
Partial Answers for Unavailable Data Sources
�

Philippe Bonnet� and Anthony Tomasic�

� GIE Dyade� INRIA Rh�one Alpes� ��� Avenue de l�Europe� ����� Montbonnot�
France� Philippe	Bonnet
dyade	fr

� INRIA� Domaine de Voluceau� Rocquencourt� BP ���� ����� Le Chesnay Cedex�
France� Anthony	Tomasic
inria	fr

Abstract� Many heterogeneous database system products and proto

types exist today� they will soon be deployed in a wide variety of environ

ments	 Most existing systems su�er from an Achilles� heel� they ungrace

fully fail in presence of unavailable data sources	 If some data sources are
unavailable when accessed� these systems either silently ignore them or
generate an error	 This behavior is improper in environments where there
is a non
negligible probability that data sources cannot be accessed �e	g	�
Internet�	 In case some data sources cannot be accessed when processing
a query� the complete answer to this query cannot be computed� some
work can however be done with the data sources that are available	 In
this paper� we propose a novel approach where� in presence of unavail

able data sources� the answer to a query is a partial answer	 A partial
answer is a representation of the work that has been done in case the
complete answer to a query cannot be computed� and of the work that
remains to be done in order to obtain this complete answer	 The use of
a partial answer is twofold	 First� it contains an incremental query that
allows to obtain the complete answer without redoing the work that has
already been done	 Second� the application program can extract informa

tion from a partial answer through the use of a secondary query� which we
call a parachute query	 In this paper� we present a framework for partial
answers and we propose three algorithms for the evaluation of queries in
presence of unavailable sources� the construction of incremental queries
and the evaluation of parachute queries	

� Introduction

Heterogeneous databases provide declarative access to a wide variety of
heterogeneous data sources� Research into improving these systems has
produced many new results which are being incorporated into prototypes
and commercial products� A limiting factor for such systems however�
is the di�culty of providing responsive data access to users� due to the
highly varying response�time and availability characteristics of remote

� This work has been done in the context of Dyade� joint R�D venture between Bull
and Inria	



data sources� particularly in a wide�area environment ���� Data access
over remote data sources involves intermediate sites and communication
links that are vulnerable to congestion or failures� Such problems can
introduce signi�cant and unpredictable delays in the access of information
from remote sources�

In cases data from a remote source is delayed for a period of time which
is longer than the user is willing to wait� the source can be considered
unavailable� Most heterogeneous database systems fail ungracefully in
presence of unavailable data sources� They either assume that all data
sources are available� report error conditions� or silently ignore unavailable
sources�

Even when one or more needed sites are unavailable� some useful work
can be done with the data from the sites that are available� We call
a partial answer the representation of this work� and of the work that
remains to be done in order to obtain the complete answer� In this paper�
we describe an approach ���� where in presence of unavailable data sources�
a partial answer is returned to the user�

The use of partial answers is twofold� First� a partial answer contains
an incremental query that can be submitted to the system in order to ob�
tain the complete answer e�ciently� once the unavailable data sources are
again available� Second� a partial answer contains data from the available
sites that can be extracted� To extract data� we use secondary queries�
which we call parachute queries� A set of parachute queries is associated to
each query and can be asked if the complete answer cannot be produced�

In the rest of the section� we discuss an example that illustrates a
practical use of partial answers�

��� Example

To be more concrete� let us illustrate the problem and our solution with
the following example� concerning a hospital information system�

Consider an hospital that consists of three services	 administration�
surgery� and radiology� Each service manages its own data and is a data
source� A mediator system provides doctors with information on patients�
The mediator accesses the data sources to answer queries� Figure � con�
tains mediator schema
 three service data sources are integrated	 adminis�
tration� surgery� and radiology� The schema contains a relation identifying
patients �patient�� a relation associating the local identi�ers of patients
�map�� and two relations identifying medical treatments �surgery and ra�

diology�� The data from the patient� surgery and radiology relations are
located respectively on the local data sources� The map relation is located



id name age address

� Durand �� Paris
� Dupont �� Versailles
� Martin �� Suresnes

�a� patient

patient id radiology id surgery id

� r � s �
� r � s �
� r � s �

�b� map

id date description

s � �������� appendicitis
s � �������� broken arm
s � �������� appendicitis
s � �������� broken leg

�c� surgery

id date description xray

r � �������� right arm ��

r � �������� right leg ��

�d� radiology

Fig� �� Hospital Information System Schema	 Figure �a� is the patient relation from
the administrative service	 Figure �b� maps the identi�ers from the data sources � this
relation is contained in the mediator	 Figure �c� is the surgery relation from the surgery
service	 Figure �d� is the radiology relation from the radiology service	 The symbol �
represents a digitized x
ray	

in the mediator� �This schema is a kind of star schema where map is the
fact relation and patient� surgery and radiology are dimension relations��

A typical query that a doctor may ask is the following� select the date�
type and description of surgeries and the X�ray for the patient named
Martin� that occur on the same date	

Q� select surgery�date� surgery�description�

radiology�date� radiology�xray

from patient� surgery� radiology� map

where patient�name � �Martin� and

patient�id � map�patient�id and

map�surgery�id � surgery�id and

map�radiology�id � radiology�id and

surgery�date � radiology�date�

The answer to this query is	

surgery	date surgery	description radiology	date radiology	xray

�������� broken leg �������� ��

Each service administrates its own data source� In particular� the ad�
ministrator of the data source in� say the radiology service� can decide at
any time to shut down its system to perform maintenance� In the mean�
time� this data source is unavailable when the mediator tries to access
it� Using a classical mediator system� the query described above� which
involves radiological data cannot be answered when maintenance is per�
formed in the radiology service� Now� with a mediator providing partial
answers� parachute queries may be associated with the original query� In



our example� we could consider two parachute queries	 ��� for the case
where the radiology source is unavailable and �
� for the case where the
surgery source is unavailable�

PQ�� select surgery�date� surgery�description

from patient� surgery� map

where patient�name � �Martin� and

patient�id � map�patient�id and

map�surgery�id � surgery�id�

PQ�� select radiology�date� radiology�xray

from patient� radiology� map

where patient�name � �Martin� and

patient�id � map�patient�id and

map�radiology�id � radiology�id�

Suppose the radiology data source is unavailable when the doctor
asks query Q� The complete answer cannot be computed
 the system can
however obtain data from the administration and surgery data sources�
The system returns a partial answer which noti�es the doctor that the
query cannot be answered because the radiology data source is down�
The parachute queries that are associated to the query can be evaluated
using the obtained data� The doctor obtains the following answer to the
parachute query PQ�


date description

�������� appendicitis


������� broken leg

Using the same obtained data� the system also generates an incre�
mental query that will e�ciently compute the complete answer once the
radiology data source is available again� The incremental query retrieves
data from the radiology data source and reuses data already obtained
from the administration and surgery data sources �this incremental query
is described in Section 
�

��� Contributions

In summary� this paper describes a novel approach to handling unavail�
able data sources during query processing in heterogeneous distributed
databases� We propose a framework for partial answers
 an algorithm
for the evaluation of queries in presence of unavailable sources
 an algo�
rithm for the construction of incremental queries
 and an algorithm for



the evaluation of parachute queries� We have implemented part of these
algorithms in the Disco prototype �����

We present in Section 
 an overview of our approach� and in Section
� our algorithms� We discuss related work in Section �� We conclude the
paper in Section � by summarizing our results and discussing future work�

� Overview of Partial Answers

Let us consider again the initial query described in the introduction� If all
sites are available� then the system returns a complete answer� The com�
plete answer is the set of tuples obtained from the root of the execution
plan�

Let us suppose now that site radiology is unavailable� while the other
sites are available� A complete answer to this query cannot be produced�
We propose a solution that� in such a case� does the following	

phase � each available site is contacted� Since the radiology site is un�
available neither the join between the radiology relation and the data
obtained from the administration site� nor the join with the surgery

relation can be performed� The data from the administration site�
i�e� the result of the sub�query SQ� select � from patients� treatments

where patient�name � �Martin� and patient�id � treatment�patient id�
and the surgery relation� i�e� the result of sub�query SQ
 select � from

surgery� can however be obtained and materialized on the site where
query processing takes place� SQ� and SQ
 denote data materialized
locally in relations R� and R
�

phase � an incremental query� Qi� semantically equivalent to the original
query� is constructed using the temporary relations materialized in
phase � and the relations from the unavailable sites� In our example
Qi is	

select radiology�date� radiology�description�

R��date� R��description

from R�� R�� radiology

where R��radiology�id � radiology�id

and R��surgery�id � R��id �

Qi is semantically equivalent to the original query under the assump�
tion that no updates are performed on the remote sites�

A partial answer is returned to the user� It is a handle on the data
obtained and materialized in phase �� as well as on the query constructed



in phase 
� In the next section we propose two algorithms that implement
these two phases for the construction of partial answers�

A partial answer can be used in two ways� First� the incremental
query Qi� constructed in phase 
� can be submitted to the system in
order to obtain the �nal answer� Evaluating Qi only requires contacting
the sites that were unavailable when the original query was evaluated� In
the example� R� and R
 denote data materialized locally� only radiology

references data located on a remote site�

When Qi is evaluated� the system returns either a complete answer�
or another partial answer depending on the availability of the sites that
were previously unavailable�� When Qi is submitted to the system� the
query processor considers it in the same way as a plain query� and it is
optimized� The execution plan that is used for Qi is generally di�erent
from the execution plan used for the original query� If the sources that
were unavailable during the evaluation of the original query are now avail�
able� then a complete answer is returned� Under the assumption that no
relevant updates are performed on the remote sites� this answer is the
answer to the original query�

Submitting Qi� instead of the original query� in order to obtain the
complete answer presents two advantages� A complete answer can be pro�
duced even if all the sites are not available simultaneously� It su�ces that
a site is available during the evaluation of one of the successive partial
answers to ensure that the data from this site is used for the complete
answer� Moreover� Qi involves temporary relations that are materialized
locally
 evaluating Qi is usually more e�cient than evaluating the original
query�

Second� data can be extracted from a partial answer using parachute
queries� Parachute queries are associated to the original query
 they may
be asked in case the complete answer to the original query cannot be
produced� In the next section� we propose an initial algorithm for the
evaluation of parachute queries�

� Algorithms

��� Architecture

For our algorithms� we consider an architecture that involves an appli�
cation program� a mediator� wrappers� and data sources� During query

� Possibly� successive partial answers are produced before the complete answer can be
obtained	



processing� the application program issues a query to the mediator� The
mediator transforms the query into some valid execution plan consisting
of sub�queries and of a composition query �the algorithms we propose are
independent of the execution plan�� The mediator then evaluates the exe�
cution plan� Evaluation proceeds by issuing sub�queries to the wrappers�
Each wrapper that is contacted processes its sub�queries by communicat�
ing with the associated data source and returning sub�answers� If all data
sources are available� the mediator combines the sub�answers by using the
composition query and returns the answer to the application program� In
case one or several data sources are unavailable� the mediator returns a
partial answer to the application� The application extracts data from the
partial answer by asking a parachute query�

��� Query Evaluation

The algorithm for query evaluation follows the iterator model� The query
optimizer generates a tree of operators that computes the answer to the
query� The operators are relational�like� such as project� select� etc�
Each operator supports three procedures	 open� get�next� and close�
The procedure open prepares each operator for producing data� Each call
to get�next generates one tuple in the answer to the operator� and the
close procedure performs any clean�up operations�

The new operator submit contacts a remote site to process a sub�
query� During the open call to submit a network connection to the remote
site is opened� In this paper� we assume that if the open call to the
wrapper succeeds� then the corresponding data source is available and
will deliver its sub�answer without problems� If the open call fails� then
the corresponding data source is unavailable� This behavior implies that
each data source can be classi�ed as available or unavailable according to
the result of the open call�

We assume that no updates relevant to a query are performed between
the moment the processing of this query starts and the moment where the
processing related to this query ends� because the �nal answer is obtained�
or because the user does not resubmit the incremental query�

We describe a two�step evaluation of queries� The �rst step� the eval
algorithm� performs a partial evaluation of the execution plan with respect
to the available data sources� If all the sources are available� the result
of the �rst step is the answer to the query �a set of tuples�� If at least
one source is unavailable� the result of the �rst step is an annotated
execution plan� The second step� the construct algorithm� constructs the
incremental query from the annotated execution plan� A partial answer



eval�operator� f
for each subtree in children of operator f
eval�subtree�

g
if source is available or all subtrees are available then f
mark operator available

g else f
mark operator unavailable

g
g

Fig� �� The evaluation algorithm	

is then returned to the user� It is a handle on both the data materialized
during the �rst step and the query constructed in the second step�

Eval algorithm The eval algorithm is encoded in the open call to each
operator� The implementations of get�next and close are generally un�
changed from the classical implementations� Evaluation commences by
calling open on the root operator of the tree� Each operator proceeds by
calling open on its children� waiting for the result of the call� and then
returning to its parent� We consider two cases that can result from call�
ing open on all the children of an operation� Either all the calls succeed�
or at least one call fails� In the former case� the operator marks itself as
available and returns success to its parent� In the latter case� the operator
marks itself as unavailable and returns failure to its parent� The traversal
of the tree continues until all operators are marked either available or
unavailable� Note that by insisting that each operator opens all its chil�
dren� instead of giving up with the �rst unavailable child� we implement
a simple form of query scrambling �
�� See Figure 
 for an outline of the
algorithm�

After the open call �nishes� the root operator of the tree has marked
itself either available or unavailable� If it is marked available� then all
sources are available and the �nal result is produced in the normal way�
If at least one data source is unavailable� the root of the execution plan
will be marked unavailable and the �nal result cannot be produced� In
the latter case the tree is processed in a second pass� Each subtree rooted
with an available operator materializes its result� Materialization is ac�
complished by the root operator of the subtree repeatedly executing its



construct�execution plan� returns Incremental Query f
if available�� then f
return the temporary relation containing the intermediate result

g else f
S �� �
for each subtree in children�execution plan� f
S �� S � construct	 subtree 


g
return the query for execution plan using S

g
g

Fig� �� Construction of the incremental query	

get�next call and storing the result� The resulting tree is passed to the
construct algorithm�

Construct algorithm We construct a declarative query from an an�
notated execution plan by constructing a declarative expression for each
operator in the tree in a bottom�up fashion� The declarative expressions
are nested to form the incremental query�

Operators marked available generate a declarative expression that ac�
cesses the materialized intermediate result� It is an expression of the form
select � from x in r� where x is a new unique variable and r is the
name of the temporary relation holding the materialized intermediate
result� Operators marked unavailable generate a declarative expression
corresponding to the operator� For example� a project operator gener�
ates an expression of the form select p from x in arg� where p is the
list of attributes projected by the operator� x is a unique variable� and
arg is the declarative expression that results from the child operator of
the project operation� The association between the operators we consider
and declarative expressions is straightforward�

The construction of the incremental query� see Figure �� consists in
traversing recursively the tree of operators� stopping the traversal of a
branch when an available operator is encountered �there is an interme�
diate result�� or when an unavailable leaf is reached �a submit operator
associated to an unavailable data source�� and in nesting the declarative
expression associated to each traversed node�

The incremental query� together with the annotated execution plan is
used to return a partial answer�



��� Extraction Algorithm

We present an algorithm for extracting information from a partial answer�
using a parachute query� The algorithm traverses the annotated execu�
tion plan searching for an intermediate result that matches the parachute
query�

The algorithm proceeds as follows� see Figure �� First� a query is
generated for each intermediate result materialized in the annotated ex�
ecution plan using the construct algorithm� We obtain a set of queries
whose result is materialized in the annotated execution plan� Then� we
compare the parachute query to each of these queries� If the parachute
query is contained by one of these queries� then we can obtain the answer
to the parachute query	 it is the result of evaluating the parachute query
on one materialized relation� Otherwise� we cannot return any answer to
the parachute query� Query containment is de�ned in ����� This problem
is exactly the same as matching a query against a set of materialized
views
 an algorithm similar to this one is implemented in ADMS ����

extract�execution plan� parachute query� returns Answer f
S �� materialized subqueries	execution plan

for each subquery in S f
if parachute query � subquery then

return parachute query evaluated on intermediate result of subquery
g
return null

g

Fig� �� The extraction algorithm	

An improvement in the evaluation of parachute queries would con�
sist in using a more elaborate evaluation algorithm� We can utilize for
this problem� the results of ��� where an algorithm for answering queries
using views is proposed� This algorithm would allow to combine several
materialized views to evaluate a parachute query�

� Related Work

Multiplex ��� tackles the issue of unavailable data sources in a multi�
database system and APPROXIMATE ��
� tackles the issue of unavail�
able data in a distributed database� Both systems propose an approach



based on approximate query processing� In presence of unavailable data�
the system returns an approximate answer which is de�ned in terms of
subsets and supersets sandwiching the exact answer�

Multiplex uses the notions of subview and superview to de�ne the
approximate answer� A view V� is a subview of a view V
 if it is ob�
tained as a combination of selections and projections of V

 V
 is then a
superview of V�� These notions can be a basis to de�ne the relationship
between a query and its associated parachute queries� APPROXIMATE
uses semantic information concerning the contents of the database for
the initial approximation� In our context� we do not use any semantic
information concerning the data sources� None of these system produce
an incremental query for accessing e�ciently the complete answer�

References ��� and ��� survey cooperative answering systems� These
systems emphasize the interaction between the application program and
the database system� They aim at assisting users in the formulation of
queries� or at providing meaningful answers in presence of empty results�
Reference ��� introduces a notion of partial answer� When the result of
a query is empty� the system anticipates follow�up queries� and returns
the result of broader queries� that subsume the original query� These
answers are o�ered in partial ful�llment of the original query� This notion
of partial answer is di�erent from the one we have introduced� For ���� a
partial answer is an answer to a query subsuming the original query� For
us� a partial answer is the partial evaluation of the original query�

� Conclusion

We have proposed a novel approach to the problem of processing queries
that cannot be completed for some reason� We have focused on the prob�
lem of processing queries in distributed heterogeneous databases with
unavailable data sources� Our approach o�ers two aspects� First� in pres�
ence of unavailable data sources the query processing system returns a
partial answer which is a handle on data obtained and materialized from
the available sources and on an incremental query that can be used to
e�ciently obtain the complete answer� Second� relevant information can
be extracted from a partial answer using parachute queries� We have im�
plemented our approach �����

The use of parachute queries provides a very �exible and familiar in�
terface for application programs� However� formulating parachute queries
may be a burden for the application programmer� We suspect that rel�
evant parachute queries can be automatically generated given the origi�



nal query� We have started investigating interesting classes of parachute
queries and algorithms to generate them ���
 we have also studied perfor�
mance trade�o�s in a system dealing with parachute queries�

Acknowledgments

The authors wish to thank Laurent Amsaleg� St�ephane Bressan� Mike
Franklin� Rick Hull� Tamer Oszu and Louiqa Raschid for fruitful discus�
sions� and Mauricio Lopez for comments on previous drafts of this paper�

References

�	 Laurent Amsaleg� Philippe Bonnet� Michael J	 Franklin� Anthony Tomasic� and
Tolga Urhan	 Improving responsiveness for wide
area data access	 Bulletin of the
Technical Committee on Data Engineering� ����������� ����	

�	 Laurent Amsaleg� Michael J	 Franklin� Anthony Tomasic� and Tolga Urhan	 Scram

bling query plans to cope with unexpected delays	 In International Conference
on Parallel and Distribution Information Systems �PDIS�� Miami Beach� Florida�
����	

�	 Philippe Bonnet and Anthony Tomasic	 Partial answers for unavailable data
sources	 Technical Report RR
����� INRIA� ����	

�	 Philippe Bonnet and Anthony Tomasic	 Parachute queries in the presence of un

available data sources	 Submitted for publication� ����	

�	 C	M	 Chen and N	 Roussopoulos	 The implementation and performance evaluation
of the ADMS query optimizer� Integrating query result caching and matching	 In
Proceedings of the �th International Conference on Extending Database Technology�
����	

�	 Terry Gaasterland� Parke Godfrey� and Jack Minker	 An overview of cooperative
answering	 Journal of Intelligent Information Systems� ������������� ����	

�	 A	Y	 Levy� A	 Mendelzon� Y	 Sagiv� and D	 Srivasta	 Answering queries using
views	 In Proceedings of the ��th ACM SIGACT�SIGMOD�SIGART Symposium
on Principles of Database Systems� PODS���� San Jose� California� ����	

�	 Amihai Motro	 Cooperative database systems	 In Proceedings of the ���� Work�
shop on Flexible Query�Answering Systems �FQAS ����� pages ����	 Department
of Computer Science� Roskilde University� Denmark� ����	 Datalogiske Skrifter 

Writings on Computer Science 
 Report Number ��	

�	 Amihai Motro	 Multiplex� A formal model for multidatabases and its implemen

tation	 Technical Report ISSE
TR
��
���� George Mason University� ����	

��	 Anthony Tomasic� Remy Amouroux� Philippe Bonnet� Olga Kapitskaia� Hubert
Naacke� and Louiqa Raschid	 The distributed information search component
�disco� and the World
Wide Web	 In Proceedings of the ACM SIGMOD Interna�
tional Conference on Management of Data� Tucson� Arizona� ����	

��	 Je�rey D	 Ullman	 Principals of Database and Knowledge�Base Systems� volume �	
Computer Science Press� ����	

��	 S	 V	 Vrbsky and J	 W	 S	 Liu	 APPROXIMATE� A query processor that produces
monotonically improving approximate answers	 Transactions on Knowledge and
Data Engineering� ��������������� December ����	


