
Learning Information Intent via Observation
Anthony Tomasic

Institute for Software Research
Carnegie Mellon University

Pittsburgh, PA
tomasic@cs.cmu.edu

Isaac Simmons
Institute for Software Research

Carnegie Mellon University
Pittsburgh, PA

ids@cs.cmu.edu

John Zimmerman
Human-Computer Interaction Institute

Carnegie Mellon University
Pittsburgh, PA

johnz@cs.cmu.edu

ABSTRACT
Workers in organizations frequently request help from assistants
by sending request messages that express information intent: an
intention to update data in an information system. Human
assistants spend a significant amount of time and effort processing
these requests. For example, human-resource assistants process
requests to update personnel records, and executive assistants
process requests to schedule conference rooms or to make travel
reservations. To process the intent of a request, an assistant reads
the request and then locates, completes, and submits a form that
corresponds to the expressed intent. Automatically or semi-
automatically processing the intent expressed in a request on
behalf of an assistant would ease the mundane and repetitive
nature of this kind of work.

For a well-understood domain, a straightforward application of
natural-language-processing techniques can be used to build an
intelligent form interface to semi-automatically process
information-intent request messages. However, high performance
parsers are based on machine-learning algorithms that require a
large corpus of examples that have been labeled by an expert. The
generation of a labeled corpus of requests is a major barrier to the
construction of a parser. In this paper, we investigate the
construction of a natural-language-processing system and an
intelligent form system that observes an assistant processing
requests. The intelligent form system then generates a labeled
training corpus by interpreting the observations. This paper
reports on the measurement of the performance of the machine-
learning algorithms based on real data. The combination of
observations, machine learning, and interaction design produces
an effective intelligent form interface based on natural language
processing.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – interaction styles, natural language.

General Terms
Algorithms, Experimentation, Human Factors

Keywords
Information Intent, Weak Labeling, Domestication

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

1. INTRODUCTION
Workers in organizations frequently request help from assistants
in accomplishing tasks. For example, a worker might send to a
webmaster a request such as “Please change Leah Davies’ phone
number to 555-1212.” Typically, to process this request, the
assistant would perform four steps: (1) find and select the
“Change Person” form, (2) instantiate the form with the target
instance by selecting “Leah Davies.” (3) provide the correct
information by modifying the phone number on the instantiated
form to the new value, and then (4) submit the updated form to
the backend website processing system for processing. The
backend system executes a transaction and thus the task is
accomplished by the assistant on behalf of the user.

In the above example the user’s request to an assistant is an
expression of the intent of the user. With information intent, users
express the intent and any additional information necessary to
complete a task. This results in a transaction (a change in state of
the underlying system) or a workflow execution (a sequence of
queries and transactions). This model implies that the domain of
discourse is well understood by both parties. By contrast, users
expressing an information need to an information retrieval or
question-answering system do not need to understand the domain
well. Satisfying this need does not change the state of the system,
and an information need typically covers a poorly defined or even
arbitrary domain.

To understand the information intent of the user in a well-
understood domain, a straightforward application of natural-
language-processing techniques can be used. However, high-
performance parsers are based on (1) domain-specific engineering
and (2) on machine-learning algorithms that require a training
corpus—a large collection of requests that have been consistently
labeled by one or more experts. The generation of a labeled
corpus of requests is expensive in time and in effort because
requests must be gathered and consistently labeled. In addition,
the performance of the resulting parser deteriorates over time.
Domains of discourse continually change and expand. In response
to this problem, more requests must be acquired and labeled to
keep the parser up-to-date. Both the domain specific engineering
and the generation of a corpus are major barriers to the
construction and maintenance of a parser.

In this paper we propose and evaluate a solution to the problem of
constructing an up-to-date corpus. The solution is based on the
fact that, during the normal processing of information intent, the
assistant generates a long sequence of observable actions. We
term these observations “wild labels” since they are acquired “in
the wild.” Wild labels provide evidence for the generation of the
weak labels of a corpus by the system. Weak labels are
distinguished from gold labels generated by a human expert. The
generation of weak labels from wild labels is called

domestication. The weak-labeled corpus is used to train a
collection of machine-learning algorithms. The algorithms
generate models that predict the sequence and parameter values of
the actions an assistant will take on a new request. The
predictions are used to create an intelligent form system that aids
an assistant in processing information-intent requests.

Our investigation broadly covers the machine-learning aspects
and human-computer interaction (HCI) aspects of our proposed
solution. To better understand the machine-learning aspects, three
issues are studied in this paper.

1. What is the quality of weak labels compared to a gold
standard?

2. How well do machine-learning algorithms perform when
trained with weak labels?

3. What is the impact of domain-specific engineering?

The first two issues are studied empirically using real-world data.
To study the third issue, we restrict our investigation to a system
that uses minimal domain-specific engineering. Thus, our
reported empirical results are a lower bound on performance,
since additional domain-specific engineering can be used to
improve performance. In addition, we restrict our investigation to
assistants that have no training with respect to machine-learning
labeling nor do they receive any special training with respect to
the system. In fact, assistants of the system have no understanding
that machine learning is actually occurring.

There are many HCI aspects to the solution—for example, how
are predictions used to generate suggestions to the assistant? How
are errors in predictions efficiently detected and repaired by the
assistant? Since at system start time, it contains no observations
and thus no predictions, how does the interaction evolve as more
predictions (and more accurate predications) are generated? While
some of these aspects are discussed here, this paper focuses on
machine-learning issues. A companion paper [7] describes
extensive human-subject experiments and keystroke-level-
modeling analysis that demonstrate a significant increase in the
assistant’s performance. In summary, for exactly the same real-
world data and machine-learning algorithms described below, our
intelligent form system provides an average 17% reduction in the
time required to process information-intent requests, compared to
a standard form system.

To empirically validate our solution, we implemented an end-to-
end intelligent form-system prototype, the Virtual Information
Officer (VIO), which aids assistants in possessing information-
intent requests. VIO aids the assistant in solving the first three
problems described in the running example: (1) selection of the
form for the request, (2) selection of the target instance for the
form, and (3) completion of the form. VIO does not automatically
submit the form, since the underlying machine-learning models
sometimes incorrectly predict the correct action to take.

VIO solves the first problem using a classification machine-
learning algorithm to rank the set of forms according to the
likelihood that the form satisfies the request. VIO solves the
second problem using a reference-resolution algorithm. VIO
solves the third problem using an information-extraction
algorithm. All these algorithms are trained with weak labels

generated by the observed interactions between the assistant and
VIO.

The remainder of the paper is organized as follows. Section 2
describes the information transferred and analyzed in each step of
VIO. Section 3 describes the algorithm that generates a ranked list
of candidate forms. Section 4 describes the analysis of requests
with respect to the fields offered in set of forms. Section 5
describes the reference-resolution algorithm. Section 6 describes
the algorithm that generates training data from observed actions.
Section 7 describes our experimental framework for the
evaluation of these algorithms. Section 8 describes the results of
the evaluation and discusses the implications of these results.
Section 9 discusses related work. Section 10 concludes the paper.

2. Intent Analysis
Figure 1 illustrates the functional steps VIO takes in the analysis
of information-intent requests. First, a boosted decision tree
model [21] is applied to the request to rank the forms in order of
likelihood. In our running example, a correct model would rank
the “Change Person” form first. Second, for each field of each
form, a conditional random-field [20] model is applied to the
request to extract possible new field values. In our running
example, a model for a first-name field would extract “Leah,”
“Davies” for a last-name field, and “555-1212” for a phone-
number field. Third, a reference-resolution model generates a
ranked list of target entity instances. (Reference resolution is
based on a variation of Fellegi-Sunter [25].) In the example, this
list would be the instance identifier of Leah Davies’ personnel
record.

Figure 1: Functional Architecture of VIO

Once the analysis is complete, VIO uses the predictions of the
models to aid the assistant through the form system. First, VIO
augments the incoming email request from the user with a short
ranked list of predicted forms, followed by a structured list of all
possible forms. The assistant selects a form. VIO then fetches the
predicted target-entity instance and populates the selected form
with the corresponding information. In the case that the model has
low confidence in its prediction, VIO does not fetch an entity
instance. VIO then augments the form with suggestions for
changes to fields based on the extraction models. That is, VIO

Present &
Approve Form

Form Ranking

Form Field
Analysis

Request

Target
Selection

Weak
Label

Corpus

Extract Weak
Labels

Boosted
Decision Tree

CRF

Reference
Resolution

presents a form with pre-filled suggestions for the relevant update
fields of the form. In the case that the model has low confidence,
no suggestions are made. The assistant then simply inspects the
pre-filled form and inserts missing values and corrects errors. The
assistant then submits the form for processing. Note that, in the
case that all models have low confidence; the assistant’s
interaction with the form system is essentially identical to a
classical form system with no intelligence. As the confidence of
the models rise, the assistant gradually shifts from processing a
form in the normal way to checking the work of VIO. Eventually,
when the models are highly accurate, the assistant only checks the
work of VIO and submits the form.

For every request, VIO observes the following actions: the form
selected, the targeted entity-instance selected, and modifications
to values on the form. The domestication algorithm takes these
observations and generates weak labels in the corpus. This weakly
labeled corpus is used to train new versions of the models.

The weak-labeling feedback loop eliminates the cost of
generating training data. In fact, the assistant is unaware that any
labeling is actually occurring. In effect labels are generated “for
free” as opposed to the expensive generation of an expert “gold
standard” labeled corpus. In addition, weak labels automatically
adjust to modifications in the form. If a new form, field, or entity
is added, e.g., “cell phone,” VIO automatically creates and tracks
labels for the new field. Thus, in keeping with our goals, VIO is
almost completely domain independent—almost no domain-
specific natural language processing is done (the only exceptions
are a common-first-name dictionary and a common-last-name
dictionary). Thus, VIO generalizes automatically, without
domain-specific engineering or labeling, to almost any domain
that uses forms. See Section 8 for additional discussion of
strengths and weaknesses of this approach.

Table 1: Glossary of Notation

Symbol Description

F The set of forms
D The set of dictionaries
E The set of extractor models
m An extractor model
i A request (a string)
l A label (a named substring of a request)

m(i) The set of labels generated by applying m to i
T The set of triples (i,m,l) generated by E(i)

VIO communicates with a form system based on a relational-
database backend. Thus, VIO issues queries on the data and
metadata of the form system. VIO analyzes four types of
information: the schema, the list of forms, the set of values of
every attribute, and the structure of each form represented as a
tuple for every field.

For the schema, VIO uses queries on the metadata of the database
to extract the set of relations, attributes, and types of the schema.
VIO uses the set of all relation-attribute pairs to structure its
analysis of requests and to structure its reference resolution.

Each form is associated with a class in a k-way classifier. There
are k forms and |F| = k. (Table 1 lists the notation used in this
paper.) This classifier is used to generate a ranked list of possible
forms, as described in Section 3.

For every relation-attribute pair in the schema that has a string
type, VIO reads the set of all attribute values and constructs a
dictionary containing all tokens with character lengths greater
than 1. Single character tokens are removed because they are not
very specific. The result is a set of dictionaries D. These
dictionaries are used as part of form field analysis, as described in
Section 4.

For reference resolution, VIO resolves references to the primary
key values of relations that contain entities, as described in
Section 5.

3. Generation of Ranked List of Forms
This section describes the learning of a ranked list of forms from
weak labels. The domestication of wild labels into weak labels is
discussed in Section 6. Sections 7 and 8 describe the experiments
that determined the best learning algorithm for this problem.

3.1 Training
VIO trains a k-way classifier based on the weak labels to generate
a ranked list of possible forms. The feature set used by the
classifier is a simple bag-of-words representation of the request.
The classifier learns one model per form in F that tries to classify
an instance as either belonging to that form’s class or not. In this
paper, four algorithms are evaluated for learning this model:
Decision Trees, AdaBoost Decision Trees, Maximum Entropy,
and Support Vector Machines [6].

3.2 Application
Each new request is presented to the classifier models. The
models generate a score for each form in F. The scores
correspond to the classifier’s prediction for how likely it is for
each form to be used to satisfy the request based on the history of
requests it was trained on. The forms are ordered by these scores
and a threshold function decides how many of the top results to
suggest. As noted above, these top-ranked suggestions (if any) are
embedded directly into the request as links that will take the
assistant to the appropriate form. In addition, the request is
augmented with a list of all possible forms to address situations
where the correct form is not in the ranked suggestion list.

4. Form-Field Analysis
This section describes the learning of form-field suggestions from
weak labels.

4.1 Training
For each relation-attribute pair, VIO trains an annotator using the
history of requests and a set of weak labels associated with it. (A
weak label in this case is a named substring of a request.) The
result of training all extractors is the set of extraction models E.
Note that VIO converts annotations to extractions by simply
selecting the annotated text. This equivalence of annotations to
extractions has a broad set of consequences.
VIO currently uses a conditional random-field [20] extractor with
a Begin-Continue-End-Unique internal structure to train the
extraction models. The token-level features for the extractors

includes all the words themselves, patterns of case (e.g.,
MacDonald becomes feature A+a+A+a+), numbers (1234
becomes feature 9+), and punctuation (each punctuation character
is separate feature). There are a few features added based on
document whitespace and every dictionary in D generates a
feature if it contains the token. Note that all these features are
domain independent.

4.2 Application
Upon receiving a new request i, all extraction models in E are
applied to i. When an extraction model m is applied to a request i,
the result is a set m(i) of new labels that the model computes as
likely examples. The result of applying all the models is a set of
tuples that describes the new labels of i. The set of tuples T is
defined as {(i, l, m) | i is a request, l in m(i), m in E}. VIO’s form-
field suggestions are stored in a relation containing relation-
attribute-suggestion triples.
When the assistant visits a form to complete the request i, the
system will suggest the new value in every field on that form for
which there is a tuple that was generated by the matching
extractor m.

5. Reference Resolution for Forms
This section describes the learning of target entity instances from
weak labels. VIO automatically selects the target entity instances
for replace and delete forms. In the first step to solving this
reference-resolution problem, the value of every label contained
in the set of extracted tuples is checked against the existing values
in the database using a string soft-matching process using a
Smith-Waterman edit distance, normalized to be between 0.0 and
1.0 by dividing the edit distance by 2 * length of the longer string
[18]. Tuples with matches that score higher than 0.8 are retained.
A single extraction can produce many matches.
In the second step, the matches are grouped by entity-instance
identifier to form feature-vector instances that contain the entity,
the primary key value of the entity, and the soft-matching
processing weights. For example, the feature-vector instance
“person #14, firstname=0.85, lastname=1.0, email=1.0” records
the “distance” between the request and a particular tuple #14 in
the person relation. These feature-vector instances form a list of
examples that might be referenced in the request. To select the
correct example, we describe an experiment below where four
main methods are tried: the hand-selected field approach, the flat-
sum approach, the trained classifier approach, and the IDF
approach.
The hand-selected fields approach involves manually selecting a
few fields for each entity type that are the best identifiers for a
record and, using only those, considering all others to be
irrelevant. A weight of 1.0 is assigned to each of the selected
fields and a weight of 0.0 to all others. Any candidate entity that
matches any of the hand-selected fields will have a non-zero
score. Entity instances are again sorted by their overall score. For
instance, first and last name were used as the primary fields for
person records. This approach introduces a very simple notion of
which fields are important to this analysis and which fields are
irrelevant.
The flat-sum approach takes the sum of the string soft-match
weights for all fields of each candidate entity as its score. Items
above a certain threshold are then suggested, sorted by score. This

approach treats all fields as being equally important in selecting
the correct record.
The trained-classifier approach trains a Naïve Bayes linear
classifier on a corpus of labeled examples. The classifier model is
then used to evaluate each new example and attach a score to it.
As with the previous methods, the scores are sorted and compared
to a threshold value to determine which records to suggest. This
approach learns weights to express the relative importance of
different attributes in identifying entities that are referenced.
Finally, the inverse-frequency-weighted sum is calculated by
weighting each value based on how many matches the extracted
value had instead of which field it is. Generation of this weight is
treated much the same as an IDF weight that might be used in an
Information Retrieval system. The formula log (corpus
size/document frequency) provides the weight with the total
number of tuples of that type being used as the corpus size and the
number of tuples that matched any given value filling in as the
document frequency. This approach suppresses the importance of
extractions that produce many matches. For example, the fact that
the title of “Researcher” matches for a person means less if that
same title also matches many other people. The match of a unique
email address is very strong evidence. This approach does not
learn the relative importance of different attributes, only the
relative importance of specific values based on each value’s
distribution.
Note that, because it is based on the set of extractions,
performance for reference resolution is bounded from above by
the recall of the extractors. If the extractor missed values, then the
entity recognition cannot identify the correct instance associated
with the missed values. To counter this performance penalty, we
took all the extractors in the system and “tweaked” them so that
the models generated higher recall but lower precision [17]. The
tweaked extractors were used for reference resolution and not for
pre-filling form fields. The internal bias term was re-weighted to
maximize the extractor’s F3 score based on its own training data.
These new extractors were then used to generate the inputs to the
four reference resolution algorithms, thus generating four more
methods. The results of the eight different methods are presented
in Section 8.

5.1 Application
After scoring the list of candidate instances, sorting them, and
discarding instances with scores below the threshold, the final list
is stored in the database. The list is used to automatically select an
instance whenever an assistant is required to do so. For example,
in a request to update information about a person, the assistant
must select an existing person as the target for a modification. A
dropdown list on the form automatically selects the top-ranked
suggestion, and all the suggested values in that final list are listed
in rank order at the top of the dropdown list.

6. Generation of Training Data from
Assistant Interaction
As an assistant interacts with VIO to process requests, the
messages that specify the request are logged along with the
actions that are taken by the assistant in the form system to satisfy
that request. This fact requires the assistant to have originally
navigated to the forms using the embedded link in the request.
This link back to the original request is maintained even if the

assistant changes forms or edits values. The log includes the full
text of the original request, the identifier of the form that was used
to process the request, the entity instance that was inserted,
deleted, or modified, and a set of triples that record all field
values (similar to the ones that are generated by extraction).
These triples form the set of “wild labels” W for a request. These
wild labels consist of a request identifier i, an extraction model m,
and a label value l, which is a text string taken from the field
values on the form. There is one wild label per text value
appearing in any field on the form.
All wild labels are gathered purely by observation and are used to
generate the training data without additional feedback from the
assistant or the need for a human expert to do any hand labeling
or corrections of any values.

6.1 Labels for Form Ranking
The training data for the classifiers consists of a set of base
requests and a single weak class label for each classifier. The text
of the original requests is taken directly from the logs to form the
examples for training. The identifier of the form that was used to
complete each request is taken from the form log and is applied to
the corresponding request as its label. Thus, each request receives
a weak label for exactly one class.

6.2 Labels for Form Field Analysis
The training labels needed by the extractors consist of a set of
request examples and labeled spans within those requests
corresponding to the set of extraction models. Again, the texts of
the original requests are used to generate the set of training
examples. The wild labels are then used to generate the labeled
spans. However, wild labels consist of string values taken from
the forms and the training examples are named spans of text in the
request.

In order to convert the wild labels into the necessary training
labels, the domestication algorithm calculates Smith-Waterman
string-edit distances between every wild label and a moving
window of tokens in the base message. A set of potential matches
is generated by filtering those string-edit-distance scores against a
similarity threshold, and a final pass drops duplicate labels and
chooses the best scoring match. To choose the best scoring match,
both scores within a label type and between labels are considered.
So, for example, the first name label of “Leah” will not match the
string in the e-mail label of “leah.davies@cs.cmu.edu” if an e-
mail label has a better match. The set of named spans identified
by this process form the weak labels, and together with the base
requests make up the training data set used by the extractors.

Not every wild label necessarily generates a weak label. Many
values appear that, on the form and in the wild-label set, are not
specified in the original request. At the same time, a single wild
label may generate more than one weak label in a request.

For example, the request “Leah Davies’ phone number is now
555-1212” can be completed using a modify-person form. This
form generates a wild-label set that include all of Leah Davies’
data fields—email, phone, office location, etc. But only the first
name, last name, and phone number appear in the body of the
request.

The string edit soft-matching catches simple typos or formatting
changes, but it will not properly generate domesticated labels

when a more complex action was taken to translate the value in
the request to the final value that was entered on the form. For
instance, if a request referred to “Next Monday” but the assistant
entered “4/17/06” into the form or a reference to “Dave’s Office”
was entered as “252 Baker Hall,” the system would be unable to
label either of those spans in the original request because it has no
deeper understanding of the values and is simply working with
string-edit distances. However, our experimental results show that
this type of language is rare in information intent requests.

The domestication algorithm makes the fundamental assumption
that the wild-label set contains every instance of an attribute that
appears in the request. This assumption is sometimes violated and
the weak-label set will be missing some labels.

For example, the request “… my email address is incorrect on the
Ardra contact info page. It’s listed as: bcruise@ardra.org, but it
should be bradcruise@ardra.org. Perhaps they got it confused
with bcruise@fairbox.com ...” contains three variations of one e-
mail address. The form used to complete this request will have an
initial value of bcruise@ardra.org in the email field and a final
value of bradcruise@ardra.org. Both of these values are in the
wild-label set W. However, bcruise@fairbox.com appears
nowhere on the form and as such will not be in W, and not be
labeled as an email address in the domesticated labels.

The assignment of one extractor for each attribute also causes
confusion in training. For example, the cell-phone extractor is
different than the home-phone extractor. A request that mentions
cell-phones and home-phones will have a weak cell-phone label
and a weak home-phone label. But the cell-phone label will be a
negative example for the home-phone extractor and visa-versa.
The extractors will struggle with similar label types when it does
not have enough information to differentiate between them. This
“split-label” problem is discussed in Section 8.6.

6.3 Labels for Reference Resolution
The weak label for reference resolution consists of the selection
of the instance of the principle entity modified by a particular
form. In the case that the form is completed correctly, the weak
label is exactly equal to the golden label. For this paper, every
form was completed correctly by the assistant, so we do not
distinguish between the two sets. (However, poor interaction
design can cause problems, see [7] for more details.)

7. Experimental Framework
To better understand the analysis of information intent,
domestication, and the performance of machine learning on weak
labels, we performed a variety of experiments. Domestication
performance is measured by comparing the results of
domestication to a gold-label set. Form-ranking performance,
form-field performance, and reference-resolution performance are
measured over time to track performance improvement as
assistants continue to use the system. Overall system performance
of information-intent analysis is measured on a final test set.
To ensure that the system’s evaluation is based on a realistic
workload, two collections of requests were gathered from existing
real-world sources. For the seminar corpus, several Carnegie
Mellon University mailing lists were archived. From the archive,
439 seminar-announcement messages, which announced a single
seminar, were extracted. Each message was a request for
attendance at a seminar talk. From this corpus, 60 of these

requests were set aside for a testing set and the remainder formed
the training set. All requests were processed by first presenting
each request to an assistant. A single assistant filled out a form
that added the appropriate data of the announced seminar into a
database. All requests were additionally hand labeled to create a
gold-label set for extraction. This corpus was only used to
evaluate domestication and extraction performance.

For the webmaster corpus, a set of e-mail requests was extracted
from a log of saved messages of a professional webmaster. The
website update requests in this log were processed with the
following steps. The requests were first anonymized by
translating real-world entities into parallel fictional entities of a
made-up website. Then requests were stripped of thread replies.
Messages containing multiple requests were split into multiple
messages. Finally some requests were discarded because the
requests could not be satisfied through the completion of a form.
All these transformations preserved the language of the original
requests as much as possible. The result was 234 requests.
Chronologically, the first 195 requests were used as a training set
and the last 39 requests were used as a test set. The test set was
used to measure the performance of VIO after a short “warm-up”
phase of interaction that allows the machine learning algorithms a
chance to learn.

All requests were presented to an assistant who completed each
using VIO. In addition, all requests were also hand labeled with a
gold standard for extraction. Since every request was processed
correctly, the log of form and entity-instance selections generated
by the assistant served as the gold label sets for those algorithms.

While the implementation of VIO on our made-up website
allowed assistants to make 18 different requests types, the e-mails
in the webmaster corpus covered a narrower set, involving only
updates to information related to people, sponsors, and news
information. Thus, the use of real-world data introduced a realistic
skew into the distribution of request types.

All of the training data used in experiments were gathered
automatically by processing the training portion of the requests in
an untrained version of the system. Learned models were trained
at five approximately evenly spaced points in time during this
process to study performance improvement over time.

Domestication performance is reported in terms of precision,
recall, and the harmonic mean (F1) for each extractor type for an
exact match of the entire label (“entity” precision). The scores are
generated by comparing the domesticated labels to a set of gold
labels for the requests in the training set.

Form-ranking accuracy is reported in terms of the Mean
Reciprocal Rank of the correct form in the ranked list of
suggestions. Classifiers were trained using the requests from
varying amounts of the training set.

Extractor performance is reported as precision, recall, and the
harmonic mean (F1) value for each extractor separately.
Extractors are trained on varying numbers of requests from the
training set using the domesticated labels. The resulting models
are then applied to the requests in the test set and the resulting
extractions are compared to the test set gold labels.

Reference-resolution performance is reported only for person-
recognition requests. There were not enough reference-resolution

examples for other entity types in our test data to produce
meaningful measurements. Only modify and delete requests are
considered since add-person requests do not require the assistant
to select an existing record. Within this subset of the requests, the
Mean Reciprocal Rank of the correct person is reported.
Experiments were run using the output of extractors trained on
various amounts of training data, in particular depending on the
performance of extraction at the corresponding point in time. In
addition, tweaked versions of these extractors using all four
weighting schemes for scoring are reported.

8. Experimental Results
In this section the experimental results of two corpora are
described. One corpus covers all steps in the analysis of
information intent. An additional corpus provides additional
results for our domestication and extraction algorithms.

8.1 Domestication Performance
Table 2: Domestication Performance on Seminar Corpus

Label Name Precision Recall F1

person_name 0.8649 0.9432 0.9024
seminar_day 0.9437 0.9860 0.9644
seminar_month 0.9086 0.9915 0.9482
seminar_year 0.8989 0.9826 0.9389
seminar_title 0.8433 0.9022 0.8718
seminar_starttime 0.9616 0.9921 0.9766
seminar_endtime 0.9839 0.9892 0.9865
seminar_building 0.9605 0.9884 0.9743
seminar_room 0.9529 0.9582 0.9555

Micro-Averaged Values 0.9207 0.9679 0.9435
Macro-Averaged Values 0.9243 0.9704 0.9465

Table 3: Domestication Performance on Webmaster Corpus

Label Name Precision Recall F1
person_bio 1.0000 1.0000 1.0000
person_email 0.9759 0.9759 0.9759
person_fax_phone 0.7778 0.7778 0.7778
person_first 1.0000 0.9340 0.9659
person_last 0.9671 0.9484 0.9577
person_office_phone 0.7447 0.7778 0.7609
person_organization 0.9818 0.9474 0.9643
person_org_city 1.0000 0.7778 0.8750
person_org_department 1.0000 0.9091 0.9524
person_org_url 1.0000 1.0000 1.0000
person_org_location 1.0000 1.0000 1.0000
person_org_state 1.0000 0.8889 0.9412
person_org_street 1.0000 1.0000 1.0000
person_org_zip 1.0000 0.8000 0.8889
person_personal_url 0.9545 0.8571 0.9032
person_title 0.9853 0.9306 0.9571
sponsor_name 1.0000 1.0000 1.0000
news_body 0.7500 0.6923 0.7200
news_header 1.0000 1.0000 1.0000
news_url 1.0000 1.0000 1.0000
Micro-Averaged Values 0.9660 0.9276 0.9459
Macro-Averaged Values 0.9569 0.9109 0.9320

Table 2 lists the performance of the domestication algorithm for
every extractor in the seminar corpus. In general, domestication
performs well with good precision and very high recall. For name

and year, precision is lower because the algorithm finds all
occurrence of a name or year, but only the reference in the
announcement header was labeled as “gold.” For the title label,
this duplicate reference problem also occurred, but title
additionally had difficulty with plain-text formatting tricks used
to format the presentation of the seminar request. In general recall
is high because copy-and-paste was used to complete the form.
Table 3 lists the performance of the domestication algorithm for
every extractor in the webmaster corpus. (The label bio stands for
biographical sketch, generally a one-line description of hobbies.
The label org stands for organization.) The number of label
instances in the training set is listed in Table 5. The domestication
algorithm performs very well, except for fax and office numbers,
and for the body of requests to update news on the website. Phone
numbers are difficult because a request string such as
“412.555.1212” is translated into “(412) 555 1212” due to
embedded formatting issues in the form system. Domestication of
news body sometimes failed because of the maximum window
size for domestication analysis.

8.2 Extraction Performance

Figure 2: Extraction Performance

Figure 2 is a graph of extraction performance over time on the
webmaster corpus. The x-axis in this graph is the number of
instances of that particular label (not the total number of
requests). As described earlier, the y-axis is the performance of
the extraction model on the test set after training on the given
number of examples. The ten lines indicate the extractors that
generated non-zero extractions. Many extractors had insufficient
data to generate extractions.
To interpret Figure 2, when VIO is first used, it behaves
identically to a direct-manipulation content-management system
that has no intelligence. Extraction of true positives help the
assistant by pre-filling the form. A false negative of any extractor
has no negative effect on the assistant. A false negative is simply
a missed opportunity to help the assistant. (See reference [7] for a
description of the evaluation of the assistant experience.) When
an extractor generates a false positive, the assistant must correct
the mistake. (Table 5 below shows that the extractors are biased
towards precision.) Figure 2 also demonstrates that extractor
performance generally improves with additional examples. The
erratic performance of some extractors is a consequence of three

factors: the small test-set size for the extractor, the small number
of examples, and errors in weak labels. The extractors that occur
often (i.e., extend to the right) perform well. The rarely occurring
extractors have less of an effect simply because the corresponding
“problem” of completing the corresponding form field does not
often occur.
Table 4 lists the performance of extraction on the seminar corpus.
In this experiment there are two principle effects. One is the
consequence of a single label that is considered correct in the
gold-label set. The second effect, however, is directly related to
the domestication algorithm itself. In many requests day, year,
start time, and end time are entered into the corresponding form
as a single digit or pair of digits. This form of data entry has two
effects. First, every occurrence of the digit or digits in the corpus
is labeled by the domestication algorithm. Second, the extraction
algorithm tends to label every occurrence of those digits. To
address this issue, we plan to add context to the domestication to
improve its accuracy.

Table 4: Extraction Performance on Seminar Corpus

Label Name # Precision Recall F1

seminar_building 354 0.8545 0.8246 0.8393
seminar_room 361 0.9434 0.8475 0.8929
seminar_month 383 0.9107 0.8095 0.8571
seminar_day 373 0.8226 0.7846 0.8032
seminar_year 188 0.8077 0.7000 0.7500
seminar_starttime 391 1.0000 0.6333 0.7755
seminar_endtime 186 1.0000 0.5000 0.6667
seminar_title 383 0.7692 0.1667 0.2740
person_name 422 0.6515 0.6143 0.6324

Table 5: Extraction Performance for Webmaster Corpus

Label # Precision Recall F1
person_bio 28 1.0000 1.0000 1.0000
person_email 83 1.0000 0.8750 0.9333
person_fax_phone 9 0.0000 0.0000 0.0000
person_first 198 0.9722 0.7609 0.8537
person_last 152 0.8889 0.8571 0.8727
person_office_phone 47 1.0000 0.4375 0.6087
person_organization 55 1.0000 0.3077 0.4706
person_org_city 7 0.0000 0.0000 0.0000
person_org_department 10 0.5000 0.3333 0.4000
person_org_url 8 0.0000 0.0000 0.0000
person_org_location 26 1.0000 0.2000 0.3333
person_org_state 8 1.0000 0.5000 0.6667
person_personal_url 44 0.0000 0.0000 0.0000
person_title 68 1.0000 0.5000 0.6667
sponsor_name 5 0.0000 0.0000 0.0000
news_header 15 0.0000 0.0000 0.0000
news_url 13 0.0000 0.0000 0.0000
news_body 12 0.0000 0.0000 0.0000

Table 5 reports the performance of all extractors trained on all
195 training requests of the webmaster corpus. As noted before,
entity precision, entity recall, and entity F1 measure the model’s
predictions against the gold-labeled test set. These results
illustrate that, once about 30 examples or so are available, the
extractor generates a high-quality result. The principle exceptions
to this rule are the URL extractors. These extractors perform
poorly because the single conceptual class of a URL is split into
three classes: personal-organization URLs, personal URLs, and

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200
Number of Examples

 F1 Performance

Bio Email First Last Office Phone

Organization Department Location State Title

news URLs. Thus, URLs are an example of the split-label
problem. Each extractor in isolation never has sufficient evidence
to ever extract a URL. The benefit of the automatically generated
dictionaries has a positive impact on many fields. The
person_org_state extractor performs well because the dictionary
already contains all the state names used in the test requests.

8.3 Form-Ranking Performance
Figure 3 is a graph of the form-ranking performance over time for
the webmaster corpus. All the algorithms tested improved over
time. AdaBoosted Decision Tree and Maximum Entropy perform
consistently better than Decision Tree and SVM. However,
without more data, it is not clear which algorithm is best. Note
that after full training, the correct form appears in the top two of
the ranked list of forms, except in one test example.

Figure 3: Form Ranking Performance

8.4 Reference Resolution Performance

Figure 4: Reference-Resolution Performance

Of the four approaches to weighting dictionary matches, three of
them—the flat-sum approach, the trained-classifier approach, and
the IDF approach—performed equally well across every
condition. These three approaches are reported together as a
single “other” value along with the hand-selected field approach.
Additionally, the number of training examples is varied and both
tweaked and un-tweaked extractors were used to generate the
inputs. Figure 4 is a graph of the performance of reference
resolution on the webmaster corpus over time. The graph shows

that the tweaked three “other” approaches consistent outperform
the hand-selected approach in initial performance. However,
additional data might reveal that all the approaches converge or
that the “other” approaches separate.
Reference-resolution benefits from using all of the fields to
identify requests are systematically better than the hand-selected
approach. Additionally, tweaked versions of the extractors
provide a large benefit to the system when it does not yet have
enough training data, though this margin shrinks as the extractors
improve and we are less able to squeeze out extra recall.

8.5 Overall Performance
Overall the system performs quite well in this domain of
problems. It is quite reliable at suggesting the correct form as well
as picking the top-ranking entity instance for modification.
Extractions perform well for short common fields, but poorly on
long values and uncommonly used fields. Since performance is
related to the frequency that a field appears, good performance
appears where automation offers the largest time savings.
Additionally, precision remains generally high in all cases, and as
such doesn’t actually hinder the assistant by suggesting incorrect
values.

Our tests were performed on a training set with a relatively
limited number of requests. Performance picks up quickly, but
would continue to improve in an actual deployed system, in which
we could expect to see many more requests. This fact is
particularly true of the extractors for relatively uncommon fields
and classifier accuracy on infrequently used forms. In both of
these cases, the system suffers from a lack of sufficient training
data.

8.6 Discussion
VIO uses a simple “equality” model of conversion between
annotations and assistant interaction. In the reserves direction,
domestication also assumes a simple mapping model between the
wild label and the weak label. This model works perfectly for
form selection and reasonably well for entity-instance selection.
For extraction, annotations are directly converted to extractions.
Domestication converts text-field values into weak labels
relatively directly. In addition to handling text fields, VIO can be
easily extended to handle pull-down menus of a fixed set of
choices, “radio” buttons, sliders, etc., where the bi-directional
translation between the widgets and the annotation is accurate.
For experimental purposes, we stuck to this model to minimize
the addition of domain-specific knowledge. However, more
complex transformations require a more sophisticated, domain
dependent, mapping. For example, consider a calendar widget for
date of birth that should be set to June 13th, 1961. The annotation
label in a message might be “6/13/1961,” or “June 13 1961,” or
even “my birthday.” To handle conversions that require some
domain semantics, we plan to imbed semantics directly into the
widget itself, essentially as part of “widget authoring.” This
approach leverages the creation of a plug-in library of domain-
specific widgets that can easily be shared across applications and
organizations.

Experimental results show that the domestication algorithm
generally works well, but does not handle the one case where
additional labels, not appearing in the form, should be labeled as
part of a particular class. For example, many e-mail signatures

0.6

0.7

0.8

0.9

1.0

0 50 100 150 200
Examples

Mean Reciprocal Rank

tweaked hand tweaked other
untweaked hand untweaked other

0.6

0.7

0.8

0.9

1

0 50 100 150 200

Examples

Mean Reciprocal Rank

Decision Tree AdaBoosted Decision Tree
Max Ent SVM

contain a person’s name, title, cell-phone number, etc. But these
strings never appear in the form request and thus are never labeled
with the associated class by domestication. Ironically, this
situation improves performance for our webmaster corpus,
because the signature is frequently from an individual who is not
the target of the request. Thus, for example, the extraction
algorithm quickly learns not to extract “Ashuk,” (the pseudonym
of a person that frequently composed requests to the webmaster).
While this particular case worked out well in the experimental
corpus, we believe that deeper semantic analysis of requests, e.g.,
signature recognition, would benefit VIO.

Another consequence of the goal of domain independence is VIO
one-to-one association of form fields with extractors (since no
additional information is needed to make this association). This
association leads to a split of one “conceptual” label and extractor
to several actual labels and extractors, thus killing performance in
some cases. A simple one-level indirection extraction results to
form fields may be a sufficient solution for this problem.

9. Related Work
Command-style natural-language systems related to information
intent have a scattered history, beginning with SHURDLU [15]
and ASK [11] and continuing to the work of Mooney and his
students [3].

The ASK system provides a natural-language interface to updates
(at the data and metadata level) and provides a form-based data-
entry system. However, the system does not appear to fill in forms
based on natural language, nor does it provide navigation to a
form; the user must know the name of the form of interest. Also,
this paper does not discuss handling of errors of any type.

Mooney’s work [16] is similar because of the emphasis on
semantic parsing. A particular advantage of this work is the
emphasis on a context-free target language. Our target language
consists of a combination of attribute/value pairs, forms (which
can be thought of as “templates” or frames with slots), and
references to entities. On the other hand, VIO handles new values.

In our own work, reference [1] reports on some initial
experiments in the analysis of website requests using gold-labeled
machine-learning techniques. Reference [2] reports on
experiments that measure the performance advantages of
information-intent analysis in a cooperative work environment.
Reference [7] reports on the assistant experience and results of
behavioral testing of VIO. VIO uses MinorThird [6]
implementations for all its machine learning.
Horvitz [8] describes a system with a similar interaction model
that focuses on a single domain of scheduling meetings into a
calendar system. This work uses gold labels and concentrates on
agent confidence, expected utility, and the problem of initiation of
dialog with the assistant (in a non-irritating way).
The MANGROVE project [10] is targeted at bridging the chasm
between the message-unstructured world and the database-
structured world. This project implements a direct-manipulation-
interaction-style markup tool for messages. Our prototype may be
applicable to the same scenario.

Lockerd, et. al. [5] describes a user study of e-mail-based requests
to a web master for changes to a website. We borrowed the
before-image/after-image technique from this paper. The paper

reports that detecting delete and update requests exhibited a
“semantic pattern” 85% of the time. The data from the reported
experiment was used to implement a hand-built parser that
understood requests fully 65% of the time.

Interface design where forms are a response to free-text input has
a history in human-computer-interaction research, e.g., [8][13].
VIO represents the next step in this line of research where weak
labeling is used instead of gold labeling.

Meng [12] reports experimental results on removing the
ambiguity between field values and the use of the values in filling
out a form. The method involves mapping field references to
potential field values and then weighing the references via a
weighted n-gram vector cosine function. This work is related to
our work on extraction.
Finally, a variety of works, for example, [9][10][22][23][24],
focus on extending e-mail with semantics or task structure. VIO is
clearly complementary to this line of research.

10. Conclusion
People frequently send messages containing information intent:
requests that specify a task to be accomplished by an assistant. In
this paper we proposed analyzing information intent by using
machine-learning algorithms trained on weak labels. Weak labels
are generated by passive observation of the assistant’s interaction
with the system. The results of the analysis are used to aid the
assistant in processing the request through an intelligent form
interface.
To better understand the performance, advantages, and
disadvantages of our solution, we built an end-to-end prototype,
the Virtual Information Officer (VIO), which operates by
analyzing the information intent of the user, providing an
interface for the assistant to inspect the results of analysis via a
form-based data-entry system, executing the user’s intent as
updates to a database, and generating weak labels from the
interaction. Weak labels are used to re-train models to
automatically improve performance over time.
In addition, the prototype was build with a minimum of domain
specific engineering to ensure that our intelligent interface can be
retargeted to new domains with a minimum of engineering effort.
We then used this prototype to perform a series of experiments to
determine the performance of the system and to determine the
best machine-learning algorithms for analysis. Our experiments
showed that our algorithm for generating weak labels, termed
domestication, performed very well measured against a hand-
generated “gold label” standard. This result is crucial to the
success of the system because weak labels provide the training
input to the rest of the analysis.
For information-intent analysis, three problems were solved: form
ranking, form field pre-filling, and entity reference resolution.
Our experiments showed that AdaBoosted decision trees, which
beat out three other machine-learning algorithms, performs very
well. On our final test set, the correct form was suggested either
first or second in every case but one. For form-field pre-filling,
we used conditional random field (CRF) extraction. CRFs worked
well as long as the weak labels were accurate, except in the “split
label case,” i.e., when a label for a general category of sequence
(telephone number) was split across two classes (cell-phone
verses home-phone). This split confuses the extractor since each

positive cell-phone label is a negative example for a home-phone
label, and visa versa. For reference resolution, we used a
reference resolution algorithm based on learning important feature
differences between features present in the information-intent
request and features present in entity-reference instances. The
algorithm performed as well as two other competitors, given the
limitation set by the extractor performance. Tweaking [17] the
extractors (boosting recall at the expense of precision) has more
of an impact when their initial performance was low.
In summary, our analysis shows that information intent can be
successfully analyzed using weak labels as training evidence. In
related work [7], we show that the user interaction supported by
the analysis significantly improves assistant time performance
without a significant introduction of new errors.

11. Acknowledgements
Thanks to Robert McGuire and Kelvin Goh for their software
engineering work on VIO. Thanks to Paul Bennett for an
insightful critique of our work. Thanks to Emily Leathers and Ken
Mohnkern for assistance in the project. This material is based
upon work supported by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. NBCHC030029.

12. REFERENCES
[1] Cohen, W. W., Minkov, E., Tomasic, A., Learning to

Understand Web Site Update Requests. In Proceedings of
IJCAI (2005), 1028-1033.

[2] Tomasic, A., Zimmerman, J., Simmons, I., Linking
Messages and Form Requests. In Intelligent User Interfaces
(IUI) (2006), 78-85.

[3] Mooney, R., Learning Semantic Parsers: An important but
under-studied problem. In Working notes of the AAAI spring
symposium on language learning (2004).

[4] Tomasic, A., Cohen, W., Fussell, S., Zimmerman, J.,
Kobayashi, M., Minkov, E., Halstead, N., Mosur, R., and
Hum, J., Learning to Navigate Web Forms. In Workshop on
Information Integration on the Web (IIWEB) (2004).

[5] Lockerd, A., Pham, H., Sharon, T., and Selker, T, Mr.Web:
An Automated Interactive Webmaster. In Proceedings of the
Conference on Computer/Human Interaction (CHI), ACM
Press (2003).

[6] Cohen, W., Minorthird: Methods for Identifying Names and
Ontological Relations in Text using Heuristics for Inducing
Regularities from Data. http://minorthird.sourceforge.net.

[7] Zimmerman, J., Tomasic, A., Simmons, I., Hargraves, I.,
Mohnkern, K., Cornwell, J., McGuire, R., VIO: A mixed-
initiative approach to learning and automating procedural
update tasks. In Proceedings of the Conference on
Computer/Human Interaction (CHI), ACM Press (2007).

[8] Horvitz., Principles of Mixed-Initiative User Interfaces. In
Proceedings of Conference on Human Factors in Computing
Systems (CHI), ACM Press (1999).

[9] Bellotti, V., Ducheneaut, N., Howard, M., Smith, I., Taking
Email to Task: The Design and Evaluation of a Task
Management Centered E-Mail Tool. In Proceedings of
Conference on Computer/Human Interaction (CHI), ACM
Press (2003), 345-352.

[10] Etzioni, O., Halevy, A., Levy, H., and McDowell, L.,
Semantic Email: Adding Lightweight Data Manipulation
Capabilities to the Email Habitat. In International Workshop
on the Web and Databases (WebDB), June 12-13, 2003, San
Diego, California (2003).

[11] Halevy, A., Etzioni, O., Doan, A., Ives, Z., Madhavan, J.,
McDowell, L., Tatarinov, I., Crossing the Structure Chasm.
In Conference on Innovated Data Systems Research (CIDR)
(2003).

[12] Thompson, B., Thompson, F., Introducing ASK, A Simple
Knowledgeable System. In Proceedings of the First
Conference on Applied Natural Language Processing, Santa
Monica, California (1983).

[13] Meng, F., A Natural Language Interface for Information
Retrieval from Forms on the World Wide Web. In
Proceedings of the 20th International Conference on
Information Systems, Charlotte, North Carolina (1999).

[14] Cohen, P., et. al., Synergistic Use of Direct Manipulation and
Natural Language. In Proceedings of the Conference on
Computer/Human Interaction (CHI), ACM Press (1989).

[15] Cohen, W., Ravikumar, P., Fienberg, S., A Comparison of
String Distance Metrics for Name-Matching Tasks. In
Workshop on Information Integration on the Web (IIWEB)
(2003).

[16] Winograd, T., Understanding Natural Language, Ph.D.
thesis, Academic Press (1972).

[17] Kate, R., Wong, Y.W., Mooney, R. J., Learning to
Transform Natural to Formal Languages. In Proceedings of
AAAI (2005).

[18] Minkov, E., Wang, R. C., Tomasic, A., Cohen, W. W., NER
Systems that Suit User's Preferences: Adjusting the Recall-
Precision Trade-off for Entity Extraction. In HLT/NAACL
(2006).

[19] SecondString, http://secondstring.sourceforge.net/.
[20] Lafferty, J., McCallum, A., Pereira, F., Conditional Random

Fields: Probabilistic Models for Segmenting and Labeling
Sequence Data. In Proceedings of 18th International Conf.
on Machine Learning (ICML) (2001).

[21] Schapire, R. E., Singer, Y., Improved Boosting Algorithms
using Confidence-rated Predictions. In Proceedings of the
Eleventh Annual Conference on Computational Learning
Theory (1998), 80–91.

[22] Cohen, W., Carvalho, V., and Mitchell, T., Learning to
Classify Email into “Speech acts.” In Conference Empirical
Methods in Natural Language Processing (2004).

[23] Dredze, M., Lau, T., Kushmerick, N., Automatically
Classifying Emails into Activities. In Intelligent User
Interfaces (IUI) (2006).

[24] Shen, J., Li, L., Dietterich, T., Herlocker, J., A Hybrid
Learning System for Recognizing User Tasks from Desktop
Activities and Email Messages. In Intelligent User Interfaces
(IUI) (2006).

[25] Felligi, I., Sunter, A., A Theory for Record Linkage. In
Journal of the American Statistical Society, 64:1183--1210
(1969).

http://secondstring.sourceforge.net/

	INTRODUCTION
	Intent Analysis
	Generation of Ranked List of Forms
	Training
	Application

	Form-Field Analysis
	Training
	Application

	Reference Resolution for Forms
	Application

	Generation of Training Data from Assistant Interaction
	Labels for Form Ranking
	Labels for Form Field Analysis
	Labels for Reference Resolution

	Experimental Framework
	Experimental Results
	Domestication Performance
	Extraction Performance
	Form-Ranking Performance
	Reference Resolution Performance
	Overall Performance
	Discussion

	Related Work
	Conclusion
	Acknowledgements
	REFERENCES

