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ABSTRACT 
Workers in organizations frequently request help from assistants 
by sending request messages that express information intent: an 
intention to update data in an information system. Human 
assistants spend a significant amount of time and effort processing 
these requests. For example, human-resource assistants process 
requests to update personnel records, and executive assistants 
process requests to schedule conference rooms or to make travel 
reservations. To process the intent of a request, an assistant reads 
the request and then locates, completes, and submits a form that 
corresponds to the expressed intent. Automatically or semi-
automatically processing the intent expressed in a request on 
behalf of an assistant would ease the mundane and repetitive 
nature of this kind of work.  

For a well-understood domain, a straightforward application of 
natural-language-processing techniques can be used to build an 
intelligent form interface to semi-automatically process 
information-intent request messages. However, high performance 
parsers are based on machine-learning algorithms that require a 
large corpus of examples that have been labeled by an expert. The 
generation of a labeled corpus of requests is a major barrier to the 
construction of a parser. In this paper, we investigate the 
construction of a natural-language-processing system and an 
intelligent form system that observes an assistant processing 
requests. The intelligent form system then generates a labeled 
training corpus by interpreting the observations. This paper 
reports on the measurement of the performance of the machine-
learning algorithms based on real data. The combination of 
observations, machine learning, and interaction design produces 
an effective intelligent form interface based on natural language 
processing.  

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User 
Interfaces – interaction styles, natural language.  

General Terms 
Algorithms, Experimentation, Human Factors 

Keywords 
Information Intent, Weak Labeling, Domestication 
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1. INTRODUCTION 
Workers in organizations frequently request help from assistants 
in accomplishing tasks. For example, a worker might send to a 
webmaster a request such as “Please change Leah Davies’ phone 
number to 555-1212.” Typically, to process this request, the 
assistant would perform four steps: (1) find and select the 
“Change Person” form, (2) instantiate the form with the target 
instance by selecting “Leah Davies.” (3) provide the correct 
information by modifying the phone number on the instantiated 
form to the new value, and then (4) submit the updated form to 
the backend website processing system for processing. The 
backend system executes a transaction and thus the task is 
accomplished by the assistant on behalf of the user. 

In the above example the user’s request to an assistant is an 
expression of the intent of the user. With information intent, users 
express the intent and any additional information necessary to 
complete a task. This results in a transaction (a change in state of 
the underlying system) or a workflow execution (a sequence of 
queries and transactions). This model implies that the domain of 
discourse is well understood by both parties. By contrast, users 
expressing an information need to an information retrieval or 
question-answering system do not need to understand the domain 
well. Satisfying this need does not change the state of the system, 
and an information need typically covers a poorly defined or even 
arbitrary domain. 

To understand the information intent of the user in a well-
understood domain, a straightforward application of natural-
language-processing techniques can be used. However, high-
performance parsers are based on (1) domain-specific engineering 
and (2) on machine-learning algorithms that require a training 
corpus—a large collection of requests that have been consistently 
labeled by one or more experts. The generation of a labeled 
corpus of requests is expensive in time and in effort because 
requests must be gathered and consistently labeled. In addition, 
the performance of the resulting parser deteriorates over time. 
Domains of discourse continually change and expand. In response 
to this problem, more requests must be acquired and labeled to 
keep the parser up-to-date. Both the domain specific engineering 
and the generation of a corpus are major barriers to the 
construction and maintenance of a parser. 

In this paper we propose and evaluate a solution to the problem of 
constructing an up-to-date corpus. The solution is based on the 
fact that, during the normal processing of information intent, the 
assistant generates a long sequence of observable actions. We 
term these observations “wild labels” since they are acquired “in 
the wild.” Wild labels provide evidence for the generation of the 
weak labels of a corpus by the system. Weak labels are 
distinguished from gold labels generated by a human expert. The 
generation of weak labels from wild labels is called 



domestication. The weak-labeled corpus is used to train a 
collection of machine-learning algorithms. The algorithms 
generate models that predict the sequence and parameter values of 
the actions an assistant will take on a new request. The 
predictions are used to create an intelligent form system that aids 
an assistant in processing information-intent requests.  

Our investigation broadly covers the machine-learning aspects 
and human-computer interaction (HCI) aspects of our proposed 
solution. To better understand the machine-learning aspects, three 
issues are studied in this paper. 

1. What is the quality of weak labels compared to a gold 
standard? 

2. How well do machine-learning algorithms perform when 
trained with weak labels? 

3. What is the impact of domain-specific engineering? 

The first two issues are studied empirically using real-world data. 
To study the third issue, we restrict our investigation to a system 
that uses minimal domain-specific engineering. Thus, our 
reported empirical results are a lower bound on performance, 
since additional domain-specific engineering can be used to 
improve performance. In addition, we restrict our investigation to 
assistants that have no training with respect to machine-learning 
labeling nor do they receive any special training with respect to 
the system. In fact, assistants of the system have no understanding 
that machine learning is actually occurring. 

There are many HCI aspects to the solution—for example, how 
are predictions used to generate suggestions to the assistant? How 
are errors in predictions efficiently detected and repaired by the 
assistant? Since at system start time, it contains no observations 
and thus no predictions, how does the interaction evolve as more 
predictions (and more accurate predications) are generated? While 
some of these aspects are discussed here, this paper focuses on 
machine-learning issues. A companion paper [7] describes 
extensive human-subject experiments and keystroke-level-
modeling analysis that demonstrate a significant increase in the 
assistant’s performance. In summary, for exactly the same real-
world data and machine-learning algorithms described below, our 
intelligent form system provides an average 17% reduction in the 
time required to process information-intent requests, compared to 
a standard form system.  

To empirically validate our solution, we implemented an end-to-
end intelligent form-system prototype, the Virtual Information 
Officer (VIO), which aids assistants in possessing information-
intent requests. VIO aids the assistant in solving the first three 
problems described in the running example: (1) selection of the 
form for the request, (2) selection of the target instance for the 
form, and (3) completion of the form. VIO does not automatically 
submit the form, since the underlying machine-learning models 
sometimes incorrectly predict the correct action to take. 

VIO solves the first problem using a classification machine-
learning algorithm to rank the set of forms according to the 
likelihood that the form satisfies the request. VIO solves the 
second problem using a reference-resolution algorithm. VIO 
solves the third problem using an information-extraction 
algorithm. All these algorithms are trained with weak labels 

generated by the observed interactions between the assistant and 
VIO.  

The remainder of the paper is organized as follows. Section 2 
describes the information transferred and analyzed in each step of 
VIO. Section 3 describes the algorithm that generates a ranked list 
of candidate forms. Section 4 describes the analysis of requests 
with respect to the fields offered in set of forms. Section 5 
describes the reference-resolution algorithm. Section 6 describes 
the algorithm that generates training data from observed actions. 
Section 7 describes our experimental framework for the 
evaluation of these algorithms. Section 8 describes the results of 
the evaluation and discusses the implications of these results. 
Section 9 discusses related work. Section 10 concludes the paper. 

2. Intent Analysis 
Figure 1 illustrates the functional steps VIO takes in the analysis 
of information-intent requests. First, a boosted decision tree 
model [21] is applied to the request to rank the forms in order of 
likelihood. In our running example, a correct model would rank 
the “Change Person” form first. Second, for each field of each 
form, a conditional random-field [20] model is applied to the 
request to extract possible new field values. In our running 
example, a model for a first-name field would extract “Leah,” 
“Davies” for a last-name field, and “555-1212” for a phone-
number field. Third, a reference-resolution model generates a 
ranked list of target entity instances. (Reference resolution is 
based on a variation of Fellegi-Sunter [25].)  In the example, this 
list would be the instance identifier of Leah Davies’ personnel 
record. 

 
Figure 1: Functional Architecture of VIO 

Once the analysis is complete, VIO uses the predictions of the 
models to aid the assistant through the form system. First, VIO 
augments the incoming email request from the user with a short 
ranked list of predicted forms, followed by a structured list of all 
possible forms. The assistant selects a form. VIO then fetches the 
predicted target-entity instance and populates the selected form 
with the corresponding information. In the case that the model has 
low confidence in its prediction, VIO does not fetch an entity 
instance. VIO then augments the form with suggestions for 
changes to fields based on the extraction models. That is, VIO 
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presents a form with pre-filled suggestions for the relevant update 
fields of the form. In the case that the model has low confidence, 
no suggestions are made. The assistant then simply inspects the 
pre-filled form and inserts missing values and corrects errors. The 
assistant then submits the form for processing. Note that, in the 
case that all models have low confidence; the assistant’s 
interaction with the form system is essentially identical to a 
classical form system with no intelligence. As the confidence of 
the models rise, the assistant gradually shifts from processing a 
form in the normal way to checking the work of VIO. Eventually, 
when the models are highly accurate, the assistant only checks the 
work of VIO and submits the form. 

For every request, VIO observes the following actions: the form 
selected, the targeted entity-instance selected, and modifications 
to values on the form. The domestication algorithm takes these 
observations and generates weak labels in the corpus. This weakly 
labeled corpus is used to train new versions of the models. 

The weak-labeling feedback loop eliminates the cost of 
generating training data. In fact, the assistant is unaware that any 
labeling is actually occurring. In effect labels are generated “for 
free” as opposed to the expensive generation of an expert “gold 
standard” labeled corpus. In addition, weak labels automatically 
adjust to modifications in the form. If a new form, field, or entity 
is added, e.g., “cell phone,” VIO automatically creates and tracks 
labels for the new field. Thus, in keeping with our goals, VIO is 
almost completely domain independent—almost no domain-
specific natural language processing is done (the only exceptions 
are a common-first-name dictionary and a common-last-name 
dictionary). Thus, VIO generalizes automatically, without 
domain-specific engineering or labeling, to almost any domain 
that uses forms. See Section 8 for additional discussion of 
strengths and weaknesses of this approach. 

Table 1: Glossary of Notation 

Symbol Description 

F The set of forms 
D The set of dictionaries 
E The set of extractor models 
m An extractor model 
i A request (a string) 
l A label (a named substring of a request) 

m(i) The set of labels generated by applying m to i 
T The set of triples (i,m,l) generated by E(i) 

 

VIO communicates with a form system based on a relational-
database backend. Thus, VIO issues queries on the data and 
metadata of the form system. VIO analyzes four types of 
information: the schema, the list of forms, the set of values of 
every attribute, and the structure of each form represented as a 
tuple for every field. 

For the schema, VIO uses queries on the metadata of the database 
to extract the set of relations, attributes, and types of the schema. 
VIO uses the set of all relation-attribute pairs to structure its 
analysis of requests and to structure its reference resolution. 

Each form is associated with a class in a k-way classifier. There 
are k forms and |F| = k. (Table 1 lists the notation used in this 
paper.) This classifier is used to generate a ranked list of possible 
forms, as described in Section 3. 

For every relation-attribute pair in the schema that has a string 
type, VIO reads the set of all attribute values and constructs a 
dictionary containing all tokens with character lengths greater 
than 1. Single character tokens are removed because they are not 
very specific. The result is a set of dictionaries D. These 
dictionaries are used as part of form field analysis, as described in 
Section 4. 

For reference resolution, VIO resolves references to the primary 
key values of relations that contain entities, as described in 
Section 5. 

3. Generation of Ranked List of Forms 
This section describes the learning of a ranked list of forms from 
weak labels. The domestication of wild labels into weak labels is 
discussed in Section 6. Sections 7 and 8 describe the experiments 
that determined the best learning algorithm for this problem. 

3.1 Training 
VIO trains a k-way classifier based on the weak labels to generate 
a ranked list of possible forms. The feature set used by the 
classifier is a simple bag-of-words representation of the request. 
The classifier learns one model per form in F that tries to classify 
an instance as either belonging to that form’s class or not. In this 
paper, four algorithms are evaluated for learning this model: 
Decision Trees, AdaBoost Decision Trees, Maximum Entropy, 
and Support Vector Machines [6].   

3.2 Application 
Each new request is presented to the classifier models. The 
models generate a score for each form in F. The scores 
correspond to the classifier’s prediction for how likely it is for 
each form to be used to satisfy the request based on the history of 
requests it was trained on. The forms are ordered by these scores 
and a threshold function decides how many of the top results to 
suggest. As noted above, these top-ranked suggestions (if any) are 
embedded directly into the request as links that will take the 
assistant to the appropriate form. In addition, the request is 
augmented with a list of all possible forms to address situations 
where the correct form is not in the ranked suggestion list. 

4. Form-Field Analysis 
This section describes the learning of form-field suggestions from 
weak labels. 

4.1 Training  
For each relation-attribute pair, VIO trains an annotator using the 
history of requests and a set of weak labels associated with it. (A 
weak label in this case is a named substring of a request.) The 
result of training all extractors is the set of extraction models E. 
Note that VIO converts annotations to extractions by simply 
selecting the annotated text. This equivalence of annotations to 
extractions has a broad set of consequences. 
VIO currently uses a conditional random-field [20] extractor with 
a Begin-Continue-End-Unique internal structure to train the 
extraction models. The token-level features for the extractors 



includes all the words themselves, patterns of case (e.g., 
MacDonald becomes feature A+a+A+a+), numbers (1234 
becomes feature 9+), and punctuation (each punctuation character 
is separate feature). There are a few features added based on 
document whitespace and every dictionary in D generates a 
feature if it contains the token. Note that all these features are 
domain independent. 

4.2 Application 
Upon receiving a new request i, all extraction models in E are 
applied to i. When an extraction model m is applied to a request i, 
the result is a set m(i) of new labels that the model computes as 
likely examples. The result of applying all the models is a set of 
tuples that describes the new labels of i. The set of tuples T is 
defined as {(i, l, m) | i is a request, l in m(i), m in E}. VIO’s form-
field suggestions are stored in a relation containing relation-
attribute-suggestion triples. 
When the assistant visits a form to complete the request i, the 
system will suggest the new value in every field on that form for 
which there is a tuple that was generated by the matching 
extractor m.  

5. Reference Resolution for Forms  
This section describes the learning of target entity instances from 
weak labels. VIO automatically selects the target entity instances 
for replace and delete forms. In the first step to solving this 
reference-resolution problem, the value of every label contained 
in the set of extracted tuples is checked against the existing values 
in the database using a string soft-matching process using a 
Smith-Waterman edit distance, normalized to be between 0.0 and 
1.0 by dividing the edit distance by 2 * length of the longer string 
[18]. Tuples with matches that score higher than 0.8 are retained. 
A single extraction can produce many matches.  
In the second step, the matches are grouped by entity-instance 
identifier to form feature-vector instances that contain the entity, 
the primary key value of the entity, and the soft-matching 
processing weights. For example, the feature-vector instance 
“person #14, firstname=0.85, lastname=1.0, email=1.0” records 
the “distance” between the request and a particular tuple #14 in 
the person relation. These feature-vector instances form a list of 
examples that might be referenced in the request. To select the 
correct example, we describe an experiment below where four 
main methods are tried: the hand-selected field approach, the flat-
sum approach, the trained classifier approach, and the IDF 
approach.  
The hand-selected fields approach involves manually selecting a 
few fields for each entity type that are the best identifiers for a 
record and, using only those, considering all others to be 
irrelevant. A weight of 1.0 is assigned to each of the selected 
fields and a weight of 0.0 to all others. Any candidate entity that 
matches any of the hand-selected fields will have a non-zero 
score. Entity instances are again sorted by their overall score. For 
instance, first and last name were used as the primary fields for 
person records. This approach introduces a very simple notion of 
which fields are important to this analysis and which fields are 
irrelevant. 
The flat-sum approach takes the sum of the string soft-match 
weights for all fields of each candidate entity as its score. Items 
above a certain threshold are then suggested, sorted by score. This 

approach treats all fields as being equally important in selecting 
the correct record.  
The trained-classifier approach trains a Naïve Bayes linear 
classifier on a corpus of labeled examples. The classifier model is 
then used to evaluate each new example and attach a score to it. 
As with the previous methods, the scores are sorted and compared 
to a threshold value to determine which records to suggest. This 
approach learns weights to express the relative importance of 
different attributes in identifying entities that are referenced. 
Finally, the inverse-frequency-weighted sum is calculated by 
weighting each value based on how many matches the extracted 
value had instead of which field it is. Generation of this weight is 
treated much the same as an IDF weight that might be used in an 
Information Retrieval system. The formula log (corpus 
size/document frequency) provides the weight with the total 
number of tuples of that type being used as the corpus size and the 
number of tuples that matched any given value filling in as the 
document frequency. This approach suppresses the importance of 
extractions that produce many matches. For example, the fact that 
the title of “Researcher” matches for a person means less if that 
same title also matches many other people. The match of a unique 
email address is very strong evidence. This approach does not 
learn the relative importance of different attributes, only the 
relative importance of specific values based on each value’s 
distribution. 
Note that, because it is based on the set of extractions, 
performance for reference resolution is bounded from above by 
the recall of the extractors. If the extractor missed values, then the 
entity recognition cannot identify the correct instance associated 
with the missed values. To counter this performance penalty, we 
took all the extractors in the system and “tweaked” them so that 
the models generated higher recall but lower precision [17]. The 
tweaked extractors were used for reference resolution and not for 
pre-filling form fields. The internal bias term was re-weighted to 
maximize the extractor’s F3 score based on its own training data. 
These new extractors were then used to generate the inputs to the 
four reference resolution algorithms, thus generating four more 
methods. The results of the eight different methods are presented 
in Section 8. 

5.1 Application 
After scoring the list of candidate instances, sorting them, and 
discarding instances with scores below the threshold, the final list 
is stored in the database. The list is used to automatically select an 
instance whenever an assistant is required to do so. For example, 
in a request to update information about a person, the assistant 
must select an existing person as the target for a modification. A 
dropdown list on the form automatically selects the top-ranked 
suggestion, and all the suggested values in that final list are listed 
in rank order at the top of the dropdown list.  

6. Generation of Training Data from 
Assistant Interaction 
As an assistant interacts with VIO to process requests, the 
messages that specify the request are logged along with the 
actions that are taken by the assistant in the form system to satisfy 
that request. This fact requires the assistant to have originally 
navigated to the forms using the embedded link in the request. 
This link back to the original request is maintained even if the 



assistant changes forms or edits values. The log includes the full 
text of the original request, the identifier of the form that was used 
to process the request, the entity instance that was inserted, 
deleted, or modified, and a set of triples that record all field 
values (similar to the ones that are generated by extraction). 
These triples form the set of “wild labels” W for a request. These 
wild labels consist of a request identifier i, an extraction model m, 
and a label value l, which is a text string taken from the field 
values on the form. There is one wild label per text value 
appearing in any field on the form. 
All wild labels are gathered purely by observation and are used to 
generate the training data without additional feedback from the 
assistant or the need for a human expert to do any hand labeling 
or corrections of any values.  

6.1 Labels for Form Ranking 
The training data for the classifiers consists of a set of base 
requests and a single weak class label for each classifier. The text 
of the original requests is taken directly from the logs to form the 
examples for training. The identifier of the form that was used to 
complete each request is taken from the form log and is applied to 
the corresponding request as its label. Thus, each request receives 
a weak label for exactly one class. 

6.2 Labels for Form Field Analysis 
The training labels needed by the extractors consist of a set of 
request examples and labeled spans within those requests 
corresponding to the set of extraction models. Again, the texts of 
the original requests are used to generate the set of training 
examples. The wild labels are then used to generate the labeled 
spans. However, wild labels consist of string values taken from 
the forms and the training examples are named spans of text in the 
request. 

In order to convert the wild labels into the necessary training 
labels, the domestication algorithm calculates Smith-Waterman 
string-edit distances between every wild label and a moving 
window of tokens in the base message. A set of potential matches 
is generated by filtering those string-edit-distance scores against a 
similarity threshold, and a final pass drops duplicate labels and 
chooses the best scoring match. To choose the best scoring match, 
both scores within a label type and between labels are considered. 
So, for example, the first name label of “Leah” will not match the 
string in the e-mail label of “leah.davies@cs.cmu.edu” if an e-
mail label has a better match.  The set of named spans identified 
by this process form the weak labels, and together with the base 
requests make up the training data set used by the extractors.  

Not every wild label necessarily generates a weak label. Many 
values appear that, on the form and in the wild-label set, are not 
specified in the original request. At the same time, a single wild 
label may generate more than one weak label in a request. 

For example, the request “Leah Davies’ phone number is now 
555-1212” can be completed using a modify-person form. This 
form generates a wild-label set that include all of Leah Davies’ 
data fields—email, phone, office location, etc.  But only the first 
name, last name, and phone number appear in the body of the 
request.  

The string edit soft-matching catches simple typos or formatting 
changes, but it will not properly generate domesticated labels 

when a more complex action was taken to translate the value in 
the request to the final value that was entered on the form. For 
instance, if a request referred to “Next Monday” but the assistant 
entered “4/17/06” into the form or a reference to “Dave’s Office” 
was entered as “252 Baker Hall,” the system would be unable to 
label either of those spans in the original request because it has no 
deeper understanding of the values and is simply working with 
string-edit distances. However, our experimental results show that 
this type of language is rare in information intent requests. 

The domestication algorithm makes the fundamental assumption 
that the wild-label set contains every instance of an attribute that 
appears in the request. This assumption is sometimes violated and 
the weak-label set will be missing some labels.  

For example, the request “… my email address is incorrect on the 
Ardra contact info page. It’s listed as: bcruise@ardra.org, but it 
should be bradcruise@ardra.org. Perhaps they got it confused 
with bcruise@fairbox.com ...” contains three variations of one e-
mail address. The form used to complete this request will have an 
initial value of bcruise@ardra.org in the email field and a final 
value of bradcruise@ardra.org. Both of these values are in the 
wild-label set W. However, bcruise@fairbox.com appears 
nowhere on the form and as such will not be in W, and not be 
labeled as an email address in the domesticated labels. 

The assignment of one extractor for each attribute also causes 
confusion in training. For example, the cell-phone extractor is 
different than the home-phone extractor. A request that mentions 
cell-phones and home-phones will have a weak cell-phone label 
and a weak home-phone label. But the cell-phone label will be a 
negative example for the home-phone extractor and visa-versa. 
The extractors will struggle with similar label types when it does 
not have enough information to differentiate between them. This 
“split-label” problem is discussed in Section 8.6. 

6.3 Labels for Reference Resolution 
The weak label for reference resolution consists of the selection 
of the instance of the principle entity modified by a particular 
form. In the case that the form is completed correctly, the weak 
label is exactly equal to the golden label. For this paper, every 
form was completed correctly by the assistant, so we do not 
distinguish between the two sets. (However, poor interaction 
design can cause problems, see [7] for more details.) 

7. Experimental Framework 
To better understand the analysis of information intent, 
domestication, and the performance of machine learning on weak 
labels, we performed a variety of experiments.  Domestication 
performance is measured by comparing the results of 
domestication to a gold-label set. Form-ranking performance, 
form-field performance, and reference-resolution performance are 
measured over time to track performance improvement as 
assistants continue to use the system. Overall system performance 
of information-intent analysis is measured on a final test set. 
To ensure that the system’s evaluation is based on a realistic 
workload, two collections of requests were gathered from existing 
real-world sources. For the seminar corpus, several Carnegie 
Mellon University mailing lists were archived. From the archive, 
439 seminar-announcement messages, which announced a single 
seminar, were extracted. Each message was a request for 
attendance at a seminar talk. From this corpus, 60 of these 



requests were set aside for a testing set and the remainder formed 
the training set. All requests were processed by first presenting 
each request to an assistant. A single assistant filled out a form 
that added the appropriate data of the announced seminar into a 
database. All requests were additionally hand labeled to create a 
gold-label set for extraction. This corpus was only used to 
evaluate domestication and extraction performance. 

For the webmaster corpus, a set of e-mail requests was extracted 
from a log of saved messages of a professional webmaster.  The 
website update requests in this log were processed with the 
following steps. The requests were first anonymized by 
translating real-world entities into parallel fictional entities of a 
made-up website. Then requests were stripped of thread replies. 
Messages containing multiple requests were split into multiple 
messages. Finally some requests were discarded because the 
requests could not be satisfied through the completion of a form. 
All these transformations preserved the language of the original 
requests as much as possible. The result was 234 requests. 
Chronologically, the first 195 requests were used as a training set 
and the last 39 requests were used as a test set. The test set was 
used to measure the performance of VIO after a short “warm-up” 
phase of interaction that allows the machine learning algorithms a 
chance to learn. 

All requests were presented to an assistant who completed each 
using VIO. In addition, all requests were also hand labeled with a 
gold standard for extraction. Since every request was processed 
correctly, the log of form and entity-instance selections generated 
by the assistant served as the gold label sets for those algorithms. 

While the implementation of VIO on our made-up website 
allowed assistants to make 18 different requests types, the e-mails 
in the webmaster corpus covered a narrower set, involving only 
updates to information related to people, sponsors, and news 
information. Thus, the use of real-world data introduced a realistic 
skew into the distribution of request types. 

All of the training data used in experiments were gathered 
automatically by processing the training portion of the requests in 
an untrained version of the system. Learned models were trained 
at five approximately evenly spaced points in time during this 
process to study performance improvement over time.  

Domestication performance is reported in terms of precision, 
recall, and the harmonic mean (F1) for each extractor type for an 
exact match of the entire label (“entity” precision). The scores are 
generated by comparing the domesticated labels to a set of gold 
labels for the requests in the training set.  

Form-ranking accuracy is reported in terms of the Mean 
Reciprocal Rank of the correct form in the ranked list of 
suggestions. Classifiers were trained using the requests from 
varying amounts of the training set.  

Extractor performance is reported as precision, recall, and the 
harmonic mean (F1) value for each extractor separately. 
Extractors are trained on varying numbers of requests from the 
training set using the domesticated labels. The resulting models 
are then applied to the requests in the test set and the resulting 
extractions are compared to the test set gold labels. 

Reference-resolution performance is reported only for person-
recognition requests. There were not enough reference-resolution 

examples for other entity types in our test data to produce 
meaningful measurements. Only modify and delete requests are 
considered since add-person requests do not require the assistant 
to select an existing record. Within this subset of the requests, the 
Mean Reciprocal Rank of the correct person is reported. 
Experiments were run using the output of extractors trained on 
various amounts of training data, in particular depending on the 
performance of extraction at the corresponding point in time. In 
addition, tweaked versions of these extractors using all four 
weighting schemes for scoring are reported. 

8. Experimental Results 
In this section the experimental results of two corpora are 
described. One corpus covers all steps in the analysis of 
information intent. An additional corpus provides additional 
results for our domestication and extraction algorithms. 

8.1 Domestication Performance 
Table 2: Domestication Performance on Seminar Corpus 

Label Name Precision Recall F1 

person_name 0.8649 0.9432 0.9024 
seminar_day 0.9437 0.9860 0.9644 
seminar_month 0.9086 0.9915 0.9482 
seminar_year 0.8989 0.9826 0.9389 
seminar_title 0.8433 0.9022 0.8718 
seminar_starttime 0.9616 0.9921 0.9766 
seminar_endtime 0.9839 0.9892 0.9865 
seminar_building 0.9605 0.9884 0.9743 
seminar_room 0.9529 0.9582 0.9555 

Micro-Averaged Values 0.9207 0.9679 0.9435 
Macro-Averaged Values 0.9243 0.9704 0.9465 

 
Table 3: Domestication Performance on Webmaster Corpus 

Label Name Precision Recall F1 
person_bio 1.0000 1.0000 1.0000 
person_email 0.9759 0.9759 0.9759 
person_fax_phone 0.7778 0.7778 0.7778 
person_first 1.0000 0.9340 0.9659 
person_last 0.9671 0.9484 0.9577 
person_office_phone 0.7447 0.7778 0.7609 
person_organization 0.9818 0.9474 0.9643 
person_org_city 1.0000 0.7778 0.8750 
person_org_department 1.0000 0.9091 0.9524 
person_org_url 1.0000 1.0000 1.0000 
person_org_location 1.0000 1.0000 1.0000 
person_org_state 1.0000 0.8889 0.9412 
person_org_street 1.0000 1.0000 1.0000 
person_org_zip 1.0000 0.8000 0.8889 
person_personal_url 0.9545 0.8571 0.9032 
person_title 0.9853 0.9306 0.9571 
sponsor_name 1.0000 1.0000 1.0000 
news_body 0.7500 0.6923 0.7200 
news_header 1.0000 1.0000 1.0000 
news_url 1.0000 1.0000 1.0000 
Micro-Averaged Values 0.9660 0.9276 0.9459 
Macro-Averaged Values 0.9569 0.9109 0.9320 

Table 2 lists the performance of the domestication algorithm for 
every extractor in the seminar corpus. In general, domestication 
performs well with good precision and very high recall. For name 



and year, precision is lower because the algorithm finds all 
occurrence of a name or year, but only the reference in the 
announcement header was labeled as “gold.” For the title label, 
this duplicate reference problem also occurred, but title 
additionally had difficulty with plain-text formatting tricks used 
to format the presentation of the seminar request. In general recall 
is high because copy-and-paste was used to complete the form. 
Table 3 lists the performance of the domestication algorithm for 
every extractor in the webmaster corpus. (The label bio stands for 
biographical sketch, generally a one-line description of hobbies. 
The label org stands for organization.) The number of label 
instances in the training set is listed in Table 5. The domestication 
algorithm performs very well, except for fax and office numbers, 
and for the body of requests to update news on the website. Phone 
numbers are difficult because a request string such as 
“412.555.1212” is translated into “(412) 555 1212” due to 
embedded formatting issues in the form system. Domestication of 
news body sometimes failed because of the maximum window 
size for domestication analysis. 

8.2 Extraction Performance 

 
Figure 2: Extraction Performance 

Figure 2 is a graph of extraction performance over time on the 
webmaster corpus. The x-axis in this graph is the number of 
instances of that particular label (not the total number of 
requests). As described earlier, the y-axis is the performance of 
the extraction model on the test set after training on the given 
number of examples. The ten lines indicate the extractors that 
generated non-zero extractions. Many extractors had insufficient 
data to generate extractions.  
To interpret Figure 2, when VIO is first used, it behaves 
identically to a direct-manipulation content-management system 
that has no intelligence. Extraction of true positives help the 
assistant by pre-filling the form. A false negative of any extractor 
has no negative effect on the assistant. A false negative is simply 
a missed opportunity to help the assistant. (See reference [7] for a 
description of the evaluation of the assistant experience.) When 
an extractor generates a false positive, the assistant must correct 
the mistake. (Table 5 below shows that the extractors are biased 
towards precision.) Figure 2 also demonstrates that extractor 
performance generally improves with additional examples. The 
erratic performance of some extractors is a consequence of three 

factors: the small test-set size for the extractor, the small number 
of examples, and errors in weak labels. The extractors that occur 
often (i.e., extend to the right) perform well. The rarely occurring 
extractors have less of an effect simply because the corresponding 
“problem” of completing the corresponding form field does not 
often occur.  
Table 4 lists the performance of extraction on the seminar corpus. 
In this experiment there are two principle effects. One is the 
consequence of a single label that is considered correct in the 
gold-label set. The second effect, however, is directly related to 
the domestication algorithm itself. In many requests day, year, 
start time, and end time are entered into the corresponding form 
as a single digit or pair of digits. This form of data entry has two 
effects. First, every occurrence of the digit or digits in the corpus 
is labeled by the domestication algorithm. Second, the extraction 
algorithm tends to label every occurrence of those digits. To 
address this issue, we plan to add context to the domestication to 
improve its accuracy. 

Table 4: Extraction Performance on Seminar Corpus 

Label Name #  Precision Recall F1 

seminar_building 354 0.8545  0.8246 0.8393 
seminar_room 361 0.9434  0.8475 0.8929 
seminar_month 383 0.9107  0.8095 0.8571 
seminar_day 373 0.8226  0.7846 0.8032 
seminar_year 188 0.8077  0.7000 0.7500 
seminar_starttime 391 1.0000  0.6333 0.7755 
seminar_endtime 186 1.0000  0.5000 0.6667 
seminar_title 383 0.7692  0.1667 0.2740 
person_name 422 0.6515  0.6143 0.6324 

 

Table 5: Extraction Performance for Webmaster Corpus 

Label # Precision Recall F1 
person_bio 28 1.0000 1.0000 1.0000 
person_email 83 1.0000 0.8750 0.9333 
person_fax_phone 9 0.0000 0.0000 0.0000 
person_first 198 0.9722 0.7609 0.8537 
person_last 152 0.8889 0.8571 0.8727 
person_office_phone 47 1.0000 0.4375 0.6087 
person_organization 55 1.0000 0.3077 0.4706 
person_org_city 7 0.0000 0.0000 0.0000 
person_org_department 10 0.5000 0.3333 0.4000 
person_org_url 8 0.0000 0.0000 0.0000 
person_org_location 26 1.0000 0.2000 0.3333 
person_org_state 8 1.0000 0.5000 0.6667 
person_personal_url 44 0.0000 0.0000 0.0000 
person_title 68 1.0000 0.5000 0.6667 
sponsor_name 5 0.0000 0.0000 0.0000 
news_header 15 0.0000 0.0000 0.0000 
news_url 13 0.0000 0.0000 0.0000 
news_body 12 0.0000 0.0000 0.0000 
 
Table 5 reports the performance of all extractors trained on all 
195 training requests of the webmaster corpus. As noted before, 
entity precision, entity recall, and entity F1 measure the model’s 
predictions against the gold-labeled test set. These results 
illustrate that, once about 30 examples or so are available, the 
extractor generates a high-quality result. The principle exceptions 
to this rule are the URL extractors. These extractors perform 
poorly because the single conceptual class of a URL is split into 
three classes: personal-organization URLs, personal URLs, and 
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news URLs. Thus, URLs are an example of the split-label 
problem. Each extractor in isolation never has sufficient evidence 
to ever extract a URL. The benefit of the automatically generated 
dictionaries has a positive impact on many fields. The 
person_org_state extractor performs well because the dictionary 
already contains all the state names used in the test requests.  

8.3 Form-Ranking Performance 
Figure 3 is a graph of the form-ranking performance over time for 
the webmaster corpus. All the algorithms tested improved over 
time. AdaBoosted Decision Tree and Maximum Entropy perform 
consistently better than Decision Tree and SVM. However, 
without more data, it is not clear which algorithm is best. Note 
that after full training, the correct form appears in the top two of 
the ranked list of forms, except in one test example.  

 
Figure 3: Form Ranking Performance 

8.4 Reference Resolution Performance 

 
Figure 4: Reference-Resolution Performance 

Of the four approaches to weighting dictionary matches, three of 
them—the flat-sum approach, the trained-classifier approach, and 
the IDF approach—performed equally well across every 
condition. These three approaches are reported together as a 
single “other” value along with the hand-selected field approach. 
Additionally, the number of training examples is varied and both 
tweaked and un-tweaked extractors were used to generate the 
inputs. Figure 4 is a graph of the performance of reference 
resolution on the webmaster corpus over time. The graph shows 

that the tweaked three “other” approaches consistent outperform 
the hand-selected approach in initial performance. However, 
additional data might reveal that all the approaches converge or 
that the “other” approaches separate. 
Reference-resolution benefits from using all of the fields to 
identify requests are systematically better than the hand-selected 
approach. Additionally, tweaked versions of the extractors 
provide a large benefit to the system when it does not yet have 
enough training data, though this margin shrinks as the extractors 
improve and we are less able to squeeze out extra recall. 

8.5 Overall Performance 
Overall the system performs quite well in this domain of 
problems. It is quite reliable at suggesting the correct form as well 
as picking the top-ranking entity instance for modification. 
Extractions perform well for short common fields, but poorly on 
long values and uncommonly used fields. Since performance is 
related to the frequency that a field appears, good performance 
appears where automation offers the largest time savings. 
Additionally, precision remains generally high in all cases, and as 
such doesn’t actually hinder the assistant by suggesting incorrect 
values.  

Our tests were performed on a training set with a relatively 
limited number of requests. Performance picks up quickly, but 
would continue to improve in an actual deployed system, in which 
we could expect to see many more requests. This fact is 
particularly true of the extractors for relatively uncommon fields 
and classifier accuracy on infrequently used forms. In both of 
these cases, the system suffers from a lack of sufficient training 
data. 

8.6 Discussion 
VIO uses a simple “equality” model of conversion between 
annotations and assistant interaction. In the reserves direction, 
domestication also assumes a simple mapping model between the 
wild label and the weak label. This model works perfectly for 
form selection and reasonably well for entity-instance selection. 
For extraction, annotations are directly converted to extractions. 
Domestication converts text-field values into weak labels 
relatively directly. In addition to handling text fields, VIO can be 
easily extended to handle pull-down menus of a fixed set of 
choices, “radio” buttons, sliders, etc., where the bi-directional 
translation between the widgets and the annotation is accurate. 
For experimental purposes, we stuck to this model to minimize 
the addition of domain-specific knowledge. However, more 
complex transformations require a more sophisticated, domain 
dependent, mapping. For example, consider a calendar widget for 
date of birth that should be set to June 13th, 1961. The annotation 
label in a message might be “6/13/1961,” or “June 13 1961,” or 
even “my birthday.” To handle conversions that require some 
domain semantics, we plan to imbed semantics directly into the 
widget itself, essentially as part of “widget authoring.” This 
approach leverages the creation of a plug-in library of domain-
specific widgets that can easily be shared across applications and 
organizations. 

Experimental results show that the domestication algorithm 
generally works well, but does not handle the one case where 
additional labels, not appearing in the form, should be labeled as 
part of a particular class. For example, many e-mail signatures 
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contain a person’s name, title, cell-phone number, etc. But these 
strings never appear in the form request and thus are never labeled 
with the associated class by domestication. Ironically, this 
situation improves performance for our webmaster corpus, 
because the signature is frequently from an individual who is not 
the target of the request. Thus, for example, the extraction 
algorithm quickly learns not to extract “Ashuk,” (the pseudonym 
of a person that frequently composed requests to the webmaster). 
While this particular case worked out well in the experimental 
corpus, we believe that deeper semantic analysis of requests, e.g., 
signature recognition, would benefit VIO.  

Another consequence of the goal of domain independence is VIO 
one-to-one association of form fields with extractors (since no 
additional information is needed to make this association). This 
association leads to a split of one “conceptual” label and extractor 
to several actual labels and extractors, thus killing performance in 
some cases. A simple one-level indirection extraction results to 
form fields may be a sufficient solution for this problem. 

9. Related Work 
Command-style natural-language systems related to information 
intent have a scattered history, beginning with SHURDLU [15] 
and ASK [11] and continuing to the work of Mooney and his 
students [3].  

The ASK system provides a natural-language interface to updates 
(at the data and metadata level) and provides a form-based data-
entry system. However, the system does not appear to fill in forms 
based on natural language, nor does it provide navigation to a 
form; the user must know the name of the form of interest. Also, 
this paper does not discuss handling of errors of any type.  

Mooney’s work [16] is similar because of the emphasis on 
semantic parsing. A particular advantage of this work is the 
emphasis on a context-free target language. Our target language 
consists of a combination of attribute/value pairs, forms (which 
can be thought of as “templates” or frames with slots), and 
references to entities. On the other hand, VIO handles new values.  

In our own work, reference [1] reports on some initial 
experiments in the analysis of website requests using gold-labeled 
machine-learning techniques. Reference [2] reports on 
experiments that measure the performance advantages of 
information-intent analysis in a cooperative work environment. 
Reference [7] reports on the assistant experience and results of 
behavioral testing of VIO. VIO uses MinorThird [6] 
implementations for all its machine learning.  
Horvitz [8] describes a system with a similar interaction model 
that focuses on a single domain of scheduling meetings into a 
calendar system. This work uses gold labels and concentrates on 
agent confidence, expected utility, and the problem of initiation of 
dialog with the assistant (in a non-irritating way).   
The MANGROVE project [10] is targeted at bridging the chasm 
between the message-unstructured world and the database-
structured world. This project implements a direct-manipulation-
interaction-style markup tool for messages. Our prototype may be 
applicable to the same scenario.  

Lockerd, et. al. [5] describes a user study of e-mail-based requests 
to a web master for changes to a website. We borrowed the 
before-image/after-image technique from this paper. The paper 

reports that detecting delete and update requests exhibited a 
“semantic pattern” 85% of the time. The data from the reported 
experiment was used to implement a hand-built parser that 
understood requests fully 65% of the time. 

Interface design where forms are a response to free-text input has 
a history in human-computer-interaction research, e.g., [8][13]. 
VIO represents the next step in this line of research where weak 
labeling is used instead of gold labeling. 

Meng [12] reports experimental results on removing the 
ambiguity between field values and the use of the values in filling 
out a form. The method involves mapping field references to 
potential field values and then weighing the references via a 
weighted n-gram vector cosine function. This work is related to 
our work on extraction. 
Finally, a variety of works, for example, [9][10][22][23][24], 
focus on extending e-mail with semantics or task structure. VIO is 
clearly complementary to this line of research.  

10. Conclusion 
People frequently send messages containing information intent: 
requests that specify a task to be accomplished by an assistant.  In 
this paper we proposed analyzing information intent by using 
machine-learning algorithms trained on weak labels. Weak labels 
are generated by passive observation of the assistant’s interaction 
with the system. The results of the analysis are used to aid the 
assistant in processing the request through an intelligent form 
interface. 
To better understand the performance, advantages, and 
disadvantages of our solution, we built an end-to-end prototype, 
the Virtual Information Officer (VIO), which operates by 
analyzing the information intent of the user, providing an 
interface for the assistant to inspect the results of analysis via a 
form-based data-entry system, executing the user’s intent as 
updates to a database, and generating weak labels from the 
interaction. Weak labels are used to re-train models to 
automatically improve performance over time. 
In addition, the prototype was build with a minimum of domain 
specific engineering to ensure that our intelligent interface can be 
retargeted to new domains with a minimum of engineering effort. 
We then used this prototype to perform a series of experiments to 
determine the performance of the system and to determine the 
best machine-learning algorithms for analysis. Our experiments 
showed that our algorithm for generating weak labels, termed 
domestication, performed very well measured against a hand-
generated “gold label” standard. This result is crucial to the 
success of the system because weak labels provide the training 
input to the rest of the analysis. 
For information-intent analysis, three problems were solved: form 
ranking, form field pre-filling, and entity reference resolution. 
Our experiments showed that AdaBoosted decision trees, which 
beat out three other machine-learning algorithms, performs very 
well. On our final test set, the correct form was suggested either 
first or second in every case but one. For form-field pre-filling, 
we used conditional random field (CRF) extraction. CRFs worked 
well as long as the weak labels were accurate, except in the “split 
label case,” i.e., when a label for a general category of sequence 
(telephone number) was split across two classes (cell-phone 
verses home-phone). This split confuses the extractor since each 



positive cell-phone label is a negative example for a home-phone 
label, and visa versa. For reference resolution, we used a 
reference resolution algorithm based on learning important feature 
differences between features present in the information-intent 
request and features present in entity-reference instances. The 
algorithm performed as well as two other competitors, given the 
limitation set by the extractor performance. Tweaking [17] the 
extractors (boosting recall at the expense of precision) has more 
of an impact when their initial performance was low.  
In summary, our analysis shows that information intent can be 
successfully analyzed using weak labels as training evidence. In 
related work [7], we show that the user interaction supported by 
the analysis significantly improves assistant time performance 
without a significant introduction of new errors.  
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