Improving Access to Environmental Data using Context
Information

Anthony Tomasic
INRIA Rocquencourt

Anthony.Tomasic@inria.fr*

‘To Appear - SIGMOD Record, March 1997

Abstract

A very large number of data sources on environment,
energy, and natural resources are available worldwide.
Unfortunately, users usually face several problems when
they want to search and use environmental information.
In this paper, we analyze these problems. We describe
a conceptual analysis of the four major tasks in the
production of environmental data, from the technology
point of view, and describe the organization of the data
that results from these tasks. We then discuss the
notion of metainformation and outline an architecture
for environmental data systems that formally models
metadata and addresses some of the major problems
faced by users.

1 Introduction

Over the last years, governments have recognized
that environmental information could have a pro-
found impact on our ability to protect our envi-
ronment, manage natural resources, prevent and re-
spond to disasters, and ensure sustainable develop-
ment. All these issues emphasize the need to cir-
culate and exchange information and also to com-
bine information across different disciplines. Unfor-
tunately, when users want to search and use envi-
ronmental information, the following problems oc-
cur: (1) Data do not exist or are insufficient; some-
times this may require synthesis or reproduction of
data. (2) Data is not referenced by data suppliers
and therefore hard to locate, or data is referenced
under specific classification criteria that are domain-
specific. (3) Data is hard to access: either private, or
of a too high cost, or requiring costly pre-processing
(e.g., data must be re-entered manually from paper
documentation) or format translation, or adminis-
trative procedures to acquire data are too long, etc.
(4) Accessed data sets are hard to use because they
are inconsistent or non-compatible (e.g. access to
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long time series but standard data collection tech-
niques have not been applied, thereby making ad-
jacent time series not compatible). This may en-
tail detailed data identification such that corrections
can be made (either in-house or by the data sup-
plier); however, such data identification is often not
present. (5) The quality of retrieved data is hard to
assess (accuracy, "first-hand” versus derived, timeli-
ness, etc). It is often hard to compare data produced
using different scientific models because of a lack of
documentation about the underlying computational
process.

In this paper, we analyze some of these prob-
lems. Section 2 describes our conceptual analysis.
Section 3 discusses the notion of metainformation
and Section 4 outlines an architecture for scientific
data systems that formally models metadata and ad-
dresses the above problems. Section 5 concludes the

paper.

2 Conceptual Analysis

We distinguish between three main categories of
users based on the data each user needs from an
environmental data system [6].

End Users (e.g., general public, policy-maker)
need to locate and extract data that matches their
interest, or appropriate data servers to retrieve data
of the desired level of quality. For example, Joe
accesses the rating of beaches in his town. Then,
he asks why his town is not considered a safe beach.
As aresult, he gets a definition of a safe beach that is
understandable to him, i.e., at the appropriate level
of detail. For instance, safety may be defined as a
collection of criteria such as the expected height of
waves, and presence of sharks. Then Joe may want
to find out who, and when, collected the data about
the presence of sharks near his beaches.

Brokers (e.g., environmental scientist, public
administration) construct the servers for end users.
For instance, Alice writes programs which read
measurement databases, administrative enquiries,



and geographical databases, to construct a map of
France that indicates the quality of beaches. Also,
she writes programs to improve the reliability of
data using consolidation techniques. Generally, Alice
must find the data required for each new program she
writes. In addition, each new program uses multiple
data sources. Each data source requires a unique
program to extract the data for the new program.

Data Providers (e.g., biologist, geologist) collect
data and want to distribute them as widely and as
easily as possible. For instance, Bob may manually
enter his data to an existing database through a
standard form-based entry system. Data can also
be collected using automatic sensors that directly
transmit their data to an associated system. In
this case, Bob has to verify the quality of data
and eliminate erroneous measurements. To do this,
Bob needs to use specific programs for data analysis
and interpretation and access other data systems for
comparing his data with other related data.

In general, any individual in the real world may
play the role of multiple generic users described
here. From a task point of view, Joe’s principal
activity is to locate data servers and extract relevant
data. Alice’s and Bob’s principal activity is to
generate data by consolidation, aggregation, analysis
and interpretation. These activities are interrelated,
as shown in this figure:

consolidate
aggregate

Each arrow in the figure indicates a precedence
relationship between the tasks. The tasks are
defined as follows: (1) to locate and efficiently
extract relevant and accurate information from a
possibly very large number of information sources;
(2) to consolidate data by creating new sets of
data (e.g., approximate missing data in raw data
sources); to aggregate data at a higher level of
abstraction (e.g. aggregate measurement data into
larger measurements); (3) to analyze and interpret
data using simulation models and other complex
analytical tools, thereby generating new “value-
added” data; and (4) to store data that is either
defined and supplied by data providers, or produced
as a result of the three previous tasks.

Each iteration around the four tasks produces new
data that is available for further iterations. The
iterations naturally organize the data into a graph
based on the tasks used to produce the data, as

shown in this figure:

Analyze,
Interpret

Circles represent data and thin boxes, or transi-
tions, represent the application of tasks. Directed
arcs represent the transformational flow of data. On
the bottom, base and derived data (circles marked
by “B” and “D” respectively) are the input of two
transitions implementing locate and extract tasks.
The result of these transitions is stored as derived
data, which in turn are the input of a transition im-
plementing a consolidate and aggregate task.

3 Data vs. Metadata

The notion of metainformation is used in many dif-
ferent areas with a similar general goal: enable better
data integration, interchange, access, and interpre-
tation [4]. However, there is not a clear definition
of what metainformation is, and its interpretation
is application-domain dependent. In fact, a specific
piece of information is data or metadata only with
respect to a specific application-domain definition.
Before precisely defining what metainformation is in
this paper, we propose to distinguish two levels of
description of environmental data based on semantic
considerations.

3.1 Data Characterization

We describe our work with respect to a common
framework — first order logic [5]. Every first-order
logic consists of a syntax (a first order theory) and
a semantics (an interpretation of the theory). To
clarify the issues in this paper, we restrict ourselves
to facts, that is, simple first-order logic formula
consisting of a single ground predicate. Note that
every fact has its corresponding predicate.

In the last ten years, several standards have been
developed to establish the most general definitions
about the syntax and semantics of environmen-
tal data objects (e.g., measurements, observations,
maps, regulations, high-level environmental indica-
tors, etc.) on which a very large group of environ-
mental people agree. In our framework, each stan-
dard provides a collection of predicates and abstract
data types used to model specific environmental data



objects, a physical implementation of these predi-
cates and abstract data types (usually called a data
exchange format), and a thesaurus to define the vo-
cabulary used for abstract data type names and in-
stances. For instance, the Spatial Data Transfer
Standard (SDTS) provides a model for spatial ob-
jects (e.g., lines, points, polygons) [2]. These stan-
dards are primarily intended to facilitate the locate
and extract task mentioned before: a set of common
API interfaces that return standardized data can be
defined over data sets, and common exchange data
formats facilitate data transfer.

The French Sandre standard [1] provides a model
for various kinds of measurements in the area
of continental water resource management, such
as hydro-biological samplings. For example, a
simplified fact in this standard is

HB-sample(11.10.96, 18:00, Parisl, DDASS, ...)

Parisi is the name of the sampling station, and
DDASS is the name of the institution that performed
the measurement. The predicate HB-sample has the
following structure

HB-sample(date,time,location,observer,val)

where date, time, location, observer and val
are all abstract data types whose interpretation are
defined in a thesaurus. For instance, time is the
starting time of the sampling operation, and val is
an encoding of the measurement of various biological
constituents (which we do not list).

However, the abstract data types and the thesauri
used to describe these facts are generally not suf-
ficient to enable the consolidation, analysis, and in-
terpretation of data. For instance, the interpretation
of a sampling by an hydro-biologist requires the de-
scription of contextual information such as the mea-
surement network in which the sampling takes place,
the method used to perform the sampling, or the par-
ticipant who did the sampling. Each of these con-
textual descriptions may entail the definition of new
predicates and abstract data types, e.g., an observer
predicate that describes the attributes of the entity
that performed the observation. Each observer at-
tribute value of HB-sample fact would then be a ref-
erence to an observer fact.

We call these added predicates and abstract data
types contertual.! Note that the distinction between
predicates for basic environmental data objects and
predicates for contextual data is purely semantic and
is indistinguishable from a syntactic point of view.

1Since the observer predicate is, in some sense, data about
other data, some people label as metadata the facts of this
predicate. In our view, it is not, it is simply more data.

The definition of contextual information is an end-
to-end process. Data undergo various stages of pro-
cessing, as shown in the previous section, with con-
textual information being appended at each stage.
For instance, a broker may analyze and interpret
data sets, and provide a contextual description of
the interpretation that is understandable by an end
user. Thus, we have a collection of data which we
can classify as basic or contextual. We have the cor-
responding predicates and abstract data types to the
data, or the schema. Schema predicates are then also
basic or contextual.

In many current environmental systems, data is
stored in files and contextual information is stored
as free text in associated files (that is, contextual
information does not have any formal language).
Extraction of data consists of ad-hoc programs (that
is, query languages are not used). Contextual
information for the results of analysis is described in
scientific papers. Thus, there is no formal language
for describing the data itself and their meaning. The
UDK project [3] provides an interesting framework
for the definition of classes to describe both basic
and contextual environmental data.

3.2 Metadata Characterization

What we call metadata in this paper is a second-order
logic. A second-order logic is simply a logic with a
theory and interpretation that describes a logic.

The notion of second-order logic is well-known
in databases. For instance, metarelations are used
to describe the schema of user-defined database
relations (data dictionary). Similarly, metaclasses
in object-oriented databases are used to describe the
structure of user-defined classes and the methods to
create and manage them. We can show a diagram
for the metadata:

Meta-Level Basic & Contextual
Meta-Data a
Meta-Schema b

For the table, instances of metadata a are schemas
at the data level and b are metapredicates. (The
distinction between basic and contextual is blurred
here.) For instance, one can define the metapredi-
cates raw_measurements and estimated_measure-
ments, and have the following facts:

raw_measurements (HB-sample)
estimated_measurements (river-throughput)

where HB-sample is the predicate name defined
before and river-throughput is another predicate
name.

Metapredicates enable end users to locate useful
data sources without having to examine the con-



tents of those data sources, which is typically a time-
consuming activity. Determining the appropriate
meta predicates associated with a data source is a
modeling issue. The choice of metapredicates de-
pends on which information about predicates can be
effective in helping end users for locating, extracting,
analyzing, etc. data sources. Metapredicates also
permit views and constraints to be defined over pred-
icates. For instance, one could define a metapredi-
cate HQ-estimated-measurements that contains ref-
erences of all predicates having “high quality” esti-
mated measurements.

In any actual standard for data representation
or system, many modeling short-cuts are taken for
various reasons. One short-cut mixes in a single fact
parts of facts from the data and parts of facts from
the metadata. We call such facts demi-metadata.

For example, consider an extension of HB-sample
that includes an attribute normalized.

HB-sample(date,time,location,observer,val,
normalized)

The instances of normalized are the set of at-
tributes that contain normalized values. Thus, an
above data instance is

HB—sample(ll.10.96,18:00,Parisl,DDASS,...,
{datel})

indicating that only the date value, 11.10.96 is
normalized. Note that the normalized values can
vary from fact to fact.

3.3 Contexts and Dyads

As explained before, the metapredicates necessary
to understand the meaning of a data source depend
on the user point of view. Thus, we introduce
the notion of a context associated with a particular
data source. A context is a set of metapredicate
names (and the associated thesauri) that models
the minimum required contextual information to
enable an unambiguous interpretation of the data
set by a group of users who share some common
knowledge. Thus, typically, a context includes all the
metapredicates that characterize the derivation of a
given data set, such as metapredicates that describe
the scientific hypothesis underlying the models.
Note that a contert is a formal object. As
such, it does not easily lend itself to location or
comprehension by scientists. Thus, in addition to
a context, each instance of data, schema, metadata
or context can be paired with a piece of text that
provides a natural language interpretation. We call
each such pair a dyad. In particular, the dyads that
pair metadata instances with text are very useful for
searching over components of the architecture.

Data
Interpretation

Figure 1: The proposed architecture. W stands for
wrapper, D for data, T for text, I for index, and P
for program.

4 A Mediator-based Architecture

We propose an architecture that directly supports
the process-oriented view of data in Section 2 and the
metadata framework of Section 3. Figure 1 shows a
diagram of our proposed architecture. The architec-
ture consists of four classes of components: browsers,
data sources, indexes, and data interpretation pro-
grams.

Browsers are the user interface to the system. The
user can view data from data sources, search for
objects in the system through the indexes and launch
programs for data interpretation. Data sources, such
as a database system, export data and metadata
via query services. The information in the data
sources includes the metapredicates necessary to
define the interrelationship between data sources as
described in Section 2. Indexes provide searching
over all free text, data and metadata. Data
interpretation programs comprise scientific models
used in the consolidation, aggregation, analysis and
interpretation.

All components are interconnected via the dyad
virtual space, which is a collection of protocols.
Each component interfaces to the system through
a wrapper [7]. Each object in the virtual space
is a dyad consisting of (i) free text and (ii) the
formal object that represents the data, metadata,
context, index or computation. The free text
provides a means (through the indexes) for locating
the corresponding objects.

The functionality of wrappers varies widely, de-
pending on its purpose. Browser wrappers under-
stand the structure of dyads and support browsing of
the free text and formal objects contained in them.
Browsing formal objects is supported by the invo-
cation of data visualization programs. In addition,
the browser supports the query interface of the data



sources and indexes, and it supports requests for
wrappers to translate queries and responses between
the dyad virtual space and data sources. The index
wrappers provide the information retrieval queries
and also web-crawling technology for the construc-
tion of indexes. Data interpretation browsers man-
age the invocation of programs.

Returning to the example in Section 2, we de-
scribe each part of Figure 1. A database of his-
torical wave data, including wave height, force of
a wave, etc. for every beach in France, is a data
source. This data is generated by a government
authority and exported via a wrapper. Meteoro-
logical data is another data source, also produced
by a government authority and also exported via
a wrapper. Both of these data sources are man-
aged by Bob Data Provider. Alice Broker searches,
using the index, for these two data sources and
constructs an analysis of predictions of wave data
based on the historical database and the predicted
weather patterns. The model used to generate the
predictions comes from a data interpretation. It
consists of a program, the predicate modell that
describes the parameters of the prediction model,
and metapredicates. The predictions are a third
data source whose associated context a consists of
raw_measurements, estimated_measurements, and
forecast. The metapredicate forecast indicates,
for each forecast program, the predicates of its in-
put, output and prediction model, i.e. modell.

Finally, a fourth data source represents shark
attack reports in French newspapers.  Another
broker, Mary Broker accesses the dyad containing
the a context via the index and constructs a fifth
data source safe_beach that describes safe beaches
for wind surfing, based on the predicted wave data
and recent reported shark attacks. For Joe End
User, the task of finding a safe beach consists of
using a browser to examine safe_beach. Since the
context of safe_beach contains the structure of the
analysis, Joe can trace back through the structure
to understand how a specific beach was determined
safe or unsafe.

5 Conclusion

In this paper, we have presented a process-oriented
model for the tasks involved in the generation of
environmental data. Second, we modeled a hierarchy
of environmental data. Third, we discussed the
nature of data and metadata in this hierarchy.
Finally, we proposed an architecture to support these
activities.

Several ideas underly our proposed architecture.
First, we propose dyads, a pairing of a natural
language hyper-text description of information with

the formal description of the corresponding data and
metadata structures. This enables combining textual
searching techniques with formal database query
language techniques to help locate and interpret
environmental data. At the same time we improve
the quality of data delivered to users.

Second, we propose contexts, or collections of
metapredicates that model the minimum informa-
tion needed for unambiguous interpretation of a data
set. Third, we propose organizing components of the
architecture into browsers, data sources, indexing en-
gines, and data interpretation programs. These com-
ponents interact though a virtual space of dyads.

The following table summarizes the relationships
between the tasks and metainformation.

Concept Usefulness
Locate | Extract Agg. Analyze
Schema dyad queries | queries | contextual
index predicates
Meta- dyad format | context context
Schema | index exchg.
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