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Abstract. Many heterogeneous database system products and proto-
types exist today; they will soon be deployed in a wide variety of environ-
ments. Most existing systems suffer from an Achilles’ heel: they ungrace-
fully fail in presence of unavailable data sources. If some data sources are
unavailable when accessed, these systems either silently ignore them or
generate an error. This behavior is improper in environments where there
is a non-negligible probability that data sources cannot be accessed (e.g.,
Internet). In case some data sources cannot be accessed when processing
a query, the complete answer to this query cannot be computed; some
work can however be done with the data sources that are available. In
this paper, we propose a novel approach where, in presence of unavail-
able data sources, the answer to a query is a partial answer. A partial
answer is a representation of the work that has been done in case the
complete answer to a query cannot be computed, and of the work that
remains to be done in order to obtain this complete answer. The use of
a partial answer is twofold. First, it contains an incremental query that
allows to obtain the complete answer without redoing the work that has
already been done. Second, the application program can extract informa-
tion from a partial answer through the use of a secondary query, which we
call a parachute query. In this paper, we present a framework for partial
answers and we propose three algorithms for the evaluation of queries in
presence of unavailable sources, the construction of incremental queries
and the evaluation of parachute queries.

1 Introduction

Heterogeneous databases provide declarative access to a wide variety of
heterogeneous data sources. Research into improving these systems has
produced many new results which are being incorporated into prototypes
and commercial products. A limiting factor for such systems however,
is the difficulty of providing responsive data access to users, due to the
highly varying response-time and availability characteristics of remote
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data sources, particularly in a wide-area environment [1]. Data access
over remote data sources involves intermediate sites and communication
links that are vulnerable to congestion or failures. Such problems can
introduce significant and unpredictable delays in the access of information
from remote sources.

In cases data from a remote source is delayed for a period of time which
is longer than the user is willing to wait, the source can be considered
unavailable. Most heterogeneous database systems fail ungracefully in
presence of unavailable data sources. They either assume that all data
sources are available, report error conditions, or silently ignore unavailable
sources.

Even when one or more needed sites are unavailable, some useful work
can be done with the data from the sites that are available. We call
a partial answer the representation of this work, and of the work that
remains to be done in order to obtain the complete answer. In this paper,
we describe an approach [3], where in presence of unavailable data sources,
a partial answer is returned to the user.

The use of partial answers is twofold. First, a partial answer contains
an incremental query that can be submitted to the system in order to ob-
tain the complete answer efficiently, once the unavailable data sources are
again available. Second, a partial answer contains data from the available
sites that can be extracted. To extract data, we use secondary queries,
which we call parachute queries. A set of parachute queries is associated to
each query and can be asked if the complete answer cannot be produced.

In the rest of the section, we discuss an example that illustrates a
practical use of partial answers.

1.1 Example

To be more concrete, let us illustrate the problem and our solution with
the following example, concerning a hospital information system.
Consider an hospital that consists of three services: administration,
surgery, and radiology. Each service manages its own data and is a data
source. A mediator system provides doctors with information on patients.
The mediator accesses the data sources to answer queries. Figure 1 con-
tains mediator schema; three service data sources are integrated: adminis-
tration, surgery, and radiology. The schema contains a relation identifying
patients (patient), a relation associating the local identifiers of patients
(map), and two relations identifying medical treatments (surgery and ra-
diology). The data from the patient, surgery and radiology relations are
located respectively on the local data sources. The map relation is located



id| name |age| address | |patient_id|radiology_id|surgery_id

1 {Durand| 56 | Paris 1 r.l s_1

2 |Dupont| 38 |Versailles 2 r2 s-2

3 | Martin | 70 | Suresnes 3 r3 s-3
(a) patient (b) map

id| date |description
s-1|110/03/96|appendicitis| |id| date |description|xray
$-2|23/07/97| broken arm| |r_-2(22/07/97| right arm | O,
$-3|30/05/96|appendicitis| [r_-3|23/10/97| right leg | ©2
$-3|23/10/97| broken leg (d) radiology

(c) surgery

Fig. 1. Hospital Information System Schema. Figure (a) is the patient relation from
the administrative service. Figure (b) maps the identifiers from the data sources — this
relation is contained in the mediator. Figure (c) is the surgery relation from the surgery
service. Figure (d) is the radiology relation from the radiology service. The symbol O
represents a digitized x-ray.

in the mediator. (This schema is a kind of star schema where map is the

fact relation and patient, surgery and radiology are dimension relations.)

A typical query that a doctor may ask is the following, select the date,
type and description of surgeries and the X-ray for the patient named
Martin, that occur on the same date:

Q: select surgery.date, surgery.description,

radiology.date, radiology.xray

from patient, surgery, radiology, map

where patient.name = "Martin" and
patient.id = map.patient_id and
map.surgery_id = surgery.id and
map.radiology_id = radiology.id and
surgery.date = radiology.date;

The answer to this query is:

surgery.date|surgery.description|radiology.date|radiology.xray
23/10/97 broken leg 23/10/97 Q2

Each service administrates its own data source. In particular, the ad-
ministrator of the data source in, say the radiology service, can decide at
any time to shut down its system to perform maintenance. In the mean-
time, this data source is unavailable when the mediator tries to access
it. Using a classical mediator system, the query described above, which
involves radiological data cannot be answered when maintenance is per-
formed in the radiology service. Now, with a mediator providing partial
answers, parachute queries may be associated with the original query. In



our example, we could consider two parachute queries: (1) for the case
where the radiology source is unavailable and (2) for the case where the
surgery source is unavailable.

PQ1l: select surgery.date, surgery.description
from patient, surgery, map
where patient.name = "Martin" and
patient.id = map.patient_id and
map.surgery_id = surgery.id;

PQ2: select radiology.date, radiology.xray
from patient, radiology, map
where patient.name = "Martin" and
patient.id = map.patient_id and
map.radiology_id = radiology.id;

Suppose the radiology data source is unavailable when the doctor
asks query Q. The complete answer cannot be computed; the system can
however obtain data from the administration and surgery data sources.
The system returns a partial answer which notifies the doctor that the
query cannot be answered because the radiology data source is down.
The parachute queries that are associated to the query can be evaluated
using the obtained data. The doctor obtains the following answer to the
parachute query PQ1;

date | description ‘
30/05/97|appendicitis|
23/10/97| broken leg |

Using the same obtained data, the system also generates an incre-
mental query that will efficiently compute the complete answer once the
radiology data source is available again. The incremental query retrieves
data from the radiology data source and reuses data already obtained
from the administration and surgery data sources (this incremental query
is described in Section 2)

1.2 Contributions

In summary, this paper describes a novel approach to handling unavail-
able data sources during query processing in heterogeneous distributed
databases. We propose a framework for partial answers; an algorithm
for the evaluation of queries in presence of unavailable sources; an algo-
rithm for the construction of incremental queries; and an algorithm for



the evaluation of parachute queries. We have implemented part of these
algorithms in the Disco prototype [10].

We present in Section 2 an overview of our approach, and in Section
3 our algorithms. We discuss related work in Section 4. We conclude the
paper in Section 5 by summarizing our results and discussing future work.

2 Overview of Partial Answers

Let us consider again the initial query described in the introduction. If all
sites are available, then the system returns a complete answer. The com-
plete answer is the set of tuples obtained from the root of the execution
plan.

Let us suppose now that site radiology is unavailable, while the other
sites are available. A complete answer to this query cannot be produced.
We propose a solution that, in such a case, does the following;:

phase 1 each available site is contacted. Since the radiology site is un-
available neither the join between the radiology relation and the data
obtained from the administration site, nor the join with the surgery
relation can be performed. The data from the administration site,
i.e. the result of the sub-query SQ1 select * from patients, treatments
where patient.name = "Martin” and patient.id = treatment.patient_id,
and the surgery relation, i.e. the result of sub-query SQ2 select * from
surgery, can however be obtained and materialized on the site where
query processing takes place. SQ1 and SQ2 denote data materialized
locally in relations R1 and R2.

phase 2 an incremental query, Qi, semantically equivalent to the original
query, is constructed using the temporary relations materialized in
phase 1 and the relations from the unavailable sites. In our example

Qi is:

select radiology.date, radiology.description,
R2.date, R2.description
from R1, R2, radiology
where Rl.radiology_id = radiology.id
and Rl.surgery_id = R2.id ;

Qi is semantically equivalent to the original query under the assump-
tion that no updates are performed on the remote sites.

A partial answer is returned to the user. It is a handle on the data
obtained and materialized in phase 1, as well as on the query constructed



in phase 2. In the next section we propose two algorithms that implement
these two phases for the construction of partial answers.

A partial answer can be used in two ways. First, the incremental
query Qi, constructed in phase 2, can be submitted to the system in
order to obtain the final answer. Evaluating Qi only requires contacting
the sites that were unavailable when the original query was evaluated. In
the example, R1 and R2 denote data materialized locally, only radiology
references data located on a remote site.

When Qi is evaluated, the system returns either a complete answer,
or another partial answer depending on the availability of the sites that
were previously unavailable!. When Qi is submitted to the system, the
query processor considers it in the same way as a plain query, and it is
optimized. The execution plan that is used for Qi is generally different
from the execution plan used for the original query. If the sources that
were unavailable during the evaluation of the original query are now avail-
able, then a complete answer is returned. Under the assumption that no
relevant updates are performed on the remote sites, this answer is the
answer to the original query.

Submitting Qi, instead of the original query, in order to obtain the
complete answer presents two advantages. A complete answer can be pro-
duced even if all the sites are not available simultaneously. It suffices that
a site is available during the evaluation of one of the successive partial
answers to ensure that the data from this site is used for the complete
answer. Moreover, Qi involves temporary relations that are materialized
locally; evaluating Qi is usually more efficient than evaluating the original
query.

Second, data can be extracted from a partial answer using parachute
queries. Parachute queries are associated to the original query; they may
be asked in case the complete answer to the original query cannot be
produced. In the next section, we propose an initial algorithm for the
evaluation of parachute queries.

3 Algorithms

3.1 Architecture

For our algorithms, we consider an architecture that involves an appli-
cation program, a mediator, wrappers, and data sources. During query

! Possibly, successive partial answers are produced before the complete answer can be
obtained.



processing, the application program issues a query to the mediator. The
mediator transforms the query into some valid execution plan consisting
of sub-queries and of a composition query (the algorithms we propose are
independent of the execution plan). The mediator then evaluates the exe-
cution plan. Evaluation proceeds by issuing sub-queries to the wrappers.
Each wrapper that is contacted processes its sub-queries by communicat-
ing with the associated data source and returning sub-answers. If all data
sources are available, the mediator combines the sub-answers by using the
composition query and returns the answer to the application program. In
case one or several data sources are unavailable, the mediator returns a
partial answer to the application. The application extracts data from the
partial answer by asking a parachute query.

3.2 Query Evaluation

The algorithm for query evaluation follows the iterator model. The query
optimizer generates a tree of operators that computes the answer to the
query. The operators are relational-like, such as project, select, etc.
Each operator supports three procedures: open, get-next, and close.
The procedure open prepares each operator for producing data. Each call
to get-next generates one tuple in the answer to the operator, and the
close procedure performs any clean-up operations.

The new operator submit contacts a remote site to process a sub-
query. During the open call to submit a network connection to the remote
site is opened. In this paper, we assume that if the open call to the
wrapper succeeds, then the corresponding data source is available and
will deliver its sub-answer without problems. If the open call fails, then
the corresponding data source is unavailable. This behavior implies that
each data source can be classified as available or unavailable according to
the result of the open call.

We assume that no updates relevant to a query are performed between
the moment the processing of this query starts and the moment where the
processing related to this query ends, because the final answer is obtained,
or because the user does not resubmit the incremental query.

We describe a two-step evaluation of queries. The first step, the eval
algorithm, performs a partial evaluation of the execution plan with respect
to the available data sources. If all the sources are available, the result
of the first step is the answer to the query (a set of tuples). If at least
one source is unavailable, the result of the first step is an annotated
execution plan. The second step, the construct algorithm, constructs the
incremental query from the annotated execution plan. A partial answer



eval(operator) {
for each subtree in children of operator {
eval(subtree)

}

if source is available or all subtrees are available then {
mark operator available

} else {
mark operator unavailable

}
}

Fig. 2. The evaluation algorithm.

is then returned to the user. It is a handle on both the data materialized
during the first step and the query constructed in the second step.

Eval algorithm The eval algorithm is encoded in the open call to each
operator. The implementations of get-next and close are generally un-
changed from the classical implementations. Evaluation commences by
calling open on the root operator of the tree. Each operator proceeds by
calling open on its children, waiting for the result of the call, and then
returning to its parent. We consider two cases that can result from call-
ing open on all the children of an operation. Either all the calls succeed,
or at least one call fails. In the former case, the operator marks itself as
available and returns success to its parent. In the latter case, the operator
marks itself as unavailable and returns failure to its parent. The traversal
of the tree continues until all operators are marked either available or
unavailable. Note that by insisting that each operator opens all its chil-
dren, instead of giving up with the first unavailable child, we implement
a simple form of query scrambling [2]. See Figure 2 for an outline of the
algorithm.

After the open call finishes, the root operator of the tree has marked
itself either available or unavailable. If it is marked available, then all
sources are available and the final result is produced in the normal way.
If at least one data source is unavailable, the root of the execution plan
will be marked unavailable and the final result cannot be produced. In
the latter case the tree is processed in a second pass. Each subtree rooted
with an available operator materializes its result. Materialization is ac-
complished by the root operator of the subtree repeatedly executing its



construct(ezecution_plan) returns Incremental Query {
if available() then {
return the temporary relation containing the intermediate result

} else {
S:=0
for each subtree in children(ezecution_plan) {
S := 5 U construct ( subtree )

}

return the query for ezecution_plan using S

}
}

Fig. 3. Construction of the incremental query.

get-next call and storing the result. The resulting tree is passed to the
construct algorithm.

Construct algorithm We construct a declarative query from an an-
notated execution plan by constructing a declarative expression for each
operator in the tree in a bottom-up fashion. The declarative expressions
are nested to form the incremental query.

Operators marked available generate a declarative expression that ac-
cesses the materialized intermediate result. It is an expression of the form
select x from z in r, where x is a new unique variable and r is the
name of the temporary relation holding the materialized intermediate
result. Operators marked unavailable generate a declarative expression
corresponding to the operator. For example, a project operator gener-
ates an expression of the form select p from x in arg, where p is the
list of attributes projected by the operator, x is a unique variable, and
arg is the declarative expression that results from the child operator of
the project operation. The association between the operators we consider
and declarative expressions is straightforward.

The construction of the incremental query, see Figure 3, consists in
traversing recursively the tree of operators, stopping the traversal of a
branch when an available operator is encountered (there is an interme-
diate result), or when an unavailable leaf is reached (a submit operator
associated to an unavailable data source), and in nesting the declarative
expression associated to each traversed node.

The incremental query, together with the annotated execution plan is
used to return a partial answer.



3.3 Extraction Algorithm

We present an algorithm for extracting information from a partial answer,
using a parachute query. The algorithm traverses the annotated execu-
tion plan searching for an intermediate result that matches the parachute
query.

The algorithm proceeds as follows, see Figure 4. First, a query is
generated for each intermediate result materialized in the annotated ex-
ecution plan using the construct algorithm. We obtain a set of queries
whose result is materialized in the annotated execution plan. Then, we
compare the parachute query to each of these queries. If the parachute
query is contained by one of these queries, then we can obtain the answer
to the parachute query: it is the result of evaluating the parachute query
on one materialized relation. Otherwise, we cannot return any answer to
the parachute query. Query containment is defined in [11]. This problem
is exactly the same as matching a query against a set of materialized
views; an algorithm similar to this one is implemented in ADMS [5].

extract(ezecution_plan, parachute_query) returns Answer {
S := materialized_subqueries (ezecution_plan)
for each subquery in S {
if parachute_query C subquery then
return parachute_query evaluated on intermediate result of subquery
}

return null

}

Fig. 4. The extraction algorithm.

An improvement in the evaluation of parachute queries would con-
sist in using a more elaborate evaluation algorithm. We can utilize for
this problem, the results of [7] where an algorithm for answering queries
using views is proposed. This algorithm would allow to combine several
materialized views to evaluate a parachute query.

4 Related Work

Multiplex [9] tackles the issue of unavailable data sources in a multi-
database system and APPROXIMATE [12] tackles the issue of unavail-
able data in a distributed database. Both systems propose an approach



based on approximate query processing. In presence of unavailable data,
the system returns an approximate answer which is defined in terms of
subsets and supersets sandwiching the exact answer.

Multiplex uses the notions of subview and superview to define the
approximate answer. A view V1 is a subview of a view V2 if it is ob-
tained as a combination of selections and projections of V2; V2 is then a
superview of V1. These notions can be a basis to define the relationship
between a query and its associated parachute queries. APPROXIMATE
uses semantic information concerning the contents of the database for
the initial approximation. In our context, we do not use any semantic
information concerning the data sources. None of these system produce
an incremental query for accessing efficiently the complete answer.

References [6] and [8] survey cooperative answering systems. These
systems emphasize the interaction between the application program and
the database system. They aim at assisting users in the formulation of
queries, or at providing meaningful answers in presence of empty results.
Reference [8] introduces a notion of partial answer. When the result of
a query is empty, the system anticipates follow-up queries, and returns
the result of broader queries, that subsume the original query. These
answers are offered in partial fulfillment of the original query. This notion
of partial answer is different from the one we have introduced. For [8], a
partial answer is an answer to a query subsuming the original query. For
us, a partial answer is the partial evaluation of the original query.

5 Conclusion

We have proposed a novel approach to the problem of processing queries
that cannot be completed for some reason. We have focused on the prob-
lem of processing queries in distributed heterogeneous databases with
unavailable data sources. Our approach offers two aspects. First, in pres-
ence of unavailable data sources the query processing system returns a
partial answer which is a handle on data obtained and materialized from
the available sources and on an incremental query that can be used to
efficiently obtain the complete answer. Second, relevant information can
be extracted from a partial answer using parachute queries. We have im-
plemented our approach [10].

The use of parachute queries provides a very flexible and familiar in-
terface for application programs. However, formulating parachute queries
may be a burden for the application programmer. We suspect that rel-
evant parachute queries can be automatically generated given the origi-



nal query. We have started investigating interesting classes of parachute
queries and algorithms to generate them [4]; we have also studied perfor-
mance trade-offs in a system dealing with parachute queries.
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