
���� Michael F� Schwartz� A scalable� non�hierarchical resource discovery mechanism based on prob�
abilistic protocols� Technical Report CU�CS������	� Dept� of Computer Science� University of
Colorado at Boulder� June
��	�

���� Michael F� Schwartz� Alan Emtage� Brewster Kahle� and B� Cli�ord Neuman� A comparison of
Internet resource discovery approaches� Computer Systems� �
���
����

���� Timos Sellis� Nick Roussopoulos� and Christos Faloutsos� The R��tree� A dynamic index for
multi�dimensional objects� In Proceedings of the ��th Conference on Very Large Databases� pages
�	���
�� September
����

���� Mark A� Sheldon� Andrzej Duda� Ron Weiss� James W� O�Toole� and David K� Gi�ord� A content
routing system for distributed information servers� In Proceedings Fourth International Conference
on Extending Database Technology�
����

���� Patricia Simpson and Rafael Alonso� Querying a network of autonomous databases� Technical
Report CS�TR��	����� Dept� of Computer Science� Princeton University� January
����

���� Anthony Tomasic and Hector Garcia�Molina� Performance issues in distributed shared�nothing
information retrieval systems� Information Processing and Management�
���� To Appear�

��	� Anthony Tomasic� H�ector Garc��a�Molina� and Kurt Shoens� Incremental updates of inverted lists
for text document retrieval� In Proceedings of the ���� ACM SIGMOD Conference� pages �����		�

����

��
� Anthony Tomasic� Luis Gravano� Calvin Lue� Peter Schwarz� and Laura Haas� Data structures
for e�cient broker implementation� Technical report� IBM Almaden Research Center� June
����
Also available as ftp���db�stanford�edu�pub�gravano������ibm rj�ps�

���� Je�rey D� Ullman� Principles of database and knowledge�base systems� volume I� Computer Science
Press�
����

���� Ellen M� Voorhees� Siemens TREC�� report� Further experiments with database merging� In
Proceedings of the �th Text Retrieval Conference �TREC����
����

���� Ellen M� Voorhees� Narendra K� Gupta� and Ben Johnson�Laird� The collection fusion problem�
In Proceedings of the �rd Text Retrieval Conference �TREC����
����

���� Chris Weider and Simon Spero� Architecture of the WHOIS�� Index Service� October
����
Working draft�

���� Gio Wiederhold� File organization for database design� McGraw�Hill�
����

���� Justin Zobel� Alistair Mo�at� and Ron Sacks�Davis� An e�cient indexing technique for full�text
database systems� In Proceedings of the
�th International Conference on Very Large Data Bases�
pages ��������
����

��

�
�� Luis Gravano� H�ector Garc��a�Molina� and Anthony Tomasic� The e�ectiveness of GlOSS
for the text�database discovery problem� In Proceedings of the ���� ACM SIGMOD
Conference� May
���� Also available as ftp���db�stanford�edu�pub�gravano�������

stan�cs�tn����		
�sigmod���ps�

�
�� Luis Gravano� H�ector Garc��a�Molina� and Anthony Tomasic� Precision and recall of GlOSS
estimators for database discovery� In Proceedings of the �rd International Conference on
Parallel and Distributed Information Systems �PDIS����� September
���� Also available as
ftp���db�stanford�edu�pub�gravano������stan�cs�tn����	�	�pdis���ps�

�
�� Antonin Guttman� R�trees� A dynamic index structure for spatial searching� In Proceedings of the
���� ACM SIGMOD Conference� pages ������ June
����

�
�� D� K� Harman� editor� Overview of the Third Text REtrieval Conference �TREC���� U�S� Depart�
ment of Commerce� Technology Administration� National Institute of Standards and Technology

NIST��
���� NIST Special Publication �		����� Coden� NSPUE��

��	� Donna Harman� editor� Proceedings of the Third Text Retrieval Conference �TREC���� National
Institute of Standards and Technology� Special Publication �		�����
����

��
� Donna Harman� editor� Proceedings of the Fourth Text Retrieval Conference �TREC���� National
Institute of Standards and Technology�
����

���� Klaus Hinrichs� Implementation of the grid �le� design concepts and experience� BIT� �����������

����

���� Brewster Kahle and Art Medlar� An information system for corporate users� Wide Area Information
Servers� Technical Report TMC
��� Thinking Machines Corporation� April
��
�

���� Donald E� Knuth� The art of computer programming	 Volume �
Sorting and searching� Addison�
Wesley�
����

���� John W� Lloyd� Optimal partial�match retrieval� BIT� �	��	���
��
��	�

���� John W� Lloyd and K� Ramamohanarao� Partial�match retrieval for dynamic �les� BIT� ���
�	�
���

����

���� B� Cli�ord Neuman� The Prospero File System� A global �le system based on the Virtual System
model� Computer Systems� �
���
����

���� J� Nievergelt� H� Hinterberger� and K� C� Sevcik� The grid �le� An adaptable� symmetric multikey
�le structure� ACM Transactions on Database Systems� �

������
� March
����

���� Katia Obraczka� Peter B� Danzig� and Shih�Hao Li� Internet resource discovery services� IEEE
Computer� September
����

��	� Joann J� Ordille and Barton P� Miller� Distributed active catalogs and meta�data caching in
descriptive name services� Technical Report �

�� University of Wisconsin�Madison� November

����

��
� J� A� Orenstein and T� H� Merrett� A class of data structures for associative searching� In �rd
ACM Symposium on Principles of Database Systems� pages
�
�
�	� April
����

���� Sergio Pissanetzky� Sparse matrix technology� Academic Press�
����

���� Gerard Salton and Michael J� McGill� Introduction to modern information retrieval� McGraw�Hill�

����

��

will never be satisfactory� showing the need to further explore architectures based on hierarchies �
�� or
networks of brokers�

References

�
� Alfred V� Aho and Je�rey D� Ullman� Optimal partial�match retrieval when �elds are independently
speci�ed� ACM Transactions on Database Systems� �
���
���
��� June
����

��� Daniel Barbar�a and Chris Clifton� Information Brokers� Sharing knowledge in a heterogeneous
distributed system� Technical Report MITL�TR��
���� Matsushita Information Technology Labo�
ratory� October
����

��� Ludger Becker� Klaus Hinrichs� and Ulrich Finke� A new algorithm for computing joins with grid
�les� In Proceedings of the �th International Conference on Data Engineering� pages
�	�
���
����

��� Tim Berners�Lee� Robert Cailliau� Jean�F� Gro�� and Bernd Pollermann� World�Wide Web� The
Information Universe� Electronic Networking	 Research� Applications and Policy�

���
����

��� C� Mic Bowman� Peter B� Danzig� Darren R� Hardy� Udi Manber� and Michael F� Schwartz�
Harvest� A scalable� customizable discovery and access system� Technical Report CU�CS��������
Department of Computer Science� University of Colorado�Boulder� August
����

��� Eric W� Brown� James P� Callan� and W� Bruce Croft� Fast incremental indexing for full�text
information retrieval� In Proceedings of the �	th International Conference on Very Large Data
Bases� pages
����	��
����

��� James P� Callan� Zhihong Lu� and W� Bruce Croft� Searching distributed collections with inference
networks� In Proceedings of the
�th Annual SIGIR Conference�
���� To appear�

��� Doug Cutting and Jan Pedersen� Optimizations for dynamic inverted index maintenance� In
Proceedings of the
�th International Conference on Research and Development in Information
Retrieval� pages �	���

�
��	�

��� Peter B� Danzig� Jongsuk Ahn� John Noll� and Katia Obraczka� Distributed indexing� a scal�
able mechanism for distributed information retrieval� In Proceedings of the
�th Annual SIGIR
Conference� October
��
�

�
	� Peter B� Danzig� Shih�Hao Li� and Katia Obraczka� Distributed indexing of autonomous Internet
services� Computer Systems� �
���
����

�

� Andrzej Duda and Mark A� Sheldon� Content routing in a network of WAIS servers� In ��th IEEE
International Conference on Distributed Computing Systems�
����

�
�� Christos Faloutsos� Multiattribute hashing using Gray codes� In Proceedings of the ���� ACM
SIGMOD Conference� pages ��������
����

�
�� David W� Flater and Yelena Yesha� An information retrieval system for network resources� In Pro�
ceedings of the International Workshop on Next Generation Information Technologies and Systems�
June
����

�
�� Michael Freeston� A general solution of the n�dimensional b�tree problem� In Proceedings of the
���
 ACM SIGMOD Conference� pages �	��
� May
����

�
�� Luis Gravano and H�ector Garc��a�Molina� Generalizing GlOSS for vector�space databases and
broker hierarchies� In Proceedings of the ��st International Conference on Very Large Data Bases
�VLDB��
�� pages ������ September
����

��

sources they index� and to forward queries they receive to other knowledgeable brokers� Reference �
��
describes a system that allows sites to forward queries to likely sources
based� in this case� on what
information has been received from that source in the past��
While there have been many proposals for how to summarize database contents and how to use the

summaries to answer queries� there have been very few performance studies in this area� Reference ����
includes a simulation study of the e�ectiveness of having brokers exchange content summaries� but is not
concerned with what these content summaries are� nor with the costs of storing and exchanging them�
Reference ��� studies the inference network approach experimentally� Likewise� �
��
��
�� examine the
e�ectiveness and storage e�ciency of GlOSS without worrying about costs of access and update�
On a related topic� the fusion track of the TREC conference ��	� �
� has produced papers on the

�collection fusion� problem ���� ���� These papers study how to merge query results from multiple data
sources into a single query result so as to maximize the number of relevant documents that users get
from the distributed search� Reference ��� also studies this problem�
The representation of summary information for distributed text databases is clearly important for

a broad range of query systems� Our article goes beyond existing work in addressing the storage of this
information� and in studying the performance of accesses and updates to this information�

� Conclusion

The investigation reported in this paper represents an important step toward makingGlOSS a useful tool
for large scale information discovery� We showed that GlOSS can� in fact� e�ectively distinguish among
text databases in a large system with hundreds of databases� We further identi�ed partitioned hashing
and grid �les as useful data structures for storing the summary information that GlOSS requires� We
showed that partitioned hashing o�ers the best average case performance for a wide range of workloads�
but that performance can degrade dramatically as the amount of data stored grows beyond initial
estimates� The grid �le can be tuned to perform well� and does not require any initial assumption
about the ultimate size of the summary information� Our work on tuning grid �les demonstrates that
good performance can be achieved even for highly skewed data�
We examined how the characteristics of the GlOSS summaries make the policy for splitting blocks

of the grid �le a critical factor in determining the ultimate row and column access costs� and evaluated
several speci�c policies using databases containing U�S� Patent O�ce data� Our investigation showed
that if the expected ratio of row accesses to column accesses is very high
greater than about
			�
 in
our experiment�� the best policy is to always split between words� Some existing distributed information
retrieval services exceed this high ratio� If the ratio is very low or if updates exceed queries� the best
policy is to split between databases whenever possible� Between these extremes� a policy of splitting
between databases with a given probability can be used to achieve the desired balance between row and
column access costs� For a given probability
and expected number of database splits� ds�� this policy
performs better than policies that prepartition the database scale ds times� or that always divide on
the database scale up to ds times� If it is important to have a �rm bound on query costs� policies that
prepartition or divide the database scale a �xed number of times can be used�
More work is needed to explore the utility of the GlOSS summaries as a representation of summary

information for brokers� Their e�ectiveness should be studied in a more realistic environment with real
databases and matching queries� where the queries involve disjunction as well as conjunction� There
is more work to be done on the storage of these summaries as well� An unfortunate aspect of the
grid �les is their need for a relatively large directory� Techniques have been reported for controlling
directory size ���� we must examine whether those techniques are applicable to the highly�skewed grid
�les generated by the GlOSS summaries� Compression techniques ���� would have a signi�cant impact
on the performance �gures reported here� Finally� building an operational GlOSS server for a large
number of real databases is the only way to truly determine the right ratio between word and database
access costs�
On a broader front� many other issues remain to be studied� The vastly expanding number and scope

of online information sources make it clear that a centralized solution to the database discovery problem

��

� Related Work

Many approaches to solving the text database discovery problem have been proposed� These fall into
two groups� distributed browsing systems and query systems� In distributed browsing systems
e�g��
���� ������ users follow pre�de�ned links between data items� While a wealth of information is accessible
this way� links must be maintained by hand� and are therefore frequently out of date
or non�existent��
Finding information can be frustrating to say the least�
To address this problem� an increasing number of systems allow users to query a collection of �meta�

information� about available databases� The meta�information typically provides some summary of the
contents of each database� thus� these systems �t our generic concept of a broker� Of course� di�erent
systems use di�erent types of summaries� and their implementation varies substantially
e�g�� ����� �
	��
����� ���� ��	�� ����

�� and ���� �����
Some systems provide manual mechanisms to specify meta�information
e�g�� WAIS ����� Yahoo��

and ALIWEB��� and attach human�generated text summaries to data sources� Given a query� these
systems search for matching text summaries and return the attached data sources� Unfortunately�
human�generated summaries are often out of date� In e�ect� as the database changes the summaries
generally do not� In addition� English text summaries generally do not capture the information the user
wants�
Other systems construct meta�information automatically� These systems are generally of two types�

document�based systems generate meta�information from the documents at the data sources� cooperative
systems provide a broker architecture that the data source administrator maps to the data� Two
important issues that these systems have to address are retrieval e�ectiveness and scalability�
Document�based systems face a retrieval e�ectiveness problem� since each document is equal to

every other document� Given two databases that are equally relevant to a query� the database with
more documents will be more highly represented in the answer� We believe that GlOSS representations
of databases could improve retrieval e�ectiveness for this class of system� This application of GlOSS is
an area of future research�
Document�based systems are faced with a scalability problem when the number of documents grows�

The architecture of document�based systems generally comprises a centralized server
e�g�� Lycos�� and
AltaVista���� In such a centralized architecture� a robot usually scans the collection of documents in a
distributed way� fetching every document to the central server� One solution to the scalability problem
is to index only document titles or� more generally� just a small fraction of each document
e�g�� the
World�Wide Web Worm���� This approach sacri�ces important information about the contents of each
database� We believe that the retrieval e�ectiveness and scalability of document�based systems would
be dramatically improved if each data source generated a GlOSS summary instead of transmitting
the entire contents of each data source to the central server� As an example� a GlOSS�based meta�
information query facility has been implemented for WAIS servers��� Recently� reference ��� describes the
application of inference networks
from traditional information retrieval� to the text database discovery
problem� Their approach summarizes databases using document frequency information for each term

the same type of information that GlOSS keeps about the databases�� together with the �inverse
collection frequency� of the di�erent terms�
Another approach to solving the e�ectiveness and performance problems is to design a more sophis�

ticated broker architecture� In principle� we can achieve greater e�ectiveness by creating brokers that
specialize in a certain topic� Scalability comes from removing the central server bottleneck� In Indie

shorthand for �Distributed Indexing�� �
	� �� and Harvest ���� each broker knows about some subset
of the data sources� with a special broker that keeps information about all other brokers� Reference
���� and WHOIS�� ���� allow brokers
index�servers in WHOIS��� to exchange information about

�Yahoo is accessible at http���www�yahoo�com�
��ALIWEB is accessible at http���web�nexor�co�uk�aliweb�doc�aliweb�html�
��Lycos is accessible at http���www�lycos�com�
��AltaVista is accessible at http���www�altavista�digital�com�
��The World�Wide Web Worm is accessible at http���wwww�cs�colorado�edu�wwww�
��GlOSS is accessible at http���gloss�stanford�edu�

�

Ratio bw bdb Weighted Avg� Cost Block�Fill Factor

�
 � � ��� ���

	�
 � � ��� ���

		�

	 � ���� ���

			�

� � �	�� ���

Table
�� The choices for bw and bdb that minimize the weighted average cost� for di�erent word�to�
database access ratios and for b �
��

Ratio bw bdb Weighted Avg� Cost Block�Fill Factor

�
 � � ��� ���

	�
 � � ��� ���

		�
 � � ���� ���

			�

 ���� ���

Table
�� The choices for bw and bdb that minimize the weighted average cost� for di�erent word�to�
database access ratios and for b �
��

� Comparing Grid Files to Partitioned Hashing for Storing

Summaries

A comparison of Tables � and � with Tables
	 and

 shows that with an ideal choice of parameters for
either structure� partitioned hashing and the grid �le are competitive data structures for storing GlOSS
summaries� The grid �le outperforms partitioned hashing only when word and database accesses are
equally frequent� Additionally� the implementation of partitioned hashing is generally simpler than grid
�les� However� for a number of practical reasons� we believe that the grid �le is better suited to this
application�
Firstly� to get optimum performance from partitioned hashing� it is critical to choose the total

number of buckets correctly� For instance� suppose that we overestimate the number of records of the
GlOSS summaries and set the number of bits that identify each bucket to b �
� instead of to b �
�
for the experiments of Section �� Table
� shows that� as expected� the average block��ll factor drops
to about half the values for b �
�
see Table
	�� because there are twice as many buckets now for
the same number of records� The best average access costs also deteriorate� for example� the weighted
average cost for the
		�
 word�to�database access ratio grows to ����
from
�����
 for the b �
�
case�� Alternatively� if we underestimate the number of records of the GlOSS summaries and set b �
��
we obtain the results in Table
�� In this case� the average block��ll factor is higher than in the b �
�
case� However� all of the average access costs are signi�cantly higher� For example� for the
		�

word�to�database access ratio� the weighted average cost for b �
� is �����	�� whereas it is
�����

for b �
�� These experiments show that it is crucial for the performance of partitioned hashing to
choose the right number of buckets in the hash table� Since we expect databases to grow over time�
even an initially optimal choice will degrade as database size increases� By contrast� the grid �le grows
gracefully� Dynamic versions of multi�attribute hashing like the ones in ���� solve this problem at the
expense of more complicated algorithms� resulting in techniques that are closely related to the grid �les�
Secondly� with partitioned hashing� the tradeo� between word and database access cost is �xed for

all time once a division of hash�value bits has been made� The only way to correct for an error is to
rebuild the hash table� By contrast� the value of the probabilistic splitting parameter for the grid �le
can be dynamically tuned� Although changing the parameter may not be able to correct for unfortunate
splits in the existing grid �le� at least future splitting decisions will be improved�
Finally� partitioned hashing treats all words the same� regardless of how many or how few databases

they occur in� and likewise treats all databases the same� regardless of the number of words they contain�
By contrast� the cost of reading a row or column of the grid �le tends to be proportional to the number
of records it contains�

�	

	

			

�			

�			

�			

�			

�			

�			

�			

�			

				

� � � � �
	

�
�
bw

Average Database Access Cost �

� � � �
�

�

�

�

�

Figure �� Average database access cost as a function of bw�

	

�			

				

�			

�				

��			

�				

� � � � �
	

�
�
bw

Weighted Average Cost

		�
� �
�

�

�

�
� �

�

�

�

Weighted Trace Average Cost

		�
� �

�

�

�

�
� � �

�

�

Figure
	� Weighted average cost for a word�to�database access ratio of
		�
� as a function of bw�

�

	

�	

		

�	

�		

��	

�		

� � � � �
	

�
�
bw

Average Word Access Cost �
�

�

�

�

�
� � � �

Average Trace Word Access Cost �

�

�

�

�

�
� � � �

Figure �� Average word access costs as a function of bw�

Ratio bw bdb Weighted Avg� Cost Block�Fill Factor

�
 � � �
� ���

	�
 � � ��� ��	

		�

	 �
��� ��

			�

 � ���� ���

Table
	� The choices for bw and bdb that minimize the weighted average cost� for di�erent word�to�
database access ratios�

computed the weighted average cost for di�erent access ratios� as in Section ���� Figure
	 shows the
results for a
		�
 word�to�database access ratio
i�e�� when accesses by word are
		 times as frequent
as accesses by database�� For this ratio� the best choice is bw �
	 and bdb � �� with a weighted average
cost of around
�����
� Table
	 summarizes the results for the di�erent access ratios� Table

 shows
the corresponding results for the trace words� �

�References ��� and ���� study how to analytically derive the values of bw and bdb that would minimize the number of
buckets accessed for a given query distribution�

Ratio bw bdb Weighted Trace Avg� Cost Block�Fill Factor

�
 � � �
� ���

	�
 � � ��� ��	

		�

	 �
��
 ��

			�

 � ���� ���

Table

� The choices for bw and bdb that minimize the weighted trace average cost� for di�erent
word�to�database access ratios�

�

then taking b
iwA mod
��bwc� where A � 	��
�	����������� Similarly� the hdb hash function maps
database numbers into integers between 	 and �bdb �
� Given a database number idb� hdb maps it
into integer b
idbA mod
��bdbc� We initially assign one disk block per hash�table bucket� If a bucket
over�ows� we assign more disk blocks to it�
Given a �xed value for b� we vary the values for bw and bdb� By letting bw be greater than bdb� we

favor access to the GlOSS records by word� since there will be fewer buckets associated with each word
than with each database� In general we just consider con�gurations where bw is not less than bdb� since
the number of words is much higher than the number of databases� and in our model the records will be
accessed more frequently by word than by database� In the following section� we analyze experimentally
the impact of the bw and bdb parameters on the performance of partitioned hashing for GlOSS�

��� Experimental Results

To analyze the performance of partitioned hashing for GlOSS� we ran experiments using the ���������
records for the �		 databases of Section �� For these experiments� we assumed that �
� records �t in
one disk block� that each bucket should span one block on average� and that we want each bucket to
be �	 full on average� Therefore� we should have around B � d���������

����	��
e � ���	 buckets� and we can

dedicate approximately b �
� bits for the bucket addresses�
Section � shows results for other values
of b��
To access all the records for a word w we must access all of the �bdb buckets with address pre�x hw
w��

Accessing each of these buckets involves accessing one or more disk blocks� depending on whether the
buckets have over�owed or not� Figure � shows the average word access cost as a function of bw
b �
�
and bdb � b � bw�� As expected� the number of blocks per word decreases as bw increases� since the
number of buckets per word decreases� Conversely� Figure � shows that the average database access
cost increases steeply as bw increases� In the extreme case when bw �
� and bdb � 	� we need to access
every block in every bucket of the hash table� resulting in an expansion factor for databases of around
������� � In contrast� when bw � � and bdb � � we access� on average� around

��� times as many
blocks for a database as we would need if the records were clustered by database�
Partitioned hashing does not distribute records uniformly across the di�erent buckets� For example�

all the records corresponding to database db belong in buckets with address su�x hdb
db�� Surprisingly�
this characteristic of partitioned hashing does not lead to a poor block��ll factor� the average block��ll
factor for b �
� and the di�erent values of bw and bdb is mostly higher than 	��� meaning that on
average blocks were at least �	 full� These high values of block��ll factor are partly due to the fact
that only the last block of each bucket can be partially empty� all of the other blocks of a bucket are
completely full�
To measure the performance of partitioned hashing for access by word� we have so far computed

the average value of various parameters over all the words in the combined vocabulary of the �		
databases� Figure � also shows a curve using the words in the query trace of Section �� The average
trace word access cost is very similar to the average word access cost� Two aspects of partitioned
hashing and our experiments explain this behavior� Firstly� the number of blocks read for a word w
does not depend on the number of databases associated with w� we access all the �bdb buckets with
pre�x hw
w�� Consequently� we access a similar number of blocks for each word�
For example� when
bw � � and bdb � � the number of blocks we access per word ranges between �� and ���� Secondly�
there are only �bw possible di�erent word access costs� because the hash function hw maps the words
into �bw di�erent values� Each trace word w will contribute a �random sample�
hw
w�� of this set of
�bw possible costs� Furthermore� the number of words in the query trace
���� word occurrences from
a set of
�	� di�erent words� is signi�cant with respect to the number of di�erent access costs� for the
values of b that we used in our experiments� In summary� each hashed value hw
w� acts as a random
sample of a limited set of di�erent access costs� and we consider a high number of such samples�
To determine the best values for bw and bdb for an observed word�to�database access ratio� we

�Smarter bucket organizations can help alleviate this situation by sorting the records by database inside each bucket�
for example� However� all buckets of the hash table would still have to be examined to get the records for a database�

�

The best selections for various ratios are given in Tables � and �� for the weighted average cost
and weighted trace average cost� respectively� When access by word predominates� Word�always gives
the best performance� When access by database is as common as access by word
or more common��
DB�always is the preferred policy� In between� the Probabilistic policy with an appropriate parameter
dominates the other choices�

��� Bounded Access Costs

If the databases summarized by GlOSS grow gradually over time� the weighted access costs for the grid
�le must grow as well� Using the recommended policies of Tables � and �� this increasing cost will be
distributed between word and database access costs so as to minimize the weighted average cost� The
response time for a given query� however� depends only on the word access costs for the terms it contains�
and will increase without bound as the grid �le grows� If such response time growth is unacceptable�
the Bounded and Prepartition policies can be used to put an upper limit on word access cost� in which
case query cost will depend only on the number of terms in the query�
The upper limit on word access cost for these policies is determined by the parameter value� With

the Prepartition policy� the word access cost is exactly the parameter value� e�g�� the cost is
	
block accesses for any word for Prepartition

	�� The Bounded

	� policy gives the same upper limit�
but the average cost is lower
about �� because for many words� the cost does not reach the bound�
However� Tables � and � in Section ��� show the penalty for the improved average word access cost�
about a fourfold increase in both directory size and database average access cost� The corresponding
tradeo�s for other values of the parameter can be deduced from Figures �� � and � in Section ����

��� Other Experiments

We did a number of other experiments to complete our evaluation of grid �les as a storage method for
GlOSS summaries� In particular� since we must be able to maintain
update� the summaries e�ciently�
we tested each of the policies under simulated updates� We also ran our experiments with a smaller
block size to see how that a�ected our results� Details can be found in ��
�� The results were generally
acceptable and did not serve to di�erentiate the various policies� hence they are not repeated here�

� Using Partitioned Hashing for GlOSS

In this section we analyze partitioned
or multi�attribute� hashing ���� as an alternative technique for
GlOSS to access its records e�ciently both by word and by database� We �rst describe how partitioned
hashing handles the GlOSS summaries� and then we show experimental results on its performance using
the data of Section ��

��� Partitioned�Hashing Basics

With partitioned hashing� the GlOSS records are stored in a hash table consisting of B � �b buckets�
Each bucket is identi�ed by a string of b bits� bw of these b bits are associated with the word attribute
of the records� and the bdb � b � bw remaining bits with the database attribute of the records� Hash
functions hw and hdb map words and databases into strings of bw and bdb bits� respectively� A record

w� db� f�� with word w and database db� is stored in the bucket with address hw
w�hdb
db�� formed
by the concatenation of the hw
w� and hdb
db� bit strings� To access all the records with word w� we
search all the buckets whose address starts with hw
w�� To access all the records with database db� we
search all the buckets whose address ends with hdb
db� ��
The hw hash function maps words into integers between 	 and �bw �
� Given a word w � an � � � a��

hw does this mapping by �rst translating word w into integer iw �
Pn

i
� lettervalue
ai�� ��
i ����� and

�An improvementover this scheme is to apply themethodologyof ���� and use Gray codes to achieve better performance
of partial�match queries�

�

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

0 0.2 0.4 0.6 0.8 1

W
ei

gh
te

d
A

ve
ra

ge
 C

os
t

Fraction of Databases

Bounded 100:1
Prepartition 100:1
Probabilistic 100:1

Figure �� Weighted average cost for a word�to�database access ratio of
		�
�

Ratio Policy Weighted Avg� Cost Block�Fill Factor

�
 DB�always
�� ���

	�
 Probabilistic
�
��� ��� ���

		�
 Probabilistic
�	��� ��	� ���

			�
 Word�always ���� ���

Table �� The policy choices that minimize the weighted average cost� for di�erent word�to�database
access ratios�

Ratio Policy Weighted Trace Avg� Cost Block�Fill Factor

�
 DB�always �
� ���

	�
 Probabilistic
�
��� ��� ���

		�
 Probabilistic
�	��� ��	� ���

			�
 Word�always ���� ���

Table �� The policy choices that minimize the weighted trace average cost� for di�erent word�to�database
access ratios�

�

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 D
at

ab
as

e
A

cc
es

s
C

os
t

Fraction of Databases

Bounded
Prepartition
Probabilistic

Figure �� The average database access cost as the bound changes�

0

50000

100000

150000

200000

250000

300000

350000

400000

0 0.2 0.4 0.6 0.8 1

D
ire

ct
or

y
S

iz
e

Fraction of Databases

Bounded
Prepartition
Probabilistic

Figure �� Directory size as a function of policy parameter�

�

0

20

40

60

80

100

120

140

160

180

200

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 W
or

d
A

cc
es

s
C

os
t

Fraction of Databases

Bounded
Prepartition
Probabilistic

Figure �� The average word access cost as the bound changes�

databases� an X�axis value of �	� in these �gures represents parameter values of
	�
	� and �	� for the
Bounded� Prepartition and Probabilistic policies� respectively�
Figure � reveals a hidden cost of the Bounded policy� an up�to�tenfold in�ation in the size of the

grid��le directory for parameter values midway between the extremes� Consider the parameter value
	�� in this �gure� The Bounded policy forces splits between databases to occur for the �rst �	 of
the databases� That is� as early as possible in the insertion process� whereas the other two policies
distribute them evenly� Under the Bounded policy� therefore� relatively few splits between words occur
early in the insertion process
because the regions being split are typically only one database wide� but�
once the bound has been reached� many splits between words are required to subdivide the remaining
portion of the grid �le� Each of these latter splits introduces a number of additional directory entries
equal to the bound value� With a low bound value� there are few splits between databases� with a high
bound value� there are many splits between databases� but few splits between words to introduction
the additional directories entries� With the bound near the middle� these two e�ects complement each
other to produce a huge directory� With the other policies� the number of splits between words for each
group of databases is fairly constant across the width of the grid �le� and the total number of splits
between words
and hence the directory size� is much smaller�

��� Weighted Average Costs

Table � presents no clear winner in terms of an overall policy choice� because the performance of a policy
can only be reduced to a single number once the ratio of accesses by word to accesses by database has
been determined� Only then can an appropriately weighted overall access cost be calculated� For
a word�to�database access ratio of
		�
� Figure � shows the weighted average cost for each of the
policies� across the entire parameter range� 	 The lowest point on this set of curves represents the best
choice of policy and parameter for this access ratio� and corresponds to the Probabilistic policy with
a parameter of about �	���

	The Word�always and DB�always policies are represented by the points for Probabilistic�	
 and Probabilistic��
�
respectively�

�

Splits Total Block�Fill Directory
Policy Word DB Blocks Factor Size

Word�always ����
 ���� ��� ����
DB�always

�
�� ���	 ���
��	�

Probabilistic
	��� �	�
	
 ���� ��� �	�	�
Prepartition

	� ���

	 ���� ��� ���
	

Bounded

	� ����
	 ���� ��� ����	

Table �� Performance measurements for the base experiment for the �ve policies introduced in Sec�
tion ����

Policy Avg� Word Avg� DB Expansion Factor Avg� Trace
Cost
Dev�� Cost
Dev�� for DB
Dev�� Word Cost
Dev��

Word�always
�		
	�		� �����		
	�		� �
	�	�

������
�		
	�		�
DB�always ����

�����
	����

���� ����

�����
	���	
������

Probabilistic
	��� ���	�

��
��
�����
������
��
�
������ �	��

��	��
Prepartition

	�
	�		
	�		� �
�	��

�������
���	�
�������
	�		
	�		�

Bounded

	� ��	�
	���� ������

�����
� ��	���

	������ ����

����

Table �� Performance measurements for the base experiment for the �ve policies introduced in Sec�
tion ����

contains complete frequency information for some number of words� i�e�� multiple rows of the grid �le�
The number of words in a data block depends on the number of databases in which the corresponding
words appear� As expected� the average word access cost is one block read� Clearly� this policy is the
most favorable one possible for access by word� To access all the records for a database� however� every
block must be read� The average database access cost therefore equals the total number of blocks in
the �le� This policy minimizes the size of the grid �le directory� since it reduces the directory to a
one�dimensional vector of pointers to the data blocks�
Next� consider the DB�always policy� Our measurements show that the database scale was split
��

times� However� the size of the grid �le far exceeds the capacity of
�� blocks� so splitting must occur
between words as well
cf� Section ����� Such splits will take advantage of existing partitions of the word
scale� if they exist� otherwise the word scale of the directory will be split� Such splitting of the word
scale occurred

� times during our experiment� leading to an average database access cost of
	����
for this policy� At ���� times the minimumnumber of blocks that must be read� this is the best average
database access cost of the policies we measured� However� ����
 is the worst average word access cost�
and for the frequently occurring words of the trace queries� the cost is even higher�
As a point of comparison for the two extremes of the DB�always and Word�always policies� we

measured the Probabilistic policy� parameterized so that the word and database scales would be
chosen with equal probability� If the distribution of data were uniform between the two scales� this
policy would on average split each scale the same number of times� As the table shows� however� for our
data this policy behaves very much like the DB�always policy� For both of these policies� the skewed
nature of the data
i�e�� the vastly larger number of distinct values on the word scale� makes many
attempts to split on the database scale unsuccessful� In e�ect� the database scale quickly becomes
�saturated� and large numbers of splits must occur in the word scale� For this parameter value� the
Probabilistic policy gives poorer average database access cost and slightly better average word access
cost� when compared to the DB�always policy� The di�erence is more pronounced for the average trace
word access cost� Block��ll factor varies very little�
Figures � and � show how the three tunable policies� Bounded� Prepartition and Probabilistic�

behave as the tuning parameter varies� In order to graph these results on a common set of axes� we
express the parameter as a fraction of the total number of databases� Thus� for our study of �		

�

Mapping Splits Average Cost Total Block�Fill Directory
Word Database Policy Word DB Word DB Blocks Factor Size
alpha seq middle

�

�
	����
	����
	��� ���
����
alpha seq right
��

� �����

���� ���� ���
���	
alpha random middle �	� �� �
�	�
����	 ���� ���
���	
alpha random right
��
�	 �����
�����
	��� ��� ����	
freq seq middle

�
�� ���	�
	����
��	
 ��� �	���
freq seq right

�
�� ����

	���� ���	 ���
��	�
freq random middle
��
�� ���
�
����	 ���� ��	 �����
freq random right
��
�� �����

����
	��� ��� ���
�

Table �� The DB�always policy for the di�erent mapping and splitting options�

Parameter Value
Databases
columns� �		
Words
rows� �	��	��
Records ���������

Records per block �
�
Database Insertion seq

Word Insertion freq

Block division right

Table �� Parameter values for the base set of experiments� See Section ��� for a description of the
parameters�

line � of the algorithm�� To examine this e�ect� we parameterized the algorithm in Figure � to choose
either the rightmost value or partition
right� or the middle�most value or partition
middle�� as per
the original algorithm�
We ran experiments for the eight combinations of mapping and splitting options above for the

DB�always� Word�always� Bounded� and Probabilistic policies� Table � shows the results for the
DB�always policy� but the conclusions we draw here apply to the other policies as well� Note that
the combination of options chosen can have a signi�cant e�ect on performance� The average word
access cost for the worst combination of options is
�� times the average word access cost for the best
combination� For average database access cost� this factor is about
��� Block��ll factor varies from a
worst case of 	��� to a best case of 	����
The table shows that the combination of frequency ordering for assignment of word identi�ers�

sequential insertion of databases� and the right option for block splitting achieves the lowest access
costs� both by word and by database� and has a block��ll factor only slightly poorer than the best
observed� Therefore� we used this combination for our subsequent experiments� The base parameters
for these experiments are summarized in Table ��

��� Comparison of Splitting Policies

We begin our comparison of the splitting policies by examining the basic behavior of each of the �ve
policies� Tables � and � provide performance measurements for each policy� for the parameterized
policies
Probabilistic� Prepartition and Bounded� we present data for a single representative
parameter value� and defer discussion of other parameter values to later in this section�
We start with the Word�always policy� since its behavior is very regular� At the start of the

experiment� there is a single empty block� As databases are inserted� the block over�ows� and the word
scale is split at a point that balances the resulting blocks� By the time all �		 databases have been
inserted� the word scale has been split ���� times� In the resulting grid �le� each data block therefore

in November
���� against a full�text patent database accessible at http���town�hall�org��
patent�patent�html� These queries contain ���� words that appear in at least one of our �		
databases
counting repetitions�� This represents less than one percent of the total vocabulary�
but query words from the trace
trace words� occur on average in ����� databases compared to
the average of ���� for all words� Thus trace words occur with relatively high frequency in the
databases�

Weighted �Trace� Average Cost This metric gives the overall cost of using the grid �le� given an
observed ratio between word and database accesses� It is calculated by multiplying the word�to�
database access ratio by the average
trace� word access cost� and adding the average database
access cost� For example� if the ratio of word to database accesses is observed to be
		�
� the
weighted average cost is

		 ! average word access cost� � average database access cost�

Although the choice of splitting policy is the major factor in determining the behavior of the grid �le�
performance is also sensitive to a number of other� more subtle� variations in how the GlOSS summaries
are mapped onto the grid �le� We therefore discuss these variants before moving on to the main body
of our results�

��� Mapping GlOSS to a Grid File

To insert the GlOSS summary data for a database into a grid �le� one must �rst de�ne a mapping from
each word to an integer that corresponds to a row in the grid �le� We explored two alternatives for
this mapping� alpha and freq� In the alpha mapping� all the words in all the databases are gathered
into a single alphabetically ordered list� and then assigned sequential integer identi�ers� In the freq
mapping� the same set of words is ordered by frequency� instead of alphabetically� where the frequency
for a word is the sum of the frequencies for that word across all summaries� �

This di�erence in mapping has two e�ects� First� although the vast majority of rows have exactly
one record� the freq map clusters those rows having multiple records in the upper part of the grid �le�
and the top rows of the grid �le contain a record for every database� In the alpha map� the rows with
multiple records are spread throughout the grid �le�
By contrast� the distribution of records across the
columns of the grid �le is fairly uniform��
The second e�ect is due to the fact that� as an artifact of its construction� the summary for each

database is ordered alphabetically� For the alpha mapping� therefore�
word id� frequency� pairs are
inserted in increasing� but non�sequential� word�identi�er order� For example� db� might insert records

����
��
��
��

� and db� might insert records

����
���	�
��

�� In each case� the word identi�ers are
increasing� but they are non�sequential� By contrast� with the freqmapping�
word id� frequency� pairs
are inserted in essentially random order� since the words are ordered alphabetically but the identi�ers
are ordered by frequency�
Similar considerations pertain to the order in which databases are inserted into the grid �le� We

considered sequential ordering
seq� and random ordering
random�� In the seq case� database
 is
inserted with database identi�er
� database � with database identi�er �� etc� In the random ordering�
the mapping is permuted randomly� The seq ordering corresponds to statically loading the grid �le
from a collection of summaries� The random ordering corresponds to the dynamic addition and deletion
of summaries as information is updated or exchanged among brokers�
A consequence of the seq ordering is that insertion of data into the grid �le is very deterministic� In

particular� we noticed that our default means of choosing a partition in the case of over�ow was a bad
one� Since databases are inserted left to right� the left�hand member of a pair of split blocks is never
revisited� subsequent insertions will always insert into the right�hand block� Thus� when the database
scale is split
in line

 of the algorithm in Figure ��� it would be advantageous to choose the rightmost
value in the block as the value to split on� Furthermore� if given a choice of pre�existing partitions to
use in splitting a block� it would be advantageous to choose the rightmost partition for splitting
in

�In practice� one could approximate the freq mapping by using a prede�ned mapping table for relatively common
words� and assigning identi�ers in order for the remaining �infrequent
 words�

	

word over access by database� In between these two extremes lies a spectrum of other possibilities� The
Bounded policy allows the database scale of the grid �le directory to be split up to bound times� and
then resorts to splitting between words� Thus� it allows some splits between databases
which favor
access by database�� while putting an upper bound on the number of block reads that might be needed
to access all the records for a word� If bound is set to in�nity� then Bounded behaves as DB�always�
whereas if bound is set to zero� then Bounded behaves as Word�always� The Probabilistic policy
splits between databases with probability prob�bound� Unlike the Bounded policy� which favors splitting
between databases initially� this policy allows the choice of splitting dimension to be made independently
at each split� The Prepartition policy works like Word�always� except that the database scale of the
directory is prepartitioned into m regions before any databases are inserted� to see if �seeding� the
database scale with evenly�spaced partitions improves performance� The size of each region is bm

db
c�

where db is the number of available databases�
Note that once a scale has been chosen� it may not be possible to split the block on that scale� For

instance� we may choose to split a block on the database scale� but the scale may have only a single
value associated with that block
and consequently� every record in the block has the same database
value�� In this case� we automatically split on the other scale�

��	 Metrics for Evaluation

To evaluate the policies of Table �� we implemented a simulation of the grid �le in C�� on an IBM
RISC"�			 workstation and ran experiments using �		 of the �		 patent databases described in Section �

around
�� gigabytes of data�� The resulting grid �le had �		 columns
one for each of the �		
databases� and �	��	�� rows
one for each distinct word appearing in the patent records�� The �le
contained ��������� total records� At four bytes per entry� we assumed that each disk block could hold
�
� records�
Our evaluation of the various policies is based on the following metrics
cf� Section ��
��

DB Splits Number of splits that occurred in the database scale�

Word Splits Number of splits that occurred in the word scale�

Total Blocks The total number of blocks in the grid �le
excluding the scales and the directory��

Block��ll factor The ratio of used block space to total block space� This measure indicates how
e�ectively data is packed into blocks�

Directory Size The number of entries in the database scale of the grid �le directory times number
of entries in the word scale� This measure indicates the overhead cost of the grid �le directory�
About four bytes would be needed for each directory entry in an actual implementation�

Average Word �or Database� Access Cost The number of blocks accessed in reading all the records
for a single word
or database�� i�e�� an entire row
or column� of the grid �le� averaged over all
words
or databases� on the corresponding scale�

Expansion Factor for Words �or Databases� The ratio between the number of blocks accessed in
reading all the records for a single word or database and the minimumnumber of blocks that would
be required to store that many records� averaged over all words or databases on the corresponding
scale� This metric compares the access cost using the grid �le to the best possible access cost
that could be achieved� Note that since we assume that �
� records can be stored in a block� and
there are only �		 databases� all the records for a single word can always �t in one block� Thus
the minimum number of blocks required for each word is one� and the expansion factor for words
is always equal to the average word access cost�

Average Trace Word Access Cost and Expansion Factor for Trace Words Similar to the word
scale metrics� but averaged over the words occurring in a representative set of patent queries�
instead of over all words� For this measurement� we used
��� queries issued by real users

�

�� Compute region and block for record

� If Record fits in block

�� Insert record

�� Else

�� If Usable partitions in database scale

�� Divide region in half on database scale

�� Else If Usable partitions in word scale

� Divide region in half on word scale

�� Else

�	� Split directory

��� Divide region on chosen scale

�
� Insert record

Figure �� Algorithm for inserting a record in a grid �le for GlOSS�

Policy Splitting dimension
DB�always Database

Word�always Word
Bounded If DB�splits � bound then Database else Word

Probabilistic If Random�� � prob�bound then Database else Word
Prepartition Like Word�always� after prepartitioning on Database

Table �� Di�erent policies for choosing the splitting dimension�

directory maps to the over�owed block� then the collection of directory entries pointing to the over�owed
block de�ne a region� This region of the directory contains at least one partition
either between words
or between databases�� If the data corresponding to the entries on either side of the partition form non�
empty blocks� then we can use one such pre�existing partition to split the block without introducing
new entries into the directory� That is� the partition becomes a division between two new� smaller�
regions� For example� the insertion of the records
panther� db	� �� and
penguin� db	� �� into Figure

�� causes the rightmost data block to over�ow and a new block to be created without changing the size
of the directory� The single partition becomes two regions for a total of four regions in the directory�
If more than one such partition exists� we favor those between databases over those between words� If
multiple partitions exist in a single dimension� we choose the one that splits the block most nearly in
half�
See Section ��� for a variation of this policy that reduces the amount of unused space in blocks��
To be precise� Figure � shows the basic algorithm for inserting a record into the grid �le� Line

 computes the region and block where the record should be inserted according to the database and
word scales for the grid �le directory� Line � attempts to insert the record� If there is no over�ow� the
insertion succeeds� Otherwise� there is over�ow in the block� Line � checks the region in which the
record is being inserted for a partition in the database scale� If there is a partition� the region is divided
in half along a partition line� and the records in the block of the region are redistributed between the
old and new block� The new block is assigned to the new region� This process eliminates a partition of
the region by creating a new region� Lines ��� do the same for the word scale� If there are no qualifying
partitions
line
	�� we need to create one by introducing a new row
or column� in the directory�
Table � describes several policies for choosing a splitting dimension� The DB�always policy always

attempts to split the block between databases� thus favoring access by database over access by word�
Conversely� the Word�always policy always attempts to split between words� thus favoring access by

directory organization ���� shows how to implement the directory on disk� We have not yet explored how these techniques
would work in our environment�

�

a

z

m

a

z

Directory

a

z

(ostrich, db3, 2)

(llama, db5, 5)(ostrich, db3, 2)(buffalo, db2, 2)

Directory

Directory

Data Block Data Block Data Block

Data Block Data Block Data Block

(zebra, db1, 2)

(zebra, db1, 2) (zebra, db1, 2)
(llama, db5, 5) (llama, db5, 5)

db1 db2 db3 db4 db5 db6 db1 db2 db3 db4 db5 db6

db1 db2 db3 db4 db5 db6

Figure �� The successive con�gurations of a grid �le during record insertion for a prepartitioned grid
�le�

Figure � shows the successive con�gurations for a di�erent grid �le for the same input as Figure
�
In this case� the grid �le directory has been prepartitioned along one dimension� Prepartitioning the
grid �le directory has resulted in a larger directory for the same input� The directory utilization in this
example is �

�
or �	 � We defer further discussion of the e�ect of prepartioning until Section ����

��� Splitting Blocks

The rule that is used to decide how to split a data block is called the splitting policy� The splitting
policy can be used to adjust the overall cost of using a grid �le to store our summary information� Our
goal is to �nd and evaluate splitting policies that are easily parameterized to support an observed ratio
between the frequency of word and database accesses� We describe two extreme splitting policies that
characterize the endpoints of the spectrum of splitting behavior� and then introduce three additional
parameterized policies that can be adjusted to minimize overall cost�
To insert a record into the GlOSS grid �le� we �rst �nd the block where the record belongs� using the

grid �le directory� If the record �ts in this block� then we insert it� � Otherwise� the block must be split�
either by dividing it between two words or by dividing it between two databases� Splitting between
databases tends to bene�t access by database� whereas splitting between words tends to bene�t access
by word� This choice of splitting dimension is therefore the basic tool for controlling relative access
costs�
To limit the growth of the grid �le directory� however� we always look for ways to split the block

that take advantage of pre�existing partitions in the directory� � If more than one entry in the grid �le

�We can compress the contents of each block of the grid �le by applying methods used for storing sparse matrices
e�ciently �
��� or by using the methods in ���� for compressing inverted �les� for example� Any of these methods will
e�ectively increase the capacity of the disk blocks in terms of the number of records that they can hold�

�Several alternative organizations for the grid �le directory control its growth and make it proportional to the data
size� These alternative organizations include the region�representation directory and the BR� directory �
�� The ��level

�

Directory

db1 db6

a

(ostrich, db3, 2)

(zebra, db1, 2)

Data Block

Directory

db1 db3 db6

Directory

a

db1 db3 db6

Data Block Data Block

(zebra, db1, 2)

z z

(1) (2)

(3)

(llama, db5, 5)

Data BlockData Block

(buffalo, db2, 2) (llama, db5, 5)

(llama, db5, 5)

a

z

m

(ostrich, db3, 2)

Data Block

(zebra, db1, 2)

Figure
� The successive con�gurations of a grid �le during record insertion�

In
��� we split the data block between databases� all records with databases in the
db�� db�� range go
to one block� and all records with databases in the
db�� db�� range go to the other block� We also split
the grid �le directory to contain two entries� one pointing to each of the data blocks�
To insert record
bu�alo� db�� ��� we �rst locate the data block where the record belongs� by looking

at the directory� we �nd the pointer associated with range
db�� db�� and
a� z�� and the corresponding
data block� This data block already has two records in it�
ostrich� db�� �� and
zebra� db�� ��� so the
insertion of the new tuple causes the data block to over�ow� In
��� we split the data block between
words� and we re�ect this splitting in the directory by creating a new row in it� The �rst row of the
directory corresponds to word range
a�m�� and the second to word range
n� z�� Thus� the over�owed
data block is split into one block with record
bu�alo� db�� ��� and another block with records
ostrich�
db�� �� and
zebra� db�� ��� Note that both directory entries corresponding to database range
db�� db��
point to the same data block� which has not over�owed and thus does not need to be split yet� These
two directory entries form a region� Regions may contain any number of directory entries� but are
always convex in our grid �les� We will refer to a division between directory entries in a region as
a partition of the region� The region in the example directory contains a single partition� We de�ne
directory utilization as the ratio of directory regions to directory entries� In this example� the directory
utilization is �

�
or �� �

To locate the portion of the directory that corresponds to the record we are looking for� we keep one
scale per dimension of the grid �le� These scales are one�dimensional arrays that indicate what partitions
have taken place in each dimension� For example� the word scale for the grid �le con�guration in
�� is

a�m� z�� and the corresponding database scale is
db�� db�� db���
Consider for a moment the behavior of grid �les for highly skewed data� For example� suppose the

sequence of records
a� db��
��
a� db��
��
b� db��
��
b� db��
��
c� db��
��
c� db��
�� etc� is inserted
into the grid �le of Figure

�� and we continue to split between words� The resulting directory would
exhibit very low utilization� since� for example� all the directory entries on the database dimension for
the database db	 would point to the same data block� In our application� the data is highly skewed and
we attack the problem of low directory utilization by adjusting the way data blocks are split to account
for the skew of the data�

�

Partial match queries occur because we need to access the GlOSS records by word and by database� A
workload constructed entirely of partial match queries creates unique demands on the data structure
used to implement GlOSS�
Ideally we would like to simultaneously minimize the access cost in both dimensions� In general�

however� the costs of word and database access trade o�� Consequently� one must consider the relative
frequencies of these operations� and try to �nd a policy that minimizes overall cost� Unfortunately�
the relative frequencies of word and database access are di�cult to estimate� They depend on other
parameters� such as the number of databases covered by GlOSS� the intensity of query tra�c� the actual
frequency of summary updates� etc�
Just to illustrate the tradeo�s� let us assume that query processing is the most frequent operation�

and that a GlOSS server receives �		�			 query requests per day� Likewise� let us assume that we
update each database summary once a day� Given this scenario� and if GlOSS covers �		 databases�
the ratio of accesses by word to accesses by database would be about �		�
� and our data structure
might therefore favor the performance of accesses by word over that by database in the same proportion�
However� if the server received ��	�			 queries a day� or covered a di�erent number of databases� or
received updates more frequently� a vastly di�erent ratio could occur� Therefore� GlOSS needs a data
structure that can be tuned to adapt to the actual conditions observed in practice�
A simple data organization for GlOSS is to cluster the records according to their associated word�

and to build a tree based directory on the words
e�g�� a sparse B� tree�� to provide e�cient access
by word �
��� thus yielding fast query processing� To implement GlOSS using this approach� we could
adapt any of the techniques for building inverted �les for documents
e�g������ ����� ��	�� ����� However�
this approach does not support fast access by database� for updating summaries or exchanging them
with other brokers� To access all the words for a database� the entire directory tree must be searched�
Organizations for �spatial� data provide a variety of techniques that we can apply for GlOSS� In

particular� we are interested in techniques that e�ciently support partial match queries� Approaches
that index multiple dimensions using a tree�based directory� including quad trees� k�d trees� K�D�B
trees ����� R trees �
��� R� trees ����� and BV trees �
��� are not well suited for this type of access� To
answer a partial�match query� typically a signi�cant portion of the directory tree must be searched� A
similar problem arises with techniques like the ones based on the �z order� ��
�� In contrast� the directory
structure of grid �les ���� and the addressing scheme for partitioned or multi�attribute hashing ���� make
them well suited for answering partial�match queries�

� Using Grid Files for GlOSS

In this section we describe how grid �les ���� can be used to store the GlOSS summaries� and describe a
series of experiments that explore their performance� We show how to tune the grid �le to favor access
to the summary information by word or by database�

��� Grid File Basics

A grid �le consists of data blocks� stored on disk and containing the actual data records� and a directory
that maps multi�dimensional keys to data blocks� For GlOSS� the
two�dimensional� keys are
word�
database identi�er� pairs� Initially there is only one data block� and the directory consists of a single
entry pointing to the only data block� Records are inserted in this data block until it becomes full and
has to be split into two blocks� The grid �le directory changes to re�ect the splitting of the data block�
Figure
 shows a grid �le where the data blocks have capacity for two records� In

�� we have

inserted two records into the grid �le�
llama� db	�
� and
zebra� db�� ��� There is only one data block

�lled to capacity� containing the two records� and only one directory entry pointing to the only data
block�
To insert record
ostrich� db�� ��� we locate the data block where the record belongs by �rst reading

the directory entry corresponding to word ostrich and database db�� Since the data block is full� we
have to split it� We can split the data block between di�erent databases� or between di�erent words�

�

N Mean Std� Dev�

 	��
� 	����
� 	���� 	���	
� 	���	 	����
� 	���� 	����
� 	���� 	��
�
� 	���	 	��
�
� 	���� 	��	�
� 	���� 	��	�
� 	���� 	����

	 	���� 	����

Table �� Normalized cumulative recall for �		 databases for the INSPEC trace�

circumstances� with gradual improvement as the number of databases examined increases� The large
standard deviations arise because although GlOSS performs very well for the majority of queries� there
remains a stubborn minority for which performance is very poor� Nevertheless� using GlOSS gives a
dramatic improvement over randomly selecting databases to search� for a fraction of the storage cost of
a full�text index�
We felt these initial results were promising enough to pursue the use of GlOSS�s representation for

summary information� A more rigorous investigation is in progress� Ideally� we would like to use a real
set of test databases instead of one constructed by partitioning� and a matching set of queries submitted
against these same databases� including boolean disjunctions as well as conjunctions� We will try to
characterize those queries for which GlOSS performs poorly� and to study the impact of the number
of query terms on e�ectiveness� Other metrics will be included� For example� a metric that revealed
whether the matching documents were scattered thinly across many databases or concentrated in a few
large clumps would allow us to measure the corresponding impact on e�ectiveness� E�ectiveness can
also be measured using information retrieval metrics ���� In this case� GlOSS would be measured in
terms of its e�ectiveness in retrieving relevant documents� irrespective of the document location in one
database or another �
���

� Alternative Data Structures for GlOSS Summaries

The choice of a good data structure to store the GlOSS summaries depends on the type and frequency
of operations at the GlOSS servers� A GlOSS server needs to support two types of operations e�ciently�
query processing and summary updates� When a query arrives� GlOSS has to access the complete set
of document frequencies associated with each query keyword� When new or updated summaries arrive�
GlOSS has to update its data structure� operating on the frequencies associated with a single database�
E�cient access by database might also be needed if di�erent brokers exchange database summaries to
develop �expertise� ����� or if we allow users to do relevance feedback ���� and ask for databases �similar�
to some given database� The two types of operations pose con�icting requirements on the GlOSS data
structure� to process queries� GlOSS needs fast access to the table by word� whereas to handle frequency
updates� GlOSS needs fast access to the table by database�
Thus� our problem requires e�cient access to multi�dimensional data� For multi�dimensional data

structures� queries and updates are generally expressed as selections on the possible data values of
each dimension� Selections come in the form of constants� ranges of values� or a selection of all values
along a dimension� A point query selects constants across all dimensions� For example� retrieving the
GlOSS summary of the word information in db� from Table
 is a point query� A region query selects
ranges of values across all dimensions� Retrieving summaries for all words between data and base from
databases � through � is a region query� GlOSS demands e�cient partial match queries and updates�
one dimension has a constant selected and the other dimension selects all values across the dimension�

�

query at each database� GlOSS can produce these estimates from the GlOSS summaries in a variety
of ways� One possibility for GlOSS is to assume that the query words appear in documents following
independent and uniform probability distributions� and to estimate the number of documents matching
a query at a database accordingly� For example� for query �information AND retrieval�� the expected
number of matches in db�
using the GlOSS summary information of Table
� is

����

����
� ��

����
�
��� � ���

and the expected number of matches in db� is
��

����
� ���

����
�
			 � �� GlOSS would then return db� as the

most promising database for the query� followed by db�� Several other estimation functions are given in
�
���
As mentioned in the introduction� GlOSS can be measured with respect to its e�ectiveness in lo�

cating the best databases for a given query� and it can be measured in terms of its computational
performance� In the next section we study the e�ectiveness of GlOSS� The rest of the article is devoted
to computational performance�

� E�ectiveness of GlOSS

Given a set of candidate databases and a set of queries� we explored the ability of GlOSS to suggest
appropriate databases for each query� The original GlOSS studies �
��
�� tested GlOSS�s ability to
select among six databases� To be sure that GlOSS would be useful as a large scale broker� we scaled
up the number of databases by about two orders of magnitude� In this section� we describe a set of
experiments that demonstrate that GlOSS can select relevant databases e�ectively from among a large
set of candidates� We present a metric for evaluating how closely the list of databases suggested by
GlOSS corresponds to an �optimal� list� and evaluate GlOSS based on this metric�
For our experiments� we used as data the complete set of United States patents for
��
� Each patent

issued is described by an entry that includes various attributes
e�g�� names of the patent owners� issuing
date� as well as a text description of the patent� The total size of the patent data is ��� gigabytes� We
divided the patents into �		 databases by �rst partitioning them into �fty groups based on date of
issue� and then dividing each of these groups into ten subgroups� based on the high order digit of a
subject�related patent classi�cation code� This partitioning scheme gave databases that ranged in size
by an order of magnitude� and were at least somewhat di�erentiated by subject� Both properties are
ones we would expect to see in a real distributed environment�
For test queries� we used a set of ���
� queries submitted against the INSPEC database o�ered

by Stanford University through its FOLIO boolean information retrieval system�� INSPEC is not a
patent database� but it covers a similar range of technical subjects� so we expected a fair number of hits
against our patent data� Each query is a boolean conjunction of one or more words� e�g�� �microwave
AND interferometer�� A document is considered to match a query if it contains all the words in the
conjunction�
To test GlOSS�s ability to locate the databases with the greatest number of matching documents� we

compared its recommendations to those of an �omniscient� database selection mechanism implemented
using a full�text index of the contents of our �		 patent databases� For each query� we found the exact
number of matching documents in each database� using the full�text index� and ranked the databases
accordingly� We compared this ranking with the ranking suggested by GlOSS by calculating� for various
values of N � the ratio between the total number of matching documents in the top N databases recom�
mended by GlOSS and the total number of matching documents in the N best databases according to
the ideal ranking� This metric� the normalized cumulative recall� approaches
�	 as N approaches �		�
the number of databases� but is most interesting when N is small� Because this metric is not meaning�
ful for queries with no matching documents in any database� we eliminated such queries� reducing the
number of queries in our sample to ������
Table � shows the results of this experiment� The table suggests that compared to an omniscient

selector� GlOSS does a reasonable job of selecting relevant databases� on average �nding over seventy
percent of the documents that could be found by examining an equal number of databases under ideal

�For more information on the query traces� see reference �
��� which provides detailed statistics for similar traces from
the same system�

�

database
word db� db�

information
��� �	
retrieval �� �		
documents
���
			

Table
� Part of the GlOSS summaries of two databases�

databases for a query� In this article� we show that the GlOSS summaries can be employed as the
representation for summary information in a large scale system� In particular� we o�er evidence that
GlOSS can e�ectively locate databases of interest even in a system of hundreds of databases� Our metric
for e�ectiveness is based on selecting databases that contain the largest number of matching documents
for a simple Boolean query� Second� we suggest appropriate data structures for storing such large scale
GlOSS summaries�
We experiment with two data structures� partitioned
multi�attribute� hashing and the grid �le�

Partitioned hashing o�ers the best average case performance for a wide range of workloads � if the
number of hash buckets is chosen correctly� However� the grid �le performs well� and grows more
gracefully as the number or size of the summaries increases�
Grid �les were developed to store data keyed in multiple dimensions� and are typically employed for

data that is fairly uniformly distributed� The GlOSS summaries we store are highly skewed� We show
that by varying the splitting policy used to construct a grid �le we can provide good performance for a
wide range of workloads even when storing such highly skewed data� Thus� as a side e�ect of our work�
we demonstrate that grid �les are more generally applicable than previously believed� and provide an
exploration of the e�ect of di�erent splitting policies on grid �le performance�
In summary� this paper studies an emerging problem in the construction of distributed information

retrieval systems� namely� the performance of brokers for accessing and updating summary information�
Section � reviews the GlOSS representation of summary information� Section � discusses GlOSS�s
e�ectiveness when there are large numbers of databases� The next four sections focus on choosing
a storage method for the summary information� Section � discusses the issues involved in choosing a
storage method� and describes some alternatives� Section � introduces the idea of using a grid �le to store
the GlOSS summaries� describes various splitting policies for managing grid �le growth� and presents
a simulation study of grid �le performance over a range of workloads� for several splitting policies�
Section � examines partitioned hashing as an alternative method for e�ciently storingGlOSS summaries�
Section � compares the results from the two storage methods� and explains why we recommend the grid
�le� Section � positions our work with respect to other work on brokers� and the last section summarizes
our results and our conclusions� and provides some ideas for future work�

� GlOSS	Glossary
Of
Servers Server

In this section we brie�y describe how GlOSS helps users choose databases at which a query should
be evaluated� Users �rst submit their query to GlOSS to obtain a ranking of the databases according
to their potential usefulness for the given query� The information used by GlOSS to produce this
ranking consists of a vector that indicates how many documents in the database contain each word
in the database vocabulary� and a count of the total number of documents in the database �
��� This
summary information is much smaller than the complete contents of the database� so this approach
scales well as the number of available databases increases�
Table
 shows a portion of the GlOSS summaries for two databases� Each row corresponds to a word

and each column to a database� For example� the word �information� appears in
��� documents in
database db�� and in �	 documents in database db�� The last row of the table shows the total number of
documents in each database� database db� has
��� documents� while database db� has
			 documents�
To rank the databases for a given query� GlOSS estimates the number of documents that match the

�

Data Structures for E�cient Broker Implementation�

To Appear� ACM Transactions on Information Systems� ����

Anthony Tomasicy

INRIA

Luis Gravanoz

Stanford University

Calvin Luex

IBM Almaden

Peter Schwarz�

IBM Almaden

Laura Haas

IBM Almaden

Abstract

With the profusion of text databases on the Internet� it is becoming increasingly hard to �nd
the most useful databases for a given query� To attack this problem� several existing and proposed
systems employ brokers to direct user queries� using a local database of summary information about
the available databases� This summary information must e�ectively distinguish relevant databases�
and must be compact while allowing e�cient access� We o�er evidence that one broker� GlOSS� can
be e�ective at locating databases of interest even in a system of hundreds of databases� and examine
the performance of accessing the GlOSS summaries for two promising storage methods� the grid �le
and partitioned hashing� We show that both methods can be tuned to provide good performance
for a particular workload 	within a broad range of workloads
� and discuss the tradeo�s between the
two data structures� As a side e�ect of our work� we show that grid �les are more broadly applicable
than previously thought� in particular� we show that by varying the policies used to construct the
grid �le we can provide good performance for a wide range of workloads even when storing highly
skewed data�

� Introduction

The last few years have seen an explosion in the amount of information that is available online� The
falling costs of storage� processing� and communications have all contributed to this explosion� as has
the emergence of the infrastructure provided by the World�Wide Web and its associated applications�
Increasingly� the key issue is not whether some piece of information is available online� but where� As a
result� an emerging area of research concerns brokers� systems that help users locate the text databases
that are most likely to contain answers to their queries� To perform this service� brokers use summary
information about the available databases� Brokers must be able both to query and to update this
summary information� A central problem in broker design is to �nd a representation for summary
information that is both e�ective in its ability to select appropriate information resources� and e�cient
to query and maintain�

GlOSS
Glossary�Of�Servers Server� �
��
�� is one broker that keeps database summaries to choose
the most promising databases for a given query� Initial studies of GlOSS are encouraging� Experiments
with a small number of databases indicate that although the GlOSS summaries are orders of magnitude
smaller than the information that they summarize� they contain enough information to select the best

�This work was partially supported by ARPA Contract F

�����
����

��
yINRIA Rocquencourt� ����
 Le Chesnay� France� E�mail� Anthony�Tomasic�inria�fr
zComputer Science Department� Stanford University� Stanford� CA ��
	���	�	� USA� E�mail�

gravano�cs�stanford�edu
xCurrent address� Trident Systems� Sunnyvale� CA� USA� E�mail� clue�tridmicr�com
�Department K����	�� IBM Almaden Research Center� ��	 Harry Road� San Jose� CA ����	��	��� USA� E�mail�

schwarz�almaden�ibm�com� laura�almaden�ibm�com

