‘ ('Wﬂl be inserted by hand later)

Locating and Accessing Data Repositories with

WebSemantics*

George A. Mihaila'!, Louiqa Raschid?, and Anthony Tomasic

3xx

1 Department of Computer Science, University of Toronto, 10 King’s College Road, Toronto, ON, M5S 1A4, Canada
2 Robert H. Smith School of Business and UMIACS, University of Maryland, College Park, MD, USA, MD20742

3 INRIA Rocquencourt, 78153 Le Chesnay, France

Received: July 1999 / Accepted: September, 2000

Abstract. Many collections of scientific data in partic-
ular disciplines are available today on the World Wide
Web. Most of these data sources are compliant with some
standard for interoperable access. In addition, sources
may support a common semantics, i.e., a shared mean-
ing for the data types and their domains. However,
sharing data among a global community of users is
still difficult because of the following reasons: (i) data
providers need a mechanism for describing and pub-
lishing available sources of data; (ii) data administra-
tors need a mechanism for discovering the location of
published sources and obtaining metadata from these
sources; and (iii) users need a mechanism for browsing
and selecting sources. This paper describes a system,
WebSemantics, that accomplishes the above tasks. We
describe an architecture for the publication and discov-
ery of scientific data sources, that is an extension of the
World Wide Web architecture and protocols. We sup-
port catalogs containing metadata about data sources for
some application domain. We define a language for dis-
covering sources and querying their metadata. We then
describe the WebSemantics prototype.

1 Introduction

Recently, many standardized collections of scientific data,
in specific disciplines, have become available on the
World Wide Web. For example, many collections of en-
vironmental data, located around the world, are now
available to scientists [Fra97, GHC, GPC, WDC, NGD].
These sources often comply with a standard for inter-
operability, e.g. the data is in a relational DBMS. The
data may also conform to a common semantics, i.e. each
item of data is precisely defined. However, the sharing
of information between scientists is still a very difficult
process. Sharing is hindered by the lack of mechanisms

* This research was partially sponsored by the National Science
Foundation grant TR19630102 and the Defense Advanced Research
Projects Agency grant 01-5-28838

** Present affiliation: Common Object Inc., San Mateo, CA

Correspondence to: George A. Mihaila

for describing and publishing data sources, and for dis-
covering the existence of data relevant to a problem.

The World-Wide Web (WWW) is a system for shar-
ing documents. In this system, documents are published
and accessed via the HTTP protocol and HTML docu-
ment format standards. Our goal is to make the access to
structured (typed) data sources as easy as access to doc-
uments, that is, to give “equal-time” to data on the In-
ternet. Recently XML and XMLSchema [XMTL96, XS00]
have been proposed and widely adopted as a data ex-
change format and a model for exchanging structured
data on the WWW. Resource description languages and
mechanisms for resource discovery have also been pro-
posed [MCF97, RDF99, Lyn91, Z39, WID97]. Much of
this work has centered on bibliographic collections and
resource discovery and information sharing among such
specialized collections. There has been some work on ex-
tensions to other domains, for example geo-referenced
or geo-spatial data [Z39]. However, there is still little
support for publishing and describing data sources for
structured data on the WWW, and for resource discov-
ery using the metadata of these sources.

In this paper we describe the implementation of a
prototype system, WebSemantics (WS), which permits
publication and discovery of sources containing typed
data, using the WWW and XML. Our approach extends
the WWW with a specification for publishing the loca-
tion, and optionally the metadata (types and domains)
of sources, in WS-XML documents. The WS-XML spec-
ification is an instance of the XML [XML96] metalan-
guage. WS then provides a language for discovering rele-
vant published data sources. The language combines fea-
tures for searching relevant WS-XML documents that
publish data sources with features for searching over
the metadata describing these sources. This approach
smoothly integrates the functionality already existing on
the WWW for searching documents with the WS exten-
sions for searching over the metadata.

The contributions of this paper are as follows:

— An architecture which permits publication and dis-
covery of data sources containing structured data.

— A catalog which stores metadata about data sources
in a specific application domain.

— A query language that supports the discovery of data
sources.

— A description of a prototype implementation of the
WS architecture, catalog and query language.

The paper is organized as follows: Section 2 is an
overview of the WS architecture. Section 3 describes the
query language for the discovery of data sources. Sec-
tion 4 describes the WS architecture and query process-
ing in more detail. Section 5 describes the WS prototype.
Section 6 describes related work. In particular, a com-
parison is made with resource description and resource
discovery for bibliographic collections and the extensions
that have been made to accommodate structured data
in particular domains. Section 7 concludes the paper.
Preliminary results from this paper were presented in

[MRT98].

2 Overview of the WebSemantics System

Query Processor|
Query Processing
default catalog Layer
Catalog Catalog
= == Catalog Layer
= _—_—
= =
B HTML
v hyper! —nyperlink | HTML
= | hyperta }\ hvp‘wk// World Wide Web
F— Layer
wsxML - [WSXML| [WSXMOLSUT sohend
Pl AL
Ly : : Data Source
. ggﬂg i Layer

Fig. 1. The WebSemantics layers

In this section we briefly overview the WebSemantics
(WS) system. The WS system has a layered architecture
of interdependent components (see Figure 1).

The Data Source Layer has two components, data
sources and wrappers. Data providers create and manage
collections of autonomous data sources, that can be ac-
cessed over the Internet. These data sources can provide
query capability ranging from full DBMS functionality
to simple scanning of files. WS assumes uniform access
to both kinds of sources, independent of the capability
of the sources. This is accomplished using wrapper com-
ponents.

The second layer is the World Wide Web Layer. The
WWW is used as a medium for describing and publish-
ing sources. Thus, in order to publish a data source, a
provider needs to create a WS-XML document describ-
ing the source.

George A. Mihaila, Louiga Raschid, and Anthony Tomasic

<xs:schema xmlns:xs="http://www.w3.0rg/1999/XMLSchema"
version="1.0">

<xs:element name="AirQuality">
<xs:complexType content="empty'>
<xs:attribute name=''date'" type="timeInstant"/>
<xs:attribute name="location'" type="string"/>

<xs:attribute name='"CO2percentage" type='float"/>

</xs:complexType>
</xs:element>

<xs:element name='"Rainfall'>
</xs:element>

</xs:schema>

Fig. 2. The EnvSchema. xml file: a shared schema for environmental
data

The third layer is the Catalog Layer. A catalog is a
specialized repository storing metadata about a collec-
tion of data sources in some application domain. For
each source, the catalog maintains metadata character-
izing the source, such as the set of types exported by the
source; the domains for a subset of attributes of some
types; a textual description of the data source; the URL
of the WS-XML document that published the source,
ete.

Finally, the WS query processor component, bound to
a specific catalog, allows the user to discover and select
sources based on the available metadata.

2.1 Motivating Exzample

Suppose a community of environmental scientists agreed
on a common schema, EnvSchema, and an associated se-
mantics for various measurements. The schema consists
of a set of types, e.g., relational table names and at-
tributes. For example, a type AirQuality(date, location,
CO2percentage, ...) describes the date and location of
the measurement, and the percentages of various gases
from a standard set of gases of interest (carbon dioxide,
carbon monoxide, etc.). While we use the relational data
model to simplify our example, WS does not insist on the
use of the relational model. In order to make the schema
available to everyone, they publish it on the Web, in the
XML file shown in Figure 2. This file conforms to the
XML-Schema conventions for describing strongly typed
relational data [XS00].

Consider a scientist who measures air quality pa-
rameters in Ontario. She measures the concentration of
greenhouse gases in the atmosphere and stores the re-
sults of her daily measurements in a DB2 database. The
schema of this database follows the shared semantics,
EnvSchema. In order to make this data source available
to WebSemantics users, she publishes a WS-XML docu-
ment (shown in Figure 3) that specifies the connection

Locating and Accessing Data Repositories with WebSemantics

<?xml version="1.0"7>
<!DOCTYPE ws SYSTEM '"wsxml.dtd">
<wus>
<source>
<sci>
<wrapper wtype="JDBC"/>
<repository rtype="DB2"
rlocation="jdbc:db2://server.env.org/ontario"/>
</sci>
<metadata>
<schema>http://www.env.org/EnvSchema.xml</schema>

<type name = "AirQuality">
<domain attr='"location"
domtype='"enumeration"
values="Halifax Montreal Toronto"/>
<domain attr='"time" domtype='range"
minvalue="Jan 1, 1990"
maxvalue="Dec 31, 2000"/>
</type>

<type name = "Rainfall">

</type>

</metadata>
<desc> This repository contains daily measurements
of air quality parameters in Ontario for
the year 2000. </desc>
</source>
</us>

Fig. 3. Describing a data source in an WS-XML document

information for the source (such as the type of wrap-
per and the location of the data) as well as the subset
of types from the shared schema that are available in
this source. The complete DTD describing a WS-XML
document is given in Appendix A.

Suppose that a second scientist is interested in air
quality data for his research. In order to locate data
sources of interest, he can execute the following query:

Query 1. Find all the sources described in WS docu-
ments that mention the phrase “air quality”.

select s

from Document d such that d mentions “air quality”,

Source s such that d describes s;

This query finds any document that mentions air
quality and describes sources. The mentions keyword
instructs the query processor to submit a query to Web
search engines. We will discuss how we can limit the
search to WS-XML documents in a later section. Match-
ing documents are processed to extract the information
about data sources that are described in that document
(the describes keyword specifies the relationship be-
tween WS-XML documents and the data sources for
which they contain metadata). Later, a scientist can also
register the discovered data sources with a WS catalog.

Registering a data source means that its location and
metadata are made available to the catalog. Once a WS
catalog has been constructed, other scientists can query
the catalog in order to identify data sources.

As a sample application domain for WS, we have
chosen environmental information, and a community of
environmental scientists. However, the underlying archi-
tecture and language are not specific to environmental
data or scientific data in general. Given a shared schema
for some data, WS can be utilized to share this data.
For example, given a simple shared schema of the “cars
for sale” ads from newspapers, (e.g., make, model, year,
and price of a car for sale), a specialized catalog can pub-
lish sources of such ads and help users search for such
sources.

3 Locating and Querying Data Sources

In this section, we introduce the WebSemantics Query
Language (WSQL) which provides the following func-
tions: 1) finding data sources that are published in WS-
XML documents or that are registered in existing cata-
logs; and 2) selecting sources based on their metadata. To
accomplish these tasks, the WSQL language integrates
constructs borrowed from WebSQL [MMM97] and OQL
[CT96]. We present the features of the language through
examples.

3.1 Finding Sources on the WWW

Query 1 presented in the previous section illustrated one
way of using search engines to locate data sources on the
WWW, assuming no previous knowledge about their lo-
cation. However, if a user has additional information,
for example the home page of a particular research insti-
tute, she can use this information to restrict the scope of
the search to the pages reachable from that home page.
The following query would build the desired collection
of sources:

Query 2. Find all the sources described in WS-XML
documents reachable from “www.env.org/” that contain
the phrase “air quality” in their text.

select s

from Document d such that “www.env.org/” —* d,
Source s such that d describes s

where d.text contains “air quality”;

The first construct in the from clause sets the range
of the variable d to the set of all documents on the
“www.env.org” server which are reachable from the root
page. The path regular expression ‘—*’ means “traverse
any number of local links starting from the specified
URL”. The set of documents that are reachable are fur-
ther restricted by a predicate in the where clause which
specifies a string containment condition on d.text. The

contains condition is directly evaluated on the reach-
able documents in the set. This is in contrast to the
previous approach of querying search engines, as is done
for the mentions clause. The second construct in the
from clause sets the range of the variable s to the set
of sources described in the documents which satisfy the
predicate.

Path regular expressions, a construct borrowed from
WebSQL, are regular expressions over the alphabet of
link types: — 1s a link between documents on the same
Web server and = is a link to a different Web server.

3.2 Selecting Sources From Catalogs

The previous examples selected sources that were de-
scribed in WS-XML documents. An alternative is to pick
sources directly from specialized WS catalogs.

For each source, the catalog maintains a metadata tu-
ple of the form Source(id, description, types, domains),
where types is the set of types exported by the source.
A source can export a subset of types identified in the
shared schema. The domains is a set of active domains of
some attributes of some types. Types are represented in
the catalog as metadata tuples of the form Type(name,
attributes), where atiributes is a set of (attrname,
datatype) pairs. The active domain of an attribute is the
set of distinct values of that attribute in all the tuples
currently present in the source. Active domains are rep-
resented as metadata tuples of the form Domain(type,
attribute, values).

For instance, going back to our example with environ-
mental data, suppose one knows the addresses of several
catalogs registering relevant data sources. One can select
sources of interest from these catalogs with the following

query:

Query 3. Find all data sources containing air quality
information for Toronto, identified from a specific list of
catalogs.

select s
from Catalog ¢ in { “rmi://alpha.env.org/WSCatalog”,
“rmi://rep.env.ca/Catalog”},
Source s in c.sources,
Domain d in s.domains,
where d.type = “AwrQuality” and d.att = “location”
and d.values contains “Toronto”;

The first clause in the from section identifies the
catalogs to query. WS catalogs are implemented as Java
classes accessible through the Remote Method Invoca-
tion protocol [RMI], hence they are identified through
URLs of the form “rmi://host/service”. The second clause
binds the variable s to the set of all sources in the cat-
alogs. The set of sources is further restricted by keep-
ing only those sources that are associated with the type
“AirQuality”, such that the active domain of the at-
tribute “location” contains the string “Toronto”, among
the the list of values for this domain. For each source s,
s.domains are the active domains of attributes that are
published by the source.

George A. Mihaila, Louiga Raschid, and Anthony Tomasic

In the previous queries, we assumed that the type in-
formation was known. WS also allows queries over all the
metadata, including the type names and attributes. Sup-
pose, for example, that we want to find a type which con-
tains an attribute whose name we know approximately.
The following query illustrates this situation:

Query 4. Find all types that have an attribute whose
name contains the string “UV”.

select ¢

from Catalog ¢ = “rmi://alpha.env.org/WSCatalog”,
Type t in c.types

where t.attributes contains “UV”;

Technically, the expression t.attributes evaluates to
a definition of the attributes. The contains operator
works on strings, so the expression t.attributes is au-
tomatically converted to a string before evaluating the
substring condition.

4 WebSemantics Architecture and Interactions
between Components

Section 2 presented an overview of the various compo-
nents of the WS architecture. In this section, we describe
the interactions between these components to support
the tasks of discovering sources and registering them in
a catalog. We then address the scalability of the WS
architecture. This includes the issue of maintaining the
catalog to be consistent with sources over time. We also
discuss how WS uses wrappers based on standard inter-
operability solutions [SM, XML96], to access a variety of
data sources with different functionality.

4.1 Registering Sources in the Catalog

Sources can be registered in the catalog in two ways.
First, a data provider may explicitly register a source
by submitting the URL for a WS-XML document that
describes the source. The second method reflects re-
source discovery. The query processor evaluates a query
WSQL_query, in the WSQL language described in Sec-
tion 3, and identifies a set of sources which are then regis-
tered in the catalog. Registering is accomplished through
a register command with the following syntax:

register into catalog catalog_address
(sources | types | domains) URL
| (sources | types | domains) WSQL_query

Thus, the register command allows types and do-
mains as well as sources to be registered.

4.2 Catalog Maintenance

There are two issues that must be considered regarding
the scalability of the catalog in the WS architecture. The
first issue is that in a dynamic environment such as the

Locating and Accessing Data Repositories with WebSemantics

WWW | the catalog must be maintained to be consistent
with the data sources. Over time, the data provided by
the sources may change, and some sources may move
or disappear. In order to reflect these changes in the
catalog, WS supports deletions and updates of sources
and their domains.

A delete command has a syntax similar to the regis-
ter command. Executing this command unregisters the
specified objects, which may include sources, and do-
mains.

The update command instructs the catalog to re-
compute the specified objects. If the original WS-XML
document that advertised the source (whose URL is
maintained in the catalog) is current, and if the source is
current, then the update command will be successful. If
this WS-XML document is unavailable, then the objects
will be unregistered.

The delete and update commands may be explic-
itly submitted to the catalog by a data provider. Recall
that we also used a method of resource discovery to eval-
uate a WSQL_query query and to register sources in the
WS catalog. Thus, we cannot rely on data providers to
explicitly provide notification of updates, as these dis-
covered data sources change.

Thus, to remain consistent, the WS catalog must pe-
riodically poll all the registered sources. For this, the
WS-XML documents that publish the sources and that
are referenced in the catalog will be periodically con-
sulted via the update command. If the documents exist,
then the catalog will be refreshed, i.e., sources will be up-
dated or unregistered as appropriate. If the documents
do not exist, then the object is unregistered.

The second issue i1s harnessing the technology that
searches the Web, a la search engines, to gather URLs
of all the WS-XML documents that publish sources, and
construct indexes over these pages. These indexes may
store the keywords from the natural language descrip-
tions of the sources. They may also store the metadata
extracted from WS-XML documents. The indexes would
then be used to register sources into the catalog. This
would be a natural extension of the WSQL language,
with the capability of search engines, to gather and in-
dex the contents of WS-XML documents that describe
sources. When we discuss our implementation, we will
consider limiting these indexes to WS-XML documents.

4.3 Contacting Sources to Obtain Data

Throughout this paper we reference to strict types 4 la
the relational data model. Since the main focus of WS
is source discovery and selection, the system is oblivi-
ous to the particular data model (e.g. relational, object-
relational, semistructured, etc.) used by the sources.
However, if uniform data access is sought, one must
implement appropriate wrappers for every such data
model. For completeness, we briefly discuss different data
sources that are not relational DBMS.

Data sources may vary widely based on their query
capability, which could range from supporting complete
DBMS query capability, to flat files whose contents may

be scanned. Sources vary based on the format used to
encode their answers. Also, sources may or may not sup-
port strict typing. Wrappers provide an application pro-
gramming interface to data sources, to handle queries
submitted to the data sources, and the answers. A uni-
form query interface is provided by sources that sup-
port generic interoperability standards, e.g., a relational
DBMS. However the query interface is not standard
across all sources. We now describe some combinations
of WS wrappers/sources.

— Generic JDBC [SM] drivers provide a standard inter-
face to relational databases. For example, an Oracle
JDBC driver [Ora] can be used to access any Ora-
cle data source. WS includes a WS—JDBC wrapper
that interoperates with any JDBC driver. The query
capability of the driver/source and the answer format
is specified by JDBC. This interoperability solution
supports relational queries on the types in the source.
A list of all available JDBC drivers is maintained at
http://java.sun.com/products/jdbe/jdbec.drivers.html.

— A WS—XML wrapper interoperates with any data
source whose output is encoded as XML. In this case,
we assume that the source cannot be queried and the
wrapper only supports a scan over the XML output.
The WS query engine must provide all additional
query capabilities. This includes support for querying
semi-structured data [AQM*97, GMW99].

— Many sources accessible over the Web, WebSources
[GRVBY8], have a limited query capability, compared
to a DBMS. Projects such as DISCO [TRV96], Gar-
lic [CHS*95], Information Manifold [KLSS95] and
TSIMMIS [GM*95] have developed wrappers for such
sources, and provide mediator capability to submit
appropriate queries to these wrappers. WS would rely
on the mediators developed in these projects to ac-
cess limited capability sources.

— Many collections of data are encoded as delimiter
separated ASCII text in files, with particular na-
tive formats [GPC, WDC, GHC]. Custom WS wrap-
pers need to understand the particular format of each
source. The query capability of these wrappers is a
scan of the specific type in the source.

The WS-XML document describing a data source
must provide sufficient information that would enable
WS to recognize the query capability, format, etc. of the
source, so that the WS query processor can use an ap-
propriate WS wrapper that can interoperate with the
source. An XML DTD of the WS-XML document speci-
fication is included in Appendix A and describes how this
information is provided, in order to publish the source.

We do not address the issue of data access to the va-
riety of sources described above, and we refer the reader
to related work on wrapper mediator architectures for

data integration [AQMT97, GMW99, FMLS99, Vid00].

4.4 Obtaining Metadata from Sources

A WS-XML document specifies the types in a data
source. We assume that a community of users share a

common semantics of types and domains for some ap-
plication domain. Once a source is discovered, its types
(specified in the shared schema) will be registered in the
catalog. Domain information, corresponding to a partic-
ular attribute, may also be provided in the WS-XML
document describing the types in the source. Available
domain information will be stored in the catalog. Alter-
nately, a query (scan) could be evaluated on the source
using the appropriate WS wrapper to obtain domain in-
formation, assuming that the source will support such
queries. As discussed previously, this would depend on
the query capability of the source. Both type and do-
main information in the catalog must be periodically re-

freshed.

4.5 Query Processing

The WSQL language is a declarative query language. In
order to evaluate a query, the query processor needs to
compile it into some sort of evaluable representation. In
this section we introduce an algebra and then we briefly
describe the algorithm used by the query processor to
generate an operator tree starting from a calculus query.

Consider a set att of atiributes and the set dom of
all metadata tuples. Given a subset U = {A4;1,---, 4,} C
att, a tuple over U is a mapping t : U — dom. We usu-
ally write a tuple ¢ in the form (A; : a1, As 1 a9, -+, Ay :
a,) and denote by t.A4; the value t(A;).

A relation of sort U is a finite set R of tuples over U.
We denote by Rel(U) the set of all relations of sort U.
Finally, we denote by Rel the set of all relations and we
assume a mapping sort : Rel — 23% stating the sort of
each relation. We introduce the tuple product operation:
ifu= (A1 1u, -, Ay tup)and v = (V] 1wy, Vp ¢
vp) are tuples over two disjunct sets U and V, then the
tuple u x v : U UV — dom is defined by u x v = (U :
ur, o Up tup, Vit og, -+, Vo tog).

We now define operators for the various constructs

in the WSQL language.

— The select and where clauses of WSQL queries are
translated to operators from traditional algebra, i.e.,
(Project and Select), respectively.

— The from clause is non-traditional, compared to an
SQL query. Variables are introduced in this clause
and their ranges are defined by means of range ez-
Pressions.

The range expressions are classified as (1) regular
expressions for document navigation; (2) keyword
matching; (3) source descriptions occurring in WS-
XML documents; and (4) field selection (types, at-
tributes, domains, etc.).

We introduce an operator for each type of range ex-
pression.

Each of these operators, with the exception of the
last one, accepts as input a relation R and produce as
output a relation R’ that has exactly one extra attribute
whose values depend on one or two attributes in the in-
put relation (see Fig. 4). The naming convention for each
operator 1s opgj’;f;TA” where iAtt 1s the input attribute,

George A. Mihaila, Louiga Raschid, and Anthony Tomasic

0Att 1s the output attribute and param is a parameter.
An operator opﬁa;;am reads each tuple t of its input rela-
tion and produces one or more output tuples ¢’ that have
the same attributes as t plus an extra attribute named B
whose value depends on t.A — the value of the attribute

A in the input tuple ¢.

Definition 1. We iniroduce the following four range
operators. They correspond to the 4 types of range ez-
pressions previously described.

- TraverserD;E : Rel — Rel, defined by
Traversep p(R) = {t x (E : e)[t € R and there is
a path matching the regular expression v from the
document t.D to the document e }

This operator corresponds to regular expressions for
document navigation.

— Searchw.p : Rel — Rel, defined by
Searchw.p(R) = {t x (D : d)|t € R} and document d
mentions keyword t.W.

This operator corresponds to keyword matching;

— FEzxtractp.s : Rel — Rel, defined by
Ezxtracip.g(R) = {t x (S : s)|t € R} and document
t.D describes source s.

This operator corresponds to extracting source meta-
data from WS-XML documents;

- GetFieldeZSI,d : Rel — Rel, defined by
GetField{J'(R) = {t x (Y : y)lt € R and y €
t.X.field}.

This operator corresponds to field selection (types, at-
tributes, domains, eic.);

- ConstantSet§ € Rel, defined by

ConstantSety = {(X :)|z € A}, where A C dom
1s a set of domain constants.

D E
WWw.env.org www.env.org/welcome
wWww.env.org www.env.org/projects
Www.env.org www.env.org/people
Www.env.org wWww.env.org/contact

www.toronto.edu [www.toronto.edu/admin
www.toronto.edu [www.toronto.edu/intro

Traverse”
D,E

D

WWW.env.org
www.toronto.edu

Fig. 4. An examplerange operator: Traverse];. 5, produces for each
input tuple a set of output tuples containing pairs of URLs of
WWW documents connected by a local link.

Locating and Accessing Data Repositories with WebSemantics

The ConstantSet?(operator takes no input and pro-
duces a relation with just one attribute X having as
values all the domain constants in the set A. In addi-
tion to range operators we use the traditional relational
operators Select and Project with their usual semantics.

From Def. 1 we note that a range operator OP?,Z;ZTAH
is only defined on relations R such that sort(R) D iAtt.
This leads to the following definition of a well-formed
operator tree.

Definition 2. An operator tree is a rooted tree T =
(V,E,X), where X is a labeling function mapping each
node to an operator such that for each node v, A(v) is an
operator whose arity coincides with the number of chil-
dren of v.

We define recursively the functions input,output :
V — 28% giving for each node the sorts of its input and
output:

— if v is a leaf node, then A(v) = ConstaniSetx;
we define input(v) = 0 and output(v) = {X};
— for every interior node,
define input(v) = U(v,w)eE output(w);
— if v has exactly one child w,
then A(v) is an operator op; ass oatt;
we define output(v) = output(w) U {oAtt}.
— if v has two or more children,
then A(v) = x;
we define output(v) = input(v);

We call the tree well-formed if for each interior node
v with a label of the form op;atsoase, we have 1Att C
input(v).

Given a WSQL query @, our goal is to produce a
well-formed operator tree such that the output of its root
operator 1s the answer to the query (). In the remainder
of this section, we describe our tree generating algorithm
on an example.

Consider the following WSQL query that identifies
all the data sources described in documents on a specific
server:

select s.id, s.types
from Document d such that “www.env.org/” —* d,
Source s such that d describes s;

The algorithm builds the tree in a bottom-up fashion.

1. The first step is generating a ConstantSet operator
for each constant in the query.

2. Next, for each range expression F in the from clause,
generate the corresponding operator op(E)?41, where
tAtt and oAtt are attributes corresponding to the
variables and constants in E.

The mapping between the particular type of range
operator and the corresponding range expression has
been described.

This operator is then connected to the top-most op-
erator op for which output(op) D iAtt.

3. In the final step, a Project operator is added at the
root of the tree.

The resulting tree is shown in Figure 5.

Project S.id,S.types

Extract D.S

*

Traverse”
V.D

{www.env.org}

ConstantSet v

Fig. 5. An operator tree

5 Implementation

In this section, we describe the status of our prototype
implementation of the WS system. The WS prototype
has three main components: a Query Processor, a Cat-
alog Server, and Wrappers. All components are imple-
mented as a collection of Java classes, organized in a WS
Class Library, which facilitates their integration in Java
application programs. We also implemented two Java ap-
plets facilitating the user interaction with the system, for
ad-hoc WSQL queries, and catalog visualization and ad-
ministration.

5.1 The Query Processor

The query run-time system uses the Graefe iterator
model [Gra93]). where each operator is implemented by
a physical algorithm called an iterator. Each iterator im-
plements three methods: open, which prepares the oper-
ator for producing data; nezt, which produces an output
element; and close, which performs final housekeeping.
Once an operator tree is built, the evaluation is initiated
by invoking the open method on the root iterator, then
repeatedly invoking nezt until there are no more items,
and finally invoking close, all on the root iterator. The
root iterator will call the appropriate methods on its in-
put iterator(s), and so on, down to the leaf iterators,
which execute the methods directly. Each time an itera-
tor needs an input element, it calls its input iterator(s)
to produce one.

It is worth noting here that the iterators that corre-
spond to range operators produce a list of output ele-
ments for each input element and they store this list in
an internal buffer from which they deliver one item at a
time on each invocation of the nezt method.

For example, the Traverse” iterator reads a URL from
the input tuple, then starts exploring its Web neighbor-
hood using a labeled graph traversal algorithm (adapted
from [MW95]) in order to find all the paths matching
the path regular expression r. For each such path, the

iterator produces an output tuple containing the URL of
its endpoint.

The Search iterator reads a text pattern from the
input tuple, then sends this pattern to an index server
(currently AltaVista) and produces an output tuple for
each answer retrieved from the server. In order to reduce
the search space to WS-XML documents, a special key-
word (“scitnamesbew” which is “websemantics” spelled
backwards) is included in all WS-XML documents. This
keyword is also added to the list of keywords requested
in the query before submitting the query to a search en-
gine. In our experience, this keyword does not occur in
any other document in any language and has allowed us
to narrow the search to relevant documents.

The Extract iterator reads a URL from its input
tuple, retrieves the corresponding WS-XML document,
and extracts all the source descriptions from it, produc-
ing an output tuple for each description.

5.2 Catalog Server

In the current prototype, we have implemented a cen-
tralized catalog to store the metadata for a small col-
lection of data sources. The catalog currently supports
catalog construction, querying and simple maintenance
tasks (deleting and updating individual sources).

During catalog construction, when a new source is
registered, the catalog downloads the corresponding WS-
XML document and extracts types and domain meta-
data exported by each source. In some cases, domain
information can also be obtained from the source. The
communication with the various types of sources is uni-
formly handled by the WS wrapper interface. As men-
tioned earlier, all sources may not support this capabil-
ity.

Catalog URL: | thttp://fwww/~gecrgem/db/cat-scqd.sml

Connect

Data Sources Data Types Type Definition

AirCiuality
waterQuality

date: String

EnvCanada CO2Zpercentage: Strin
Env Y humidity: String
(4]
Active Domain
Toronto
Delete | Update | Save Close

Fig. 6. The ViewCat Applet

During the catalog query phase, the catalog answers
queries on sources, types and domains, by accessing the
data stored in the catalog. The query task is handled by
the ViewCat applet (shown in Figure 6). On startup,

George A. Mihaila, Louiga Raschid, and Anthony Tomasic

the applet connects to the catalog specified in the com-
mand line and displays a list of all the registered sources.
Alternatively, users can connect to another WS catalog
by typing its address in the Catalog URL text area
and pressing the Connect button. There are two types
of catalog addresses:

— a URL of a WS-XML file

(eg. “http://www.env.org/catalog.xml”);
— an RMI url of a remote catalog

(eg. “rmi://www.env.org/Catalog”)

In the first case, the built-in catalog loads and parses the
specified file, registering all the sources described therein.
In the second case, the applet contacts the specified re-
mote catalog through the remote method invocation pro-
tocol [RMI].

Viewing the catalog contents

Upon selection of a source, the set of types available
in that source is displayed in a listbox. The lower text
area displays the connection information for that source.
Upon selection of a type, the set of its attributes (and
their datatypes) is displayed in the “Type Definition”
listbox. Finally, the active domain of any attribute in
the current source can be computed by selecting the at-
tribute of interest from the list. For example, in Figure 6,
the domain for attribute location is displayed.

Updating the catalog

The applet provides a convenient way to delete and
update the metadata about individual sources, as well
as save the current catalog contents.

— the Delete button removes the currently selected
source from the catalog;

— the Update button instructs the catalog to re-load
the metadata about the selected source from the WS-
XML document that was used when the source was
registered;

— the Save button writes the current content of the cat-
alog in a local WS-XML file (named “catalog.xml”);
this file can later be used for catalog initialization;

— the Close button quits the applet.

For a more detailed description of the WS architec-
ture, the WSQL query language and its formal seman-
tics, as well as information on calibrating the perfor-
mance of the prototype we refer to [Mih00].

6 Related Work

Our research is similar to and depends upon work in
many areas. Research in mediation technology has pro-
posed several techniques for describing, integrating or
accessing structured data on the Internet. WS is based
on the assumption that wrappers and mediators will sup-
port interoperability. Ongoing research in the informa-
tion retrieval and digital library community has gener-
ated a number of distributed searching protocols and
metadata standards in order to facilitate resource dis-
covery for document-like objects and there are some ex-
tensions to structured data as well. WS will perform re-
source discovery for sources with structured data. Fi-
nally, various techniques for indexing and querying the

Locating and Accessing Data Repositories with WebSemantics

Web have been proposed. WS must extend these tech-
niques to WS-XML pages that publish data sources.

We now consider wrapper mediator architectures, as
proposed in [ACPS96, BT97, Ct95 G196, GRVBIS,
KLSS95, R*89, Pt96, TRV96, Wie92]. These systems
differ widely in the capabilities of mediators and in the
capabilities of wrappers. Wrappers developed for Gar-
lic [C*95] and the Information Manifold [KLSS95] as-
sume the location of the data sources, types, and wrap-
per capability, are embedded within the wrappers. Wrap-
pers for DISCO [TRV96], TSIMMIS [GM*95, VP97] and
for Web accessible WebSources [GRVB98] use declara-
tive languages to export types and query capabilities.
Another proposal [WID97] focuses on CORBA IDL ac-
cess via WWW protocols, instead of query based access,
to sources. The WS architecture can be extended to in-
clude such data sources.

In all these projects, the knowledge of the location of
the sources is embedded within the mediators and there
is no resource discovery task. Our research is based on
the premise that WS-XML documents will be used to
publish the location of components (wrappers and data
sources). We thus provide a (single) query language to lo-
cate data sources (based on metadata) and to access data
from the sources. We note that at present, WS does not
deal with limited capability wrappers. Our current pro-
totype interacts with databases, using JDBC, and with
data in flat files.

The importance of the World Wide Web as a reposi-
tory of information has generated an increasing interest
in the research community for the design of high-level,
declarative languages for querying it. WebSQL [MMM97]
integrates textual retrieval with structure and topology-
based queries. Instead of trying to model document
structure with some kind of object-oriented schema, as
in [CACS94, QRST95], a minimalist relational approach
is taken: each Web document is associated with a tuple in
a virtual Document relation and each hypertext link with
a tuple in a virtual Anchor relation. In order to query
these virtual tables, one must first define computable
sub-domains, either using keyword matching or through
controlled navigation starting from known URLs. An-
other Web query language, W3QS [KS95] includes the
specification of syntax and semantics of a SQL-like query
language (W3QL) that provides simple access to external
Unix programs, advanced display facilities for gathered
information, and view maintenance facilities. We borrow
concepts from these languages in the design of WSQL.

An emerging proposal for a standard for exchange of
types and structured data, XMLSchema [XML96, XS00]
specified in XML, has been gaining wide attention. WS
uses XMLSchema to specify the schema and metadata of
sources. When query languages for XML are developed,
they can be exploited by WS.

The problem of retrieving information from multiple
sources has also received considerable attention in the
context of bibliographic data. In order to overcome the
difficulties generated by the differences in data repre-
sentation and query mechanisms, the library community
has developed the Z39.50 protocol [Lyn91, Z39], an inter-
operability standard allowing highly specific searches of

distributed data sources. The tasks supported by Z39.50
are resource discovery, query, and retrieval and result
presentation. This standard has been extended to accom-
modate other types of data, in particular, geo-referenced
or geo-spatial data. The underlying data model has been
extended with GEO objects, and attribute sets have been
defined appropriately. We note that different applica-
tion domains are identified by different attribute sets in
7.39.50.

More recently, metadata standards such as the Dublin
Core and WebDAV [DC, Web] have been proposed in
order to facilitate resource discovery for document-like
objects. Current efforts are being made for the represen-
tation of Dublin Core metadata through metadata stan-
dard exchange formats such as RDF [RDF99], which is
an extension of XML. WebDAV (Web Distributed Au-
thoring and Versioning) protocol is an Internet standard
and defines metadata (called “properties” in the proto-
col). The WebDAV Working Group is also investigating
DASL (DAV Searching and locating). WS aims to com-
plement these document-centric systems by proposing a
metadata-based infrastructure supporting location and
access to structured data.

A number of distributed searching protocols for direc-
tory information such as LDAP and whois++ [How95,
Who96] have been proposed. The content-based source
selection features exhibited by these systems are simi-
lar in purpose with those present in WS, although they
are supported in different ways. The whois++ system
for example, maintains a hierarchical collection of cen-
troids (lists of words extracted from the textual fields
in the sources). Our current architecture is based on a
centralized store which provides an index into sources
that have been discovered and registered in the catalog.
This approach to catalog construction using the source
discovery language is at the expense of scalability. This
issue will be addressed in future work.

Distributed information retrieval systems, for exam-
ple the Harvest/Essence information retrieval based sys-
tem [B195] are also related to our work. Essence is a
customizable information extraction system that is used
to extract and structure mostly textual information from
documents in Harvest. It exploits the formats of common
file types and extracts contents of files. The result is a
summary object (a SOIF record) [SOI]. Collections of
SOIF records are indexed and organized into brokers, a
kind of mediator. Brokers provide information retrieval
search on their associated SOIF records. The informa-
tion stored in SOIF records is similar to the metadata
about sources maintained by WS catalogs. One differ-
ence is that WS stores connection information for the
source, including the location of the source and the type
of wrapper. Thus WS can contact discovered sources to
obtain metadata, if the source supports a query capabil-
ity.

There are several other projects that deal with scal-
ing to large numbers of resources. InfoSleuth [B*97] pro-
poses information brokering and domain ontologies as
two ways to handle data sources. We believe that do-
main ontologies are a promising extension to the cat-
alog server, since they provide a way to structure do-

10

main information (types). The Diorama project devel-
ops a methodology and toolkits for intelligent integra-
tion and access of heterogeneous information sources in
enterprise-wide networking environments. The Diorama
system consists of several components that extract prop-
erties from unstructured data or collect data through
other information brokers/mediators, and dynamically
convert and assemble gathered information into DIOM
objects. The WS uses existing wrapper technology to
connect to sources and uses WWW documents to pub-
lish locations of components. To summarize, our contri-
bution is the design of a query language to discover and
access data sources.

7 Conclusion

We have presented a system, WebSemantics, that pro-
vides an infrastructure for describing and locating sources
containing structured data on the Internet. The system
consists of a multi-layered architecture of interdependent
components. The Data Source Layer contains sources,
which contain data stored in either an active reposi-
tory (such as a DBMS) or a passive collection of files.
It also contains wrappers, which are software compo-
nents that isolate the differences in query capabilities
and data exchange formats between data sources. To fa-
cilitate the publication of data sources we propose the
use of WS-XML documents in the WWW Layer, pro-
viding data source connection information (data source
and wrapper information), a textual description of the
data source content, and type and domain metadata.
This provides an easy way to publish sources and allows
the use of information retrieval techniques for the loca-
tion of relevant data sources. The third layer, the Catalog
Layer, consists of catalogs, which are specialized reposi-
tories storing metadata about data sources. Finally, the
Query Processing Layer provides a query processor to
select sources based on the published metadata.

We defined a declarative query language, WSQL,
which facilitates the discovery and registration of data
sources in catalogs. It has features to query the metadata
in the catalogs to select sources. We then defined an al-
gebra to express each WSQL query as an evaluable tree
of operators. Finally, we described the current status of
our prototype implementation of the WS system.

We now summarize the limitations of our current pro-
totype.

Our current prototype does not support catalog main-
tenance as sources change over time. It also does not ad-
dress the important issue of access control. The right to
register/delete sources should be restricted to authorized
users. These factors affect scalability.

The current catalog computes the active domain of
a newly registered source by executing data extraction
queries on these sources. Of course, this is only possible
for sources with full query capabilities. For sources with
limited query capabilities, we assume the domains are
provided by the data publisher, in the WS-XML file that
describes the source.

George A. Mihaila, Louiga Raschid, and Anthony Tomasic

We are currently operating on the assumption of a
single catalog. This catalog can be extended in future
work so that catalogs can reference each other. This
would require an extension to the semantics of the query
language. The principal advantage would be that cata-
logs could be “crawled” in a way similar to the crawling
of WWW pages. At the same time, we will explore dis-
tributed information retrieval and indexing strategies, to
build a searchable index of all WS-XML documents on
the WWW.

Finally, we expect to extend the prototype to handle
quality metadata. This metadata goes beyond domain
information to describe the quality of a source, e.g., when
was the contents of a source last updated, or what is the
granularity of the measurements in the source.

References

[ACPS96] S. Adali, K. S. Candan, Y. Papakonstantinou, and
V. S. Subrahmaniam. Query caching and optimization in dis-
tributed mediator systems. In Proceedings of the ACM SIG-
MOD’96, pages 137-148, 1996.

[AQM197] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. Wiener. The lorel query language for semistructured data.
In International Journal on Digital Libraries 1(1):68-88,1997.

[Bt95] C. Bowman et al. The Harvest information discovery
and access system. Computer Networks and ISDN Systems,
28:119-125, 1995.

[B197] B. Bohrer et al. Infosleuth: Semantic integration of infor-
mation in open and dynamic environments. In Proceedings of
the ACM International Conference on Management of Data
(SIGMOD), pages 195-206, 1997.

[Ct95] M. Carey et al. Towards heterogeneous multimedia infor-
mation systems: the Garlic approach. Technical report, IBM
Almaden Research, 1995.

[Ct96] R.G.G. Cattell et al. The Object Database Standard -
ODMG 93, Release 1.2. Morgan Kaufmann, 1996.

[CACS94] V. Christophides,S. Abiteboul, S. Cluet, and M. Scholl.
From structured documents to novel query facilities. In Proc.
ACM SIGMOD’94, pages 313-324, 1994.

[CHSt95] Michael. J. Carey, Laura M. Haas, Peter M. Schwarz,
Manish Arya, William F. Cody, R. Fagin, M. Flickner, A. W.
Luniewski, W. Niblack, D. Petkovic, John Thomas, J. H.
Williams, and Edward L. Wimmers. Towards heterogeneous
multimedia information systems: The Garlic approach. In Re-
search Issues in Data Engineering, pages 124-131, Los Alami-
tos, Ca., USA, March 1995. IEEE Computer Society Press.

[DC] Dublin core metadata initiative.
http://purl.org/DC.

[FMLS99] D. Florescu, A. Manolescu, A. Levy, and D. Suciu.
Query optimization in the presence of limited access patterns.
In Proceedings of the ACM SIGMOD Conference, 1999.

[Fra97] Michael J. Franklin, editor. SIGMOD Record, volume 26,
March 1997. Special Section on Environmental Information
Systems.

[G196] G. Gardarin et al. IRO-DB: A distributed system federat-
ing object and relational databases. In O.A. Bukhres and A K.
Elmagarmid, editors, Object-Oriented Multidatabase Systems
: A solution for Advanced Applications. Prentice Hall, 1996.

[GHC] The global historical climatology network (GHCN).

http://www.ncdc.noaa.gov/ol/climate/research/ghcn/ghcn html.

[GM*95] H. Garcia-Molina et al. Integrating and accessing het-
erogeneous information sources in TSIMMIS. In Proceedings
of the AAAT Symposium on Information Gathering, pages 61—
64, Stanford, California, March 1995.

Locating and Accessing Data Repositories with WebSemantics

[GMW99] R. Goldman, J. McHugh, and J. Widom. From
semistructured data to xml: Migrating the lore data model
and query language. In Proc. of the 2nd Intl. Workshop on
the Web and Databases (WebDB ’99), 1999.

[GPC] Global precipitation climatology centre (GPCC).
http://www.dwd.de/research/gpcc/.

[Gra93] G. Graefe. Query evaluation techniques for large
databases. ACM Computing Surveys, 25(2), june 1993.

[GRVB98] Jean-Robert Gruser, Louiga Raschid, Maria Esther Vi-
dal, and Laura Bright. Wrapper generation for web accessible
data sources. In CoopIS’98, pages 14-23, New York, NY, Au-
gust 1998.

[How95] Timothy A. Howes. The lightweight directory access pro-
tocol: X.500 lite. Technical report, University of Michigan,
July 1995.

[KLSS95] T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava. The
Information Manifold. In Proc. of the AAAI Spring Sympo-
stum on Information Gathering in Distributed Heterogeneous
Environments, Stanford, CA, March 1995.

[KS95] D. Konopnicki and O. Shmueli. W3QS: A query system
for the World Wide Web. In Proceedings of VLDB’95, pages
54-65, 1995.

[Lyn91] Clifford A. Lynch. The z39.50 information retrieval proto-
col: An overview and status report. Computer Communication
Review, 21(1):58-70, 1991.

[MCF97] Meta Content Framework using XML, June 1997.
http://www.w3.org/TR/NOTE-MCF-XML.

[Mih00] George Andrei Mihaila. Publishing, Locating, and Query-
ing Networked Information Sources. PhD thesis, University of
Toronto, September 2000.

[MMM97] A. O. Mendelzon, G. A. Mihaila, and T. Milo. Querying
the World Wide Web. Journal of Digital Libraries, 1(1):68-88,
1997.

[MRT98] George Mihaila, Louiga Raschid, and Anthony Tomasic.
Equal Time for Data on the Internet with WebSemantics. In
Proceedings of the 6th International Conference on Eztending
Database Technology (EDBT), pages 87-101, Valencia, Spain,
March 1998.

[MW95] A. O.Mendelzon and P. T. Wood. Finding regular simple
paths in graph databases. SIAM J. Comp., 24(6):1235-1258,
1995.

[NGD] National geophysical data centre (NGDC).
http://ngdc.noaa.gov/.

[Ora] Oracle home page.
http://www.oracle.com.

[P196] Y. Papakonstantinou et al. Capabilities-based query
rewriting in mediator systems. In Proceedings of PDIS’96,
1996.

[QRS195] D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, and
J. Widom. Querying semistructured heterogeneous informa-
tion. In Deductive and Object-Oriented Databases, Proceed-
ings of the DOOD ’95 Conference, pages 319-344, Singapore,
1995. Springer.

[R*89] M. Rusinkiewicz et al. Query processing in a heteroge-
neous multidatabase environment. In Proceedings of the IEEE
Symposium on Parallel and Distributed Processing, 1989.

[RDF99] Resource Description Framework (RDF), March 1999.
http://www.w3.org/RDF/.

[RMI] Java(tm) Remote Method Invocation (RMI).
http:/ /java.sun.com/products/jdk /rmi/.

[SM] Sun Microsystems. The JDBC(tm) database access API.
http:/ /splash.javasoft.com/jdbc.

[SOI] The summary object interchange format (soif).
http:/ /harvest.transarc.com/Harvest/brokers/soifhelp.html.

[TRV96] A. Tomasic, L. Raschid, and P. Valduriez. Scaling het-
erogeneous databases and the design of DISCO. In Proceeding
of ICDCS’96, 1996.

[Vidoo] M.E. Vidal. A Mediator for Scaling up to Multiple Au-
tonomous Distributed Information Sources. PhD thesis, Uni-
versity Simén Bolivar, Venezuela, 2000.

11

[VP97] V. Vassalos and Y. Papakonstantinou. Describing and us-
ing query capabilities of heterogeneous sources. In Proc. of
VLDB’97, pages 256-265, 1997.

[WDC] World data centre for greenhouse gases (WDCGG).
http:/ /jcdc.kishou.go.jp/wdcgg.html.

[Web] World wide web distributed authoring and versioning home
page.
http://www.ics.uci.edu/ ejw/authoring/.

[Who96] The NSF Whois++ testbed project, March 1996.
http://www.ucdavis.edu/whoisplus/.

[WID97] Web Interface Definition Language (WIDL), 1997.
http://www.webMethods.com.

[Wie92] G. Wiederhold. Mediators in the architecture of future
information systems. Computer, 25(3):38—49, March 1992.

[XML96] Extensible Markup Language (XML), November 1996.
http://www.w3.org/XML.

[XS00] XML Schema (W3C working draft), February 2000.
http://www.w3.org/TR/xmlschema-0.

[Z39] Library of congress maintenance agency page for interna-
tional standard z39.50.
http://lcweb.loc.gov/z3950/ agency /agency.html.

12

A A DTD for the WS-XML document format

<!DOCTYPE ws [

1>

<!-— The root element —->
<VELEMENT ws (source)+>

<!-- A data source description ——>
<VELEMENT source (sci, metadata, desc)>

<!-- The source connection information —->
<!ELEMENT sci (wrapper, repository)>

<!-- The type of wrapper required to access
this source -->
<!ELEMENT wrapper EMPTY>
<VATTLIST wrapper
wtype CDATA #REQUIRED>

<!-- The type and location of
the data source -—>
<!'ELEMENT repository EMPTY>
<VATTLIST repository
rtype CDATA #REQUIRED
rlocation CDATA #REQUIRED>

<!-- Metadata for the source: which shared schema
it conforms to and which are the data types
available in the source ——>

<!ELEMENT metadata (schema, type+)>

<!-- The URL of the XML-Data document describing
the shared schema -->
<!ELEMENT schema (#PCDAT4)>

<!-- The name of a relational type from the shared
schema. Optionally, one can also include
domain information for selected attributes -->
<!ELEMENT type (domain*)>
<VATTLIST type
name CDATA #REQUIRED>

<!-- Domain of an attribute —->

<!ELEMENT domain EMPTY>

<!ATTLIST domain
attr CDATA #REQUIRED
domtype (enumeration | range)
values CDATA #IMPLIED
minvalue CDATA #IMPLIED
maxvalue CDATA #IMPLIED>

<!-- An English description of
the source’s content ——>
<VELEMENT desc (#PCDATA)>

This article was processed by the author using the INTRX style file
cljour2 from Springer-Verlag.

George A. Mihaila, Louiga Raschid, and Anthony Tomasic

