance� In the next section we study the e�ectiveness of GlOSS� The rest of the article is devoted
to computational performance�

� E�ectiveness of GlOSS

Given a set of candidate databases and a set of queries� we explored the ability of GlOSS to suggest
appropriate databases for each query� The original GlOSS studies �
�� 
�� tested GlOSS�s ability to
select among six databases� To be sure that GlOSS would be useful as a large scale broker� we scaled
up the number of databases by about two orders of magnitude� In this section� we describe a set of
experiments that demonstrate that GlOSS can select relevant databases e�ectively from among a large
set of candidates� We present a metric for evaluating how closely the list of databases suggested by
GlOSS corresponds to an �optimal� list� and evaluate GlOSS based on this metric�
For our experiments� we used as data the complete set of United States patents for 
��
� Each patent

issued is described by an entry that includes various attributes 
e�g�� names of the patent owners� issuing
date� as well as a text description of the patent� The total size of the patent data is ��� gigabytes� We
divided the patents into �		 databases by �rst partitioning them into �fty groups based on date of
issue� and then dividing each of these groups into ten subgroups� based on the high order digit of a
subject�related patent classi�cation code� This partitioning scheme gave databases that ranged in size
by an order of magnitude� and were at least somewhat di�erentiated by subject� Both properties are
ones we would expect to see in a real distributed environment�
For test queries� we used a set of ���
� queries submitted against the INSPEC database o�ered

by Stanford University through its FOLIO boolean information retrieval system�� INSPEC is not a
patent database� but it covers a similar range of technical subjects� so we expected a fair number of hits
against our patent data� Each query is a boolean conjunction of one or more words� e�g�� �microwave
AND interferometer�� A document is considered to match a query if it contains all the words in the
conjunction�
To test GlOSS�s ability to locate the databases with the greatest number of matching documents� we

compared its recommendations to those of an �omniscient� database selection mechanism implemented
using a full�text index of the contents of our �		 patent databases� For each query� we found the exact
number of matching documents in each database� using the full�text index� and ranked the databases
accordingly� We compared this ranking with the ranking suggested by GlOSS by calculating� for various
values of N � the ratio between the total number of matching documents in the top N databases recom�
mended by GlOSS and the total number of matching documents in the N best databases according to
the ideal ranking� This metric� the normalized cumulative recall� approaches 
�	 as N approaches �		�
the number of databases� but is most interesting when N is small� Because this metric is not meaning�
ful for queries with no matching documents in any database� we eliminated such queries� reducing the
number of queries in our sample to ������
Table � shows the results of this experiment� The table suggests that compared to an omniscient

selector� GlOSS does a reasonable job of selecting relevant databases� on average �nding over seventy
percent of the documents that could be found by examining an equal number of databases under ideal

�For more information on the query traces� see reference �
��� which provides detailed statistics for similar traces from
the same system�
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database
word db� db�

information 
��� �	
retrieval �� �		
documents 
��� 
			

Table 
� Part of the GlOSS summaries of two databases�

databases for a query� In this article� we show that the GlOSS summaries can be employed as the
representation for summary information in a large scale system� In particular� we o�er evidence that
GlOSS can e�ectively locate databases of interest even in a system of hundreds of databases� Our metric
for e�ectiveness is based on selecting databases that contain the largest number of matching documents
for a simple Boolean query� Second� we suggest appropriate data structures for storing such large scale
GlOSS summaries�
We experiment with two data structures� partitioned 
multi�attribute� hashing and the grid �le�

Partitioned hashing o�ers the best average case performance for a wide range of workloads � if the
number of hash buckets is chosen correctly� However� the grid �le performs well� and grows more
gracefully as the number or size of the summaries increases�
Grid �les were developed to store data keyed in multiple dimensions� and are typically employed for

data that is fairly uniformly distributed� The GlOSS summaries we store are highly skewed� We show
that by varying the splitting policy used to construct a grid �le we can provide good performance for a
wide range of workloads even when storing such highly skewed data� Thus� as a side e�ect of our work�
we demonstrate that grid �les are more generally applicable than previously believed� and provide an
exploration of the e�ect of di�erent splitting policies on grid �le performance�
In summary� this paper studies an emerging problem in the construction of distributed information

retrieval systems� namely� the performance of brokers for accessing and updating summary information�
Section � reviews the GlOSS representation of summary information� Section � discusses GlOSS�s
e�ectiveness when there are large numbers of databases� The next four sections focus on choosing
a storage method for the summary information� Section � discusses the issues involved in choosing a
storage method� and describes some alternatives� Section � introduces the idea of using a grid �le to store
the GlOSS summaries� describes various splitting policies for managing grid �le growth� and presents
a simulation study of grid �le performance over a range of workloads� for several splitting policies�
Section � examines partitioned hashing as an alternative method for e�ciently storingGlOSS summaries�
Section � compares the results from the two storage methods� and explains why we recommend the grid
�le� Section � positions our work with respect to other work on brokers� and the last section summarizes
our results and our conclusions� and provides some ideas for future work�

� GlOSS	Glossary
Of
Servers Server

In this section we brie�y describe how GlOSS helps users choose databases at which a query should
be evaluated� Users �rst submit their query to GlOSS to obtain a ranking of the databases according
to their potential usefulness for the given query� The information used by GlOSS to produce this
ranking consists of a vector that indicates how many documents in the database contain each word
in the database vocabulary� and a count of the total number of documents in the database �
��� This
summary information is much smaller than the complete contents of the database� so this approach
scales well as the number of available databases increases�
Table 
 shows a portion of the GlOSS summaries for two databases� Each row corresponds to a word

and each column to a database� For example� the word �information� appears in 
��� documents in
database db�� and in �	 documents in database db�� The last row of the table shows the total number of
documents in each database� database db� has 
��� documents� while database db� has 
			 documents�
To rank the databases for a given query� GlOSS estimates the number of documents that match the
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Abstract

With the profusion of text databases on the Internet� it is becoming increasingly hard to �nd
the most useful databases for a given query� To attack this problem� several existing and proposed
systems employ brokers to direct user queries� using a local database of summary information about
the available databases� This summary information must e�ectively distinguish relevant databases�
and must be compact while allowing e�cient access� We o�er evidence that one broker� GlOSS� can
be e�ective at locating databases of interest even in a system of hundreds of databases� and examine
the performance of accessing the GlOSS summaries for two promising storage methods� the grid �le
and partitioned hashing� We show that both methods can be tuned to provide good performance
for a particular workload 	within a broad range of workloads
� and discuss the tradeo�s between the
two data structures� As a side e�ect of our work� we show that grid �les are more broadly applicable
than previously thought� in particular� we show that by varying the policies used to construct the
grid �le we can provide good performance for a wide range of workloads even when storing highly
skewed data�

� Introduction

The last few years have seen an explosion in the amount of information that is available online� The
falling costs of storage� processing� and communications have all contributed to this explosion� as has
the emergence of the infrastructure provided by the World�Wide Web and its associated applications�
Increasingly� the key issue is not whether some piece of information is available online� but where� As a
result� an emerging area of research concerns brokers� systems that help users locate the text databases
that are most likely to contain answers to their queries� To perform this service� brokers use summary
information about the available databases� Brokers must be able both to query and to update this
summary information� A central problem in broker design is to �nd a representation for summary
information that is both e�ective in its ability to select appropriate information resources� and e�cient
to query and maintain�

GlOSS 
Glossary�Of�Servers Server� �
�� 
�� is one broker that keeps database summaries to choose
the most promising databases for a given query� Initial studies of GlOSS are encouraging� Experiments
with a small number of databases indicate that although the GlOSS summaries are orders of magnitude
smaller than the information that they summarize� they contain enough information to select the best
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