On the Evaluation of Symmetric Publish/Subscribe

Anthony Tomasic
Carnegie Mellon University
Institute for Software
Research International
Pittsburgh, PA 15213, USA

tomasic@cs.cmu.edu

ABSTRACT

Traditional publish / subscribe systems offer a range of ex-
pressive subscription languages for constraints, but restrict
the publish operation to be a single published object that
contains only constants and no constraints. We have intro-
duced a novel generalization of publish / subscribe called
symmetric publish / subscribe where both publications and
subscriptions contain constraints in addition to constants,
and published objects are matched to subscriptions by com-
puting the intersection of their constraints. This paper de-
scribes the challenge of empirically evaluating symmetric
publish / subscribe, a system for which traditional pub-
lish / subscribe benchmarking and evaluation tools do not
completely apply. We introduce a number of workloads de-
signed to elucidate the performance issues in our implemen-
tation, discuss the advantages and disadvantages of our eval-
uation methodology, and discuss how our experience gener-
alizes to the evaluation of other novel publish / subscribe
and database systems for which no established evaluation
methodology exists.

1. INTRODUCTION

Current publish / subscribe systems support two key op-
erations. The subscribe operation allows a client to register
a subscription that contains a constraint. The publish op-
eration allows a client to send a message to all clients whose
constraints match a published object. Constraint languages
for the subscribe operation include atomic matching (many
are listed in [13]), comparison predicates over sets of at-
tribute/value pairs [25], XPath expressions over XML doc-
uments [1], and vector space matches on documents [26]. In
all of these systems, clients may only publish objects with
fixed constants.

Symmetric publish / subscribe allows both publications
and subscriptions to consist of constraints. Matches between
publications and subscriptions are determined by computing
the intersection of publication constraints with subscription
constraints. This generalization leads to higher expressive

Permission to make digital or hard copies of all or part o§ tiork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyooiherwise, to
republish, to post on servers or to redistribute to listguiees prior specific
permission and/or a fee.

Proceedings of EXPDB 2006, June 30, 2006, Chicago, Illinois,
USA

Copyright 2006 ACM 1-59593-463-4/06/200655.00.

Charles Garrod
Carnegie Mellon University
Computer Science
Department
Pittsburgh, PA 15213, USA

charlie@cs.cmu.edu

Kris Popendorf
Carnegie Mellon University
Computer Science
Department
Pittsburgh, PA 15213, USA

Krisp@cs.cmu.edu

power than classical publish / subscribe systems where pub-
lications consists only of constants, not constraints. The sys-
tem is analogous to constraint databases [3, 4, 5, 20] which
provide query processing over constraints.

To better understand symmetric publish / subscribe, con-
sider an auction system. In this application domain of sym-
metric publish / subscribe, a seller of merchandise typically
offers a range of options to buyers. In particular, pricing
discounts often vary depending on the size of an order (lot
size). Buyers are interested in simultaneously expressing
price upper bounds and lot size ranges.

In a typical classical publish / subscribe system such as
the Java Messaging System (JMS), an example auction im-
plementation might assign sellers as publishers and buyers
as subscribers. The seller publishes a lot size and price on
a topic (channel) that represents a product category. The
publication is a set of attribute/value pairs. For example,
the publication “topic = ‘pencils’ AND lot_lower = 1000
AND lot_upper = 10000 AND price = 1.00” represents an
offer to sell a lot of pencils.

Symmetric publish / subscribe enables the seller to ex-
press such an offer directly as a publication constraint and
matches buyers’ and sellers’ constraints directly. In this
case the additional expressive power of symmetric / pub-
lish subscribe allows the seller to describe the offer more
naturally as “topic = ‘pencils’ AND 1000 < lot < 10000
AND price = 1.00.”

Our previous work [23] is the first known investigation of
symmetric publish / subscribe systems. That paper pre-
sented a preliminary investigation by reporting analytical
and experimental results on several basic questions, e.g.,
the impact of the complexity of the constraint language, the
performance penalty of symmetric publish / subscribe verses
classical publish / subscribe, etc. In this paper, we describe
the system of [23] and discuss the evaluation methodology
used in that paper.

Section 2 describes symmetric publish / subscribe detail
and Section 3 describes the design of of the system in more
detail. These two sections are mostly reproduced from [23]
as a convenience to the reader. Section 4 discusses the an-
alytical and experimental results of [23] and discusses the
advantages and limitations of those results. Section 5 eval-
uates the experimental evaluation according to the criteria
described in [19, Chapter 2]. Section 6 surveys related work
and Section 7 concludes the paper with a discussion of future
benchmark work.

2. SYMMETRIC PUBLISH / SUBSCRIBE

A symmetric publish / subscribe system consists of:
o A schemaof a set of attributes A = {a1...a4)}.
e A set of comparison operators, O = {o1...0/0|}.

o A set of types T = {t1...t;7} and an associated do-
main of values Dy, = {d1 ...d|p|} for each type ;.

e An assignment of a type to each attribute.

A set of clients K.

A set of constraints C' = {c1...¢|¢|}. Each constraint
is a pair (k,e) of a client k € K and a boolean expres-
sion e. e is composed of the conjunction, disjunction,
and negation of predicates p € P, where P is set of
type-safe predicates of the form a;0;v; where a; € A,
0; € O, and v; € D. Each attribute must appear
at most once in each disjunctive phrase within a con-
straint.

e A set of four functions:

void publish(c, k): C x K — woid is a client func-
tion that publishes the constraint ¢ of client k.

handle subscribe(c, k): C x K — handle is a client
function that adds the subscription c¢ for client k
and returns a handle to manage notifications.

pairset match(C1, C2): C x C — C x C is a server
function that computes the match of constraint
sets (publishers) C1 and (subscribers) Ca. A match
is a subset of C' x C.

message notify(pairset): K x K — message isa
server function that notifies pairs of clients (k1, k2)
as determined by the match function.

The schema defines an underlying data model of attribute-
value pairs. Each attribute has a single type of integer, float,
date, string, point, region, etc. For example, {(x, integer),
(y, float), (thing, string)} is a schema (that is, an instance
of the data model) with three attributes and three differ-
ent types. Publisher and subscriber constraints are type-
checked against the corresponding type.

Publisher and subscriber constraints are conjunctions of
comparison predicates where an attribute is compared to a
constant. For example, a subscriber constraint may be “x >
5 AND y < 5.5 AND thing = ‘squirrel’”. This constraint
is also a legal publisher constraint. In fact, any constraint
can be either a publisher or subscriber constraint; However,
the interpretation of the constraint depends on its role as a
published constraint or a subscription, as described at the
end of this section.

In addition, each constraint may reference a variable only
once per disjunctive clause. Thus, redundant constraints
such as “z < 1 AND z < 3”, tautologically false constraints
such as “z < 1 AND z > 37, and complex constraints such
as “r < 1 AND x # 0" are disallowed. Range expressions
such as “x > 1 AND x < 3” are explicitly supported with
the range operators for each type. For example, for integers
there are four range operators covering the four cases of open
or closed intervals: (-,-), (+,+], [,-), and [+, -]

Constraints describe point-sets [20], the (possibly infinite)
set of points that satisfy the constraint. Thus, the constraint

0 <z <1AND O < y < 1, where z and y are floats,
describes the set of all points of a unit square anchored at
the origin. No type conversion is allowed; every value must
be of the type of the attribute in a given predicate.

The match operation determines the set of publisher con-
straints that intersect subscriber constraints. A publisher
constraint intersects a subscriber constraint if the point-set
of a publication constraint intersects the projections of the
point-set of the subscriber constraint. The constraint c;
defined as “x = 1”7 contains the single value (1). The con-
straint co defined as “z = 1 AND y = 1”7 has the point set
containing the single point (1,1). The projection of c2 onto
c1 is (1). The projection of ¢; onto ¢z is undefined. If ¢; is a
publisher constraint and c» is a subscriber constraint, then
the constraints match because the publisher point-set of (1)
intersects projection subscriber point-set of (1,1). However,
the opposite does not hold. If c2 is a publisher constraint,
then subscription ¢; does not match. Another consequence
of the definition of matching is the treatment of half spaces.
Consider the class of constraints ¢; = x < ¢ and c2 =z < j,
where ¢ and j are integers. These two constraints match
regardless of the association with publisher constraint or
subscriber constraint, and regardless of the particular in-
stantiated values of ¢ and j.

3. ARCHITECTURE

Our previous work [23] showed that the system can be
efficiently implemented as an application program executing
transactions on a relational database management system
(DBMS). The publish, subscribe, and match functions are
implemented as application code that executes transactions
on the database. The paper did not experimentally analyze
the notify function.

3.1 Constraint Publication and Subscription

Data for each publication is stored in a publication rela-
tion, which for efficiency is partitioned by data type. For
example, if the system supported constraints over integer,
float and string types the database would contain the rela-
tions integer_pubs, float_pubs, and string_pubs.

The publish operation takes a constraint C as input and
converts C into an equivalent constraint C’ that is in dis-
junctive normal form. Negated atomic predicates are con-
verted to equivalent predicates in a non-negated form if pos-
sible, and otherwise an error condition is returned to the
publishing client (eg. “NOT integer x < 2” would be con-
verted to “integer x > 2”). For each disjunct in C’ a tuple
(p-id, p_disjunct_id, count) is inserted into a pub_master ta-
ble which records the number of atomic predicates in the
conjunctive clause of that disjunct. For each atomic predi-
cate in C" a tuple (p_id, p-disjunct_id, field,value, operator)
is inserted to the appropriate type_pubs table, where p_id is
the unique identifier assigned to constraint C and attribute
p_disjunct_id specifies in which disjunct the atomic predi-
cate occurs. The subscribe operation similarly takes a con-
straint as input and inserts such tuples into sub_master and
type_subs tables. Essentially, the constraint is encoded into
the relation by reifying the variables and embedding the val-
ues, and operators.

For example, consider a symmetric publish / subscribe
system that implements less-than and equality over integers.
The subscription constraints “z < 6 AND y = 3” and “z < 4
AND y < 2”7 generate the relation shown in Figure 1.

sid | s_disjunct.id | field | val | op
1 0 X 6 | <
1 0 y 3 | =
2 0 X 4 | <
2 0 y 2 | <

Figure 1: Example instance of a subscription table,

integer_subs

p-d | p_disjunct_id | field | val | op
3 0 X 5 | <

Figure 2: Example instance of a publication table,
integer_pubs

Similarly, the publication constraint “r < 5 AND y =17
generates the relation shown in Figure 2.

3.2 Constraint Matching

A summary of the match operation is as follows. To com-
pute the constraint intersections a query is issued for each
possible pair of operators and type, grouped by pair of pub-
lish and subscribe constraint and disjunct identifiers. The
query counts the number of matching conjuncts for the given
pair of operators for each field and inserts the results into an
intermediate answer table. An aggregate query is then ex-
ecuted over the intermediate answer table, determining the
total number of conjuncts that matched for each disjunct.
For each subscription disjunct this count is then compared
to the total number of conjuncts for each disjunct in the
pub_master table. If these counts are equal for a publi-
cation/subscription disjunct pair then the subscription and
publication match, and the result is recorded for the notify
function.

To improve the efficiency of matching, a multi-attribute
index of (id, disjunct_id) is declared for the pub_master
and sub_master tables. Similarly, a multi-attribute index of
(op, val) is declared for each type_pubs and type_subs ta-
ble where possible. For types where multi-attribute indexes
are not supported, single attribute indexes on op and val
are declared if possible.

Operators can be freely mixed between publication and

subscription constraints for a particular field /type pair. Range

and comparison operations on strings operate on the lexical
ordering.

3.21 Generating the intermediate answer table

For each possible combination of operators and types, the
system issues an explicit query that counts the satisfied in-
tersections for a particular field and subscription. The re-
sults of this sequence of queries are inserted into a temporary
table. Since operators can be freely mixed, a large number
of queries may be generated. A rule-based query generator

Constraint information Answer

p-id | p_disjunct_id | sid | s_disjunct_id | field | count
3 0 2 0 y 1
3 0 1 0 X 1
3 0 2 0 X 1

Figure 3: Example intermediate answer table

generates all possible combinations.

Each query in the sequence has the same general form. For
example, to generate matches between publications using in-
teger less-than and subscriptions using integer greater-than
the following query is issued:

INSERT INTO intermediate_answer
SELECT p_id, p_disjunct_id,
s_id, s_disjunct_id,
p.field, COUNT(p.field)
FROM integer_pubs p, integer_subs s
WHERE p.op = ’<’ AND s.op = ’>=’
AND p.field = s.field
AND p.val > s.val;
GROUP BY p_id, p_disjunct_id,
s_id, s_disjunct_id

Figure 3 shows the intermediate answer table that would
be generated for the example publication and subscription
above after all such queries are issued. In this example,
the first inserted row corresponds to the match of subscrip-
tion 2’s constraint “y < 2”7 with publication 3’s constraint
“y = 1.” The second row corresponds to the match of sub-
scription 1’s constraint “xz < 6” with publication 3’s con-
straint “r < 5,” while the third row corresponds to the
match of subscription 2’s constraint “x < 4”with publica-
tion 3’s constraint “x < 5.”

3.2.2 Counting the matches for each digunct within
the constraints

The intermediate answer table is then used to count the
total number of matches for each disjunct within a publi-
cation/subscription combination. If the number of matches
equals the number of conjuncts for some disjunct, then that
publication/subscription combination is notified. This query
is issued to compute the matching subscriptions from the in-
termediate answer table:

SELECT p_id , s_id
FROM intermediate_answer agg, pub_master pm
WHERE agg.p_id = pm.id
AND agg.p_disjunct_id = pm.disjunct_id
GROUP BY agg.field, agg.p_id, agg.p_disjunct_id,
agg.s_id, agg.s_disjunct_id, pm.count
HAVING sum(agg.count) = pm.count;

This query result is given to the notification system, which
then notifies the appropriate clients.

3.3 Design Alternatives

The above section describes just one choice in a spectrum
of design alternatives for the implementation of symmetric
publish / subscribe, and in particular the encoding of con-
straints. One option would single subscription and publica-
tion relations that could accommodate the variety of data
types. Since database schema definitions are well-typed,
such a relation would require a distinct attribute column for
each type (i.e., integer_val, float_val, etc.). The advantage
of this design option is the simplification of the implementa-
tion; the disadvantage is the sparse nature of the encoding
since each row of the table would contain mostly nulls.

Another option would be to avoid reification of variables
and map each subscription variable into its own relation,
eg. “x = 10” would be encoded into either a relation

subscription_integer_x or perhaps just subscription_x.
Such a choice has the advantage that matching constraints
for a particular variable would be highly optimized since
each variable is encoded as part of the schema, but the dis-
advantage of greatly increasing the number of queries that
must be executed to compute the match function. Addi-
tionally, such a design would require the schema to adapt
any time a new variable were introduced to the workload, a
frequent occurrence for many applications.

Our choice to partition the subscription and publication
tables by type is a compromise between these two extremes.
This design obtains dense storage of constraints without re-
quiring the explosive number of queries required to perform
matching and the frequently-evolving schema of the latter
alternative.

4. DISCUSSION OF EVALUATION

The evaluation methodology of [23] is based on the method-
ology described in [19, Section 2.2]. The goal of the evalu-
ation was to explore the fundamental algorithmic issues of
symmetric publish / subscribe. The goal implies a focus on
the core matching algorithm. The performance of notifica-
tion is clearly an important area of future work. Thus, the
definition of the system under study is limited to a client
workload generator and a server that processes the services
of the system.

The strongest evaluation of any new system consists of
both a collection of domain-specific benchmarks and syn-
thetic benchmarks. The domain-specific benchmarks demon-
strate the practicality of the system and the synthetic bench-
marks demonstrate the breadth of the system. However, a
review of DBMS benchmarks [17] did not reveal any im-
plementations of publish / subscribe systems on a DBMS.
Publish / subscribe benchmarks [7] provided some high level
information about workloads and metrics but the evaluation
of individual systems generally focused on the performance
of notification operations (through the use of multicast, in-
telligent routing, etc.) Auction benchmarks [2, 22| provide
a model for auctions, but these auctions were not complex
enough to include the example given in the introduction.
Thus, our search failed to turn up a benchmark that could
be appropriately modified to evaluate symmetric publish /
subscribe.

To work around these issues, [23] defined a synthetic set
of workloads and metrics that directly explored the perfor-
mance of the system.?

Metric selection posed little difficulty in the experimental
design. Response time and throughput were the metrics
chosen to match evaluation goals. Other metrics such as
reliability, price/performance, and total cost of ownership
may serve as future metrics.

The number of subscription constraints, the number of
conjuncts, the number of (batched) publication constraints
were the experimental factors studied. In addition, the ap-
plication code was run on both a disk resident DBMS and a
main memory DBMS. This experimental factor allowed the
paper to draw conclusions about memory performance.

In general, system evaluation ranges across a variety of
techniques: analytical results, queuing theory results, simu-

!These workloads and metrics are not a benchmark per
se, but they could be packaged as a collection of synthetic
micro-benchmarks.

lation (where software simulates all components), emulation
(where hardware implements part of the systems), to proto-
types. These techniques trade-off accuracy for effort.

In [23] both analytical and emulation performance mea-
surements were reported. The analytical section reports the
total worst-case time to compute all matches. In addition,
the paper shows that in practical circumstances, the system
operates in logarithmic time when processing a publication.
These analytic results are valuable since they focus on (a)
the interaction of the type system with operators and (b) a
key use of indexes during match computation. In addition,
these results are fairly independent of the particular details
of the performance of existing hardware and software com-
ponents. The emulation consisted of an implementation on
a DBMS. The emulation functionality was very close to an
actual prototype - only the notification functionality was
missing.

A principle problem in the emulation experimental evalu-
ation was the construction of synthetic workloads that pro-
duce reasonable result sizes for the number of matches and
thus the number of notifications issued. Consider four ex-
perimental factors of (a) number of publisher constraints
(1 or 100), (b) number of subscriber constraints (1,000 or
100,000), (c) number of variables (1 or 50), and (d) range
of operators (the single equality operator “=" or the set of
operators (=, #, <, £)). For the experimental workload of
100 publisher constraints, 100,000 subscriber constraints, 50
variables and equality comparisons, all constraints are of the
form var; = val; where i ranges from 1 to 50 and the distri-
bution of val; controls the result size. Uniformly selecting
val; from 1 to the number of subscribers will generate an
expected result size of 2. However, consider the experimen-
tal workload with the inequality operator. No reasonable
selection of val; exists in this case, since many constraints
are of the form wal; # val;. The result size in this case will
approach #publishers - #subscribers - operators/variables.
This result size is unrealistically large.

To control for this problem, a variety of carefully crafted
workloads were defined. These workloads explore the per-
formance of the system as the number of publisher and sub-
scriber constraints varies. The fized workload has a con-
stant result size independent of the number of subscribers.
This workload models the case where new subscriber con-
straints are relatively independent from existing publisher
constraints. The proportional workload has a result size that
grows in linear proportion to the number of subscriber con-
straints. This workload models the case of a linear depen-
dency between existing publisher constraints and new sub-
scriber constraints. The large-intermediate-results workload
explores the case where the intermediate result size grows
with the number of subscription constraints, but the final
result size is constant. This workload tests the performance
of the intermediate result size generation step of the method.
Finally, the fized-geometric workload produces a fixed size
result independent of the number of subscribers, but it is
based on geometric types instead of primitive types. This
workload tests the dependence of the system on geometric
types to implement range constraints.

Each experiment essentially explores the modification of
a single factor while holding other factors constant. Thus,
the impact of a few factors is explored.

The experiments results measured response time perfor-
mance for all workloads as the number of subscription con-

straints scaled. This experiment demonstrated the impact of
the optimizer on performance. As the number of subscrip-
tion constraints grows, the optimizer successfully changes
its plan to accommodate a shift in costs. The response time
as the number of publication constraints are batched was
also measured. In this latter case, the optimizer does not
successfully accommodate the shift in costs and generates a
poor plan.

5. EVALUATION OF EVALUATION

To systematically evaluate the evaluation described in [23],
we qualitatively evaluated the paper based on a checklist of
23 common mistakes in performance evaluation [19, page
22]. This section lists the results of qualitative evaluation.

Although the goals of the performance evaluation were
stated relatively clearly in [23], in some cases the paper left
them as implicit and did not clearly state them. For exam-
ple, the paper does not precisely define response time as the
round trip time between the client machine and the server
machine.

While the chosen workloads represented a variety of work-
load characteristics, the workloads were not based on the
characteristics of an existing application or benchmark.

The use of two evaluation techniques for the paper provide
an unusually broad set of results. Thus, we disagree with a
reviewer of a previous version of [23] that stated “The anal-
ysis of Section 4 is meaningless to me. All that matters here
are the timing numbers - especially in comparison with ex-
isting pub/sub systems.” Precise measurements are valuable
for a variety of reasons but analytical results concisely state
the factors that have the largest impact on performance.

Since the implementation of [23] utilizes a complex DBMS
as an underlying platform, there are a large number of po-
tential parameters and factors that could be used in our
experimental design. However, our experimental design was
based almost solely on the characteristics of the publish /
subscribe system and its workload, not based on the DBMS
itself (since our goal was not to evaluate the DBMS).

Choosing the correct experimental factors is difficult be-
cause of the broad range of reported response times (from
sub-second responses to tens of seconds). When measuring
sub-second response time, parameters such as the network
performance between the client and server or the perfor-
mance of the database driver have a large impact on re-
sponse time. However these parameters are irrelevant when
the server processing time exceeds a few seconds.

The design did not perform a 2* factor analysis but skipped
directly to a detailed exploration to a few key parts of the
experimental space.

With respect to the level of analysis, no tests for statistical
significance were reported. However, the broad outline of
results reported are all clearly statistically significant. Since
the performance of the system was fundamentally related
to the performance of the DBMS, a sensitivity analysis of
the various parameters of the DBMS, such as the size of the
buffer pool, etc. would reveal additional issues. One strong
point of the analysis is the considerable time and effort spent
on tracking down non-linear behavior in the reported results.

In summary, the evaluation described is [23] conforms
to the current standard of performance evaluation in the
database literature. Two areas for improvement are the
study of variance in metrics and the introduction of a sen-
sitivity analysis. Finally, the reproducibility of scientific re-

sults is a desirable goal and the paper carefully documents
all aspects of the system and its evaluation. However, the
testing of the claim of reproducibility would require an eval-
uation by an independent team of developers.

6. RELATED WORK

A general survey of publish / subscribe appears in [13].
This survey covers many distributed computing issues but
does not cover content-based matching in depth, nor does
it discuss the evaluation of publish / subscribe systems.
Carzaniga and Wolf [7] describe in depth a list of model
parameters and factors to consider when modeling publica-
tion records and subscription constraints.

The theory of constraint databases is outlined in Kanel-
lakis et al. [20]. The particular class of constraints permit-
ted in this paper does not directly map to the taxonomy of
that paper since this system is based on operators. How-
ever, both papers use point-set constraints and overlapping
subclasses of constraints. In particular, Kanellakis et al.
describe the connection between constraint representation
and spatial data structures. The work lists many analytical
results.

CCUBE [4, 5] is a constraint database that combines
database technology with in-memory linear constraint eval-
uation (via Simplex). LyriC [3] is the associated query lan-
guage and object model. The overlap between symmetric
publish / subscribe and constraint database functionality is
an area of ongoing research.

Many works are concerned with aggregating subscriptions
in classical publish / subscribe systems for more efficient
content-based processing. Miihl [21] describes an algorithm
for merging subscription constraints based on identical con-
juncts. This paper does not contain a performance evalua-
tion. Crespo et al. [9] explore optimization algorithms and
cost models for subscription aggregation in a multicast en-
vironment. The paper includes a detailed performance eval-
uation featuring sensitivity analysis and price/performance
computations.

The method of counting matched field and value pairs
is similar to Yan and Garcia’s [25] counting method for
Boolean selective dissemination of information profiles. The
technique of counting matched conjuncts appears in many
works. The performance analysis is based on a mix of analyt-
ical and simulation results. Conjunctive predicate counting
augmented with cache line analysis and other techniques is
described in [14].

Our method of embedding multiple different types for
a single generic value into a relation is similar to that of
Yalamanchi, Srinivasan and Gawlick [24]. This work also
describes a powerful generalization where expressions are
treated as data and the evaluation of expressions can be
combined with standard SQL processing. However, they do
not appear to reify constraints, a key issue in the choice
of a representation, nor do they use indexes, a key issue in
performance.

Franklin et al. [1, 10, 12, 11] introduced and explored a
method of compiling subscriptions into an in-memory finite
state machine (FSM). The finite state machine represents
common path prefixes of different subscriptions only once,
thus providing a form of common sub-expression elimina-
tion. Matching a published document with subscriptions is
implemented by traversing this FSM. The finite state ma-
chine methodology inspired several subsequent publications,

e.g. [18, 8].

Our previous work [23] is closely related to and inspired
by Fink, Johnson and Hu’s work [15] on an auction system
that matches buy and sell orders. While auction systems
and publish / subscribe systems differ in many details, they
share some fundamental questions, such as index construc-
tion and its relationship to the complexity of the match op-
eration. Fink et al. combine all constraints into a single
large index. Each node of the index corresponds to a con-
straint attribute. Constructing this index requires choosing
an attribute order and thus introduces a bias into the in-
dex search. The system described here does not exhibit this
bias. However, auction systems and Fink et al. in particular
compute the best match between a publisher and a set of
subscribers. This problem is an open area of research for
symmetric publish / subscribe.

Independently of our work, Fischer and Kossmann [16]
analyze a variety of strategies for batching publications for
the classical publish / subscribe case. Our batching results
confirm that batching is an effective strategy for the sym-
metric publish / subscribe case. The various other strategies
described by Fischer and Kossman probably apply.

Our previous work is similar in some respects to Chan-
drasekaran and Franklin’s work on stream queries and data [6]
that highly optimizes a particular transaction semantics of
publish / subscribe, with the addition of support of query
operations matches, maintenance of result sets, time win-
dows, etc. However, this work does not consider constraints
for publications.

7. CONCLUSION

Our previous work [23] is the first reported investigation
into symmetric publish / subscribe systems. These sys-
tems permit publications as well as subscriptions to express
constraints. The system computes the intersection of pub-
lisher constraints with subscriber constraints to determine
matches.

In this paper we discussed the evaluation performed in
our previous work and characterized its strengths and weak-
nesses. A major problem in our evaluation was that no
existing publish / subscribe benchmark was well-suited to
symmetric publish / subscribe, as all existing benchmarks
implemented applications that require only publication of
constants, not constraints as our system allows. Our evalu-
ation instead relied upon a collection of synthetic workloads
designed to mimic various properties of publishers and sub-
scriber constraints that may be used with symmetric publish
/ subscribe in practice. In constructing these workloads and
evaluating our system, we found that system performance
was heavily dependent on the size of intermediate results in
the computation of the publisher/subscriber matching algo-
rithm.

For future work in evaluation, the additional expressive
power of symmetric publish / subscribe provides a new area
of research and new possibilities for applications of pub-
lish / subscribe systems. For us, one ongoing problem is to
design and construct a benchmarking tool motivated by a
real-world application (such as an auction system) that fun-
damentally utilizes the full expressive power of symmetric
publish / subscribe.

8. ACKNOWLEDGMENTS

This material is based upon work supported by the De-
fense Advanced Research Projects Agency (DARPA) under
Contract No. NBCHC030029.

9. REFERENCES

[1] Mehmet Altinel and Michael J. Franklin. Efficient
filtering of XML documents for selective dissemination
of information. The VLDB Journal, pages 53—-64, 2000.

[2] Cristiana Amza, Emmanuel Cecchet, Anupam
Chanda, Alan Cox, Sameh Elnikety, Romer Gil, Julie
Marguerite, Karthick Rajamani, and Willy
Zwaenepoel. Specification and implementation of
dynamic web site benchmarks. In WWC-5: IEEE 5th
Annual Workshop on Workload Characterization,
2002.

[3] Alexander Brodsky and Yoram Kornatzky. The LyriC
language: Querying constraint objects. In SIGMOD
’95, 1995.

[4] Alexander Brodsky, Victor E. Segal, Jia Chen, and
Pavel A. Exarkhopoulo. The CCUBE constraint
object-oriented database system. Constraints,
2(3,4):245-279, December 1997.

[5] Alexander Brodsky, Victor E. Segal, Jia Chen, and
Pavel A. Exarkhopoulo. The CCUBE constraint
object-oriented database system. In Proceedings of
SIGMOD 1999, 1999.

[6] Sirish Candrasekaran and Michael J. Franklin.
Streaming quereies over streaming data. In VLDB,
2002.

[7] Antonio Carzaniga and Alexander L. Wolf. A
benchmark suite for distributed publish/subscribe
systems. Technical Report CU-CS-927-02, Department
of Computer Science, University of Colorado, 2002.

[8] Chee Yong Chan, Pascal Felber, Minos N. Garofalakis,
and Rajeev Rastogi. Efficient filtering of XML
documents with XPath expressions. In ICDE, 2002.

[9] Arturo Crespo, Orkut Buyukkokten, and Hector
Garcia-Molina. Query merging: Improving query
subscription processing in a multicast environment,
2003.

[10] Y. Diao, P. Fischer, M. Franklin, and R. To. YFilter:
Efficient and scalable filtering of XML documents. In
The 18th International Conference on Data
Engineering, pages 341-342, 2002.

[11] Y. Diao and M. Franklin. Query processing for
high-volume xml message brokering, 2003. Technical
Report, University of California, Berkeley,
http://citeseer.ist.psu.edu/diao03query.html.

[12] Yanlei Diao, Mehmet Altinel, Michael J. Franklin, Hao
Zhang, and Peter Fischer. Path sharing and predicate
evaluation for high-performance XML filtering. ACM
Trans. Database Syst., 28(4):467-516, 2003.

[13] Patrick Eugster, Pascal Felber, Rachid Guerraoui, and
Anne-Marie Kermarrec. The many faces of
publish /subscribe. ACM Computing Surveys,
35(2):114-131, 2003.

(14]

(15]

(16]

(17]

(19]

20]

Francoise Fabret, H. Arno Jacobsen, Francois Llirbat,
Joao Pereira, Kenneth A. Ross, and Dennis Shasha.
Filtering algorithms and implementation for very fast
publish/subscribe systems. In Proceedings of the 2001
ACM SIGMOD International Conference on
Management of Data, pages 115-126. ACM Press,
2001.

Eugene Fink, Josh Johnson, and Jenny Hu. Exchange
market for complex goods: Theory and experiments.
Netnomics: Economic Research and FElectronic
Networking, 6(1):21-42, 2004.

Peter M. Fischer and Donald Kossmann. Batched
processing for information filters. In ICDE, 2005.

Jim Gray, editor. The Benchmark Handbook for
Database and Transaction Processing Systems.
Morgan Kaufmann, 1993.

Ashish Kumar Gupta and Dan Suciu. Stream
processing of XPath queries with predicates. In
Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 419-430.
ACM Press, 2003.

Raj Jain. The Art of Computer Systems Performance
Analysis. John Wiley, 1991.

Paris C. Kanellakis, Gabriel M. Kuper, and Peter Z.
Revesz. Constraint query languages. In Proceedings
9th ACM PODS, 1990.

21]

(22]

(23]

Gero Miihl. Generic constraints for content-based
publish/subscribe. In Proceedings of the Gth
International Conference on Cooperative Information
Systems (CooplS ’01), 2001.

A. Schmidt, F. Waas, M. Kersten, M. Carey,

I. Manolescu, and R. Busse. Xmark: A benchmark for
XML data management. In VLDB, pages 974-985,
2002.

Anthony Tomasic, Charles Garrod, and Kris
Popendorf. Symmetric publish/subscribe via
constraint publication. Technical report, Carnegie
Mellon University, Department of Computer Science,
2006. CMU-CS-06-129.

A. Yalamanchi, J. Srinivasan, and D. Gawlick.
Managing expressions as data in relational database
systems. In Conference on Innovative Directions in
Research, 2003.

T. W. Yan and H. Garcia-Molina. Index structures for
selective dissemination of information under the
Boolean model. ACM Transactions on Database
Systems, 19(2):332-334, 1994.

Tak W. Yan and Hector Garcia-Molina. Index
structures for information filtering under the vector
space model. In Proceedings of the Tenth International
Conference on Data Engineering, pages 337-347.
IEEE Computer Society, 1994.

