
XML/DBC: A Standard API for Access to XML Repositories and Mediators
Invited Panel, 2nd Workshop on Data Integration over the Web (DIWEB’02)

Anthony Tomasic
 tomasic@e-xmlmedia.com

Introduction
The XML marketplace recently has witnessed a rapid growth in the number of XML
repositories and mediators [W98] based on XQuery and XPath. In addition to a
specification for the query language, a uniform API for the access to repositories,
mediators, and wrappers is needed to insure interoperability of these products from
different vendors. This paper proposes XML/DBC [XML/DBC] as an API for access to
XQuery and XPath based XML repositories, mediators and wrappers. The API comes in
both a Java class library form and in a WSDL Web Services form. XML/DBC is intended
to cover multiple different repository and mediator technologies [XML:DB]. See
http://www.e-xmlmedia.com/xmldbc.html for complete details.

Repository Creation
The XML/DBC API provides a repository abstraction as a collection of XML collections.
Thus a repository can create, delete, etc. collections. The following call sequence creates
a new collection in the repository using a default configuration (cf. Metadata below).

 XMLRepository repository = new Repository(…);
 XMLCollection collection = repository.createCollection("auction",
 "An Auction Collection", new XMLConfiguration());

Updates
Once a collection exists, documents are inserted into it. The simplest method provides
and identifier and the XML document as a JAXP org.xml.sax.InputSource object.

 collection.insertDocument("auction0", new InputSource("auction.xml"));

To access this document, the JAXP interface uses the XML Schema described in the
auction.xml document to automatically construct a SAX parser. The result of this method
is the insertion of a document into the collection and thus into the repository.

Queries
A straightforward interface, derived from the JDBC standard, provides query access. The
data model consists of a single root note with a child for each collection. Each child
collection is the sequence of documents in that collection. This one level of indirection
permits queries to easily span multiple repositories.

In this example a repository connection is acquired and a statement generated that accepts
XPath queries. The query is executed on the statement and a boolean result is returned.
Since the result set generally is not an XML document, support is provided for creation of
a legal document from the node sequence that is the result of an XPath expression. The
XML document is then converted into a DOM document. (SAX support is also
available.) The result of execution is the auction.xml document.

 XMLConnection xc = repository.getXMLConnection();
 XMLStatement xs = xc.createStatement(XPATH_QUERY_TYPE);
 boolean result = xs.execute("/auction");
 if (result) {
 XMLResultSet xrs = xs.getResultSet();
 XMLDocument xd = xrs.getAs XMLDocument("namespace",
 "localname", "qualifiedname", "root");
 Document d = xd.getAsDOM();
 }

Mediators
Mediators use the same abstractions as repositories from the XML/DBC API. A data
source is interpreted to be an XML collection. In this example, the interface XMLMediator
shares the same interface as the repository. The parameters supplied to configuration are
sufficient for a wrapper to attach to the mediator. For example, in the case of a relational
database the configuration arguments would include a JDBC connect string, login name
and password.

 XMLMediator mediator = new Mediator(…);
 XMLConfiguration xc = new Configuration(…);
 XMLCollection collection = mediator.createCollection("auction",
 "An Auction Co llection", xc);

Subsequently, all the above examples execute in the same way with the Mediator as with
the Repository. However, some collections may not accept updates. To handle this issue
and others, metadata describes the properties of collections.

Metadata
Since collections correspond to data sources in mediators and wrappers are used to
implement data sources, metadata implicitly describes the properties of a wrapper and its
data source. A predefined set of metadata properties permits the data source to easily
declare support for various common cases, such as support for XQueries, XPaths,
updates, multiple collections, etc. A getSchemaNamespaces method returns a list of name
spaces, and for each name space, a getSchema method returns the schema for that name
space. A getCapabilities method returns a description of the query capabili ties
[TRV98] of a data source. The exact definition is still open but our goal is to provide a
capabili ty language so that JCA, WSDL, IMS, HTTP and other standards can be easily
integrated as data sources. Finally, note that mediators themselves have metadata and
thus are also wrappers for other mediators.

References
[TRV98] Anthony Tomasic, Louiqa Raschid, Patrick Validuriez, “Scaling Access to
Heterogeneous Databases with DISCO," in IEEE Transactions on Knowledge and Data
Engineering, 10(5), 1998.
[W98] Gio Wiederhold, “Mediators in the Architecture of Future Information Systems,” IEEE
Computer 25(3): 38-49, 1992.
[XML/DBC] Arnaud Witschger, Anthony Tomasic, “E-XMLMedia XML/DBC API Proposal,”
draft unpublished manuscript, 2002. See http://www.e-xmlmedia.com/xmldbc.html
[XML:DB] XML Database API Project. See http://www.xmldb.org/

