

VIO: a mixed-initiative approach to learning and
automating procedural update tasks

John Zimmerman, Anthony Tomasic, Isaac Simmons,
Ian Hargraves, Ken Mohnkern, Jason Cornwell, Robert Martin McGuire

Carnegie Mellon University
{johnz, tomasic}@cs.cmu.edu

ABSTRACT
Today many workers spend too much of their time
translating their co-workers’ requests into structures that
information systems can understand. This paper presents
the novel interaction design and evaluation of VIO, an
agent that helps workers translate request. VIO monitors
requests and makes suggestions to speed up the translation.
VIO allows users to quickly correct agent errors. These
corrections are used to improve agent performance as it
learns to automate work. Our evaluations demonstrate that
this type of agent can significantly reduce task completion
time, freeing workers from mundane tasks.

Author Keywords
agents, interaction design, mixed initiative.

ACM Classification Keywords
H.5.2 User Interfaces: interaction design

INTRODUCTION
Today many workers in companies spend time translating
requests into language and structures that information
systems can understand. Consider the task of transferring a
student from a waitlist to a course. The requester, a
professor, has an intent that matches a common work task.
The professor expresses her intent in an email to the
department coordinator with relevant information such as
the student’s and course’s names. The coordinator then logs
in to the appropriate systems and makes the changes,
translating the request into information the system can
understand.

Organizations address translation tasks by assigning a
human-service-agent, such as administrative assistants,
webmasters, network administrators, purchasers, etc., who
perform procedural translation tasks on behalf of coworkers
or customers. Procedural translation tasks are good
candidates for automation because the input is easily
captured, the output is structured, and the tasks are
repeatedly executed. In order to study this opportunity we
have developed a machine-learning-based agent and mixed-

initiative interface. Called VIO, our agent takes on the role
of a webmaster’s assistant (Figure 1). Requesters email
requests (i.e., updates for a website) to the webmaster using
natural language. VIO preprocesses the requests and pre-
fills website update forms with suggestions. These pre-
filled forms are presented to the webmaster for approval.
The forms are an augmentation of a traditional direct-
manipulation interface that allow the webmaster to quickly
recognize the task and repair mistakes made by VIO. Our
interaction design focuses on making repairs easy because
(i) we accept that agents make errors, and (ii) having an
interface that lets webmasters correct errors by doing their
regular work and without generating additional work allows
VIO to be deployed with little or no training. Through the
process of repairing and approving forms, webmasters
provide training data, allowing VIO to “learn in the wild,”
that is, directly from use. This frees the webmaster to then
focus on non-procedural tasks that require more human skill.

Figure 1. Webmaster repairs and approves the task form

causing the web database to update and VIO to learn from the
addition of a new training example.

Casting VIO as a webmaster’s assistant is a first step to
concretely test our ideas. However, the design principles of
VIO generalize to a much larger set of procedural tasks
found within organizations.

The design of VIO raises several fundamental HCI research
questions including: (1) How effective is a human-service-
agent collaborating with an agent that has had little training
compared to a traditional direct manipulation interface? (2)
How effective is VIO if it performs perfectly? (3) How do
VIO’s errors impact overall performance? In this paper we
address all these questions. We begin by describing our
novel interaction method that combines natural language
interaction—in this case the preprocessing of incoming
email requests—with existing direct manipulation tools,
and a feedback loop to the machine-learning algorithms. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2007, April 28–May 3, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-593-9/07/0004...$5.00.

addition, the paper describes two evaluations. The first is an
empirical study where collaboration with VIO reduced task
completion time by 17%. The second is a Keystroke-Level
Model [8] analysis that provides more detail on the benefits
provided by VIO. In addition, these evaluations provide

of different types of agent errors.

e tension between

ng users to

creased productivity through collaboration

e

arning model that provides more

r,

ne tasks so users can address more complex threaded

 workers must perform

ing
lications with tasks and project-management.

s to significantly reduce task

insights into the cost

RELATED WORK
Some researchers in the Human-Computer Interaction
(HCI) community have championed the benefits of
automation while others focus on the power of direct
manipulation [16]. While the work on embodied agents has
yet to demonstrate significant effects, the implementation of
automation via machine learning in underlying systems has
become core to both HCI research and development. Our
system tries to find a happy medium in th
full automation and direct manipulation.

Our presentation of the request in terms of a form builds on
Malone et al.’s work on Information Lens, where they
found that semi-structured messages improve
communication and coordination activities [13]. In
discussing future work they predict a graceful degradation
between automatically and manually handled tasks. Our
interaction design follows this principle, allowi
experience the graceful improvement of VIO.

Previous research has explored the use of natural language
processing to automatically fill out forms [14, 17].
Additionally research prototypes have been built that
convert email requests into website updates [12]. However,
these systems have not presented agents that perform
perfectly, nor have they addressed how users handle agent
errors. In fact, previous work in this area presents no
evidence of in
with an agent.

Out of the tension between automation and direct
manipulation, the mixed-initiative community has arisen.
They focus on exploring how humans and AI systems can
more effectively collaborate to solve complex tasks. Hearst
captures the essence of this when she notes that AI
researchers want to model humans in order to make
computers that act intelligently, while HCI researchers want
to leverage computing to make it easier for users to make
intelligent decisions [6]. The goal of the mixed-initiative
community is to develop intelligent systems that allow for
collaborative interaction to solve problems [6]. While most
mixed-initiative systems have focused on solving complex
planning tasks such as generating train schedules [4] w
focus on how agents can free users from mundane tasks.

One mixed-initiative project that has focused on mundane
tasks is the LookOut [7] system, which assists users with
adding meetings to calendars. Like VIO, the system
processes incoming email and attempts to fill a form, in this
case a calendar event. While LookOut at a high level is
quite similar, our design offers some advances. Our system
has been designed to be domain independent, where
LookOut only addresses meetings. Our system handles add,

delete, and modify tasks, while LookOut only addresses add
tasks. LookOut interrupts the user and focuses on assessing
whether a message warrants an interruption [5]. Our design
instead follows an interaction model set by Letizia [10],
where the assistance falls to the side of the locus of
attention, allowing the user to easily ignore the assistance
but to also benefit from it by having it close. Finally, our
system uses a deeper le
effective help over time.

The Eager system [2], an early example of programming by
demonstration, detected simple tasks that a user repeated
twice during an interaction. The system then used
highlighting (as we do) to draw the user’s attention to
extracted information. Eager would use the extracted
information to construct a repetitive task for the user. Eage
however, has no feedback mechanism for repairing errors.

Previous research on email use claims that email is a
“habitat” where much project-management work is done [3].
Bellotti et al. extended this, designing a system that assists
users with completing tasks that arrive via email [1]. They
developed a “thrask” (tasks and threads) interface to help
users complete tasks that involve multiple email exchanges.
Their system does not employ machine learning, but instead
addresses the presentation of emails. We view our system
as complementary in that VIO provides automation of
munda
tasks.

Finally, many commercial products exist to help
organizations manage and automate their workflows.
Business process automation software such as Remedy [15]
provides an abstraction layer between the application logic
and the business practice to be automated. This layer allows
businesses to connect different systems together, but also
creates environments where many
the form filling, translation tasks.

In summary, our system (i) integrates theories from mixed-
initiative computing and natural-language research into a
working system that has been demonstrated to improve
human performance, (ii) advances the design of human-
agent interfaces by addressing the issues of agent error and
learning, and (iii) extends the research done on blend
email app

DESIGN
The interaction design of VIO embraces the fact that agents
make errors. Instead of investing huge engineering efforts
in an attempt to build perfect agents, our design allows an
agent with little or no training to observe a task and begin
making suggestions. The interaction design allows users to
repair agent errors without increasing the work they would
have done without VIO. As VIO learns, the interaction style
allows its suggestion
completion time.

Figure 2 illustrates VIO’s functional architecture. A
requester initiates a task by sending an email request to the

webmaster that gets routed to the analysis module. VIO
modifies the incoming email by adding a ranked list of
likely tasks followed by a structured list of all possible tasks
(Figure 3). The webmaster reviews the email and selects the
appropriate task-form link. This transitions the webmaster
to a task-form showing all of the elements available for
update with as many fields as possible completed (Figure 4).
The webmaster then adds any missing information and
repairs any information VIO extracted incorrectly. She then
submits the form, causing the execution module to execute
a database transaction, and by extension, update the website.
The results of the interaction are then forwarded to the
learning module, which analyzes the entire interaction and
improves VIO’s performance.

Figure 2. Functional architecture of VIO.

Figure 3 shows an incoming email request VIO has
modified with a ranked and structured list of tasks. An
earlier design presented a completed form based on VIO’s
best guess instead of a list of tasks. However, in pilot
testing participants had difficulty recognizing when VIO
had selected the wrong form. To address this problem we
borrowed a technique from information retrieval and used a
ranked list. This approach is a form of “soft fail” [11]: an
agent error that still moves the user closer to their goal.

In an earlier prototype the ranked list showed only the top
three items; however, pilot testing revealed problems with
this interaction. When participants encountered a list where
the appropriate task did not appear as one of the top three
items, they hesitated before making a selection from the
structured list. Participants spent time re-examining the
incoming email, apparently worried that they had not
understood the requester’s intent. The current design
addresses this hesitation by using a threshold value to
determine the length of the ranked list. When the VIO has
high confidence in a single form, it lists only one item like
in the example above (Figure 3). When VIO has high
confidence in several forms, it lists several forms. When
VIO has low confidence for all forms, it makes no

mail allows users to
tractions.

 section, this model

lection.

gly on the

re accurate, but imperfect, predictions of
user interactions.

suggestion and only the structured list appears.

Figure 4 displays a Modify Person task-form. An earlier
design placed the message text at the top of the task-form to
communicate that users should start at the top and work
down to the update button. In piloting, however,
participants spent a great deal of time scrolling so they

could copy and paste text between the email and the form
elements. The current task-form layout addresses this issue
by placing the source message on the left. This arrangement
reduces scrolling and makes comparisons between the
email and the form elements much easier. The form
elements use background color to help communicate
actions. Elements updated by VIO have an orange
background, elements updated by the human-service-agent
have a blue background, and elements that have not
changed have a white background. Additionally, an orange
highlight in the email helps users see items that have been
extracted. In pilot studies VIO would occasionally make
incomplete extractions that participants failed to see. In one
example, the incoming email asked the webmaster to add
“School of Information Sciences, University of Portlandia”
as an affiliated organization. However, VIO extracted
“Information Sciences University” as the organization.
Highlighting the extracted text in the e
more easily notice partial ex

VIO MACHINE LEARNING
In this section we briefly summarize the machine learning
of VIO. For more on the machine learning of VIO, please
see [19]. VIO addresses three interaction problems via
machine learning: form ranking, entity-instance selection
(i.e., selecting the record for a form), and field completion.

For form ranking, VIO logs the form selected for each
message. The history of selections is used as a label to the
log of messages. Messages are represented as a bag of
words. A k-way boosted decision tree algorithm is trained
to generate the model for form ranking. For the experiment
described in the evaluation background
has a mean reciprocal rank above .90.

For entity-instance selection, VIO logs the records selected
for forms. The record selected is the label for (conceptually)
a data set represented as the difference between the records
and the words in the message. A Naïve Bayes classifier is
trained to generate the model for entity instance se
This model has the mean reciprocal rank above .85.

For form-field completion, each field value v completed by
the user in a form is logged. A domestication algorithm
searches the message for a string s similar to v and declares
s a label for the field. The labels are used for a corpus of
messages represented as strings. A conditional random field
algorithm is trained to generate an extraction model.
Extraction model entity F1 performance ranges from 0.0 to
1.0. Extraction performance depends most stron
number of labels for training and the length of v.

To summarize, during use the user is assumed to select the
appropriate form, to select the appropriate target instance of
the form, and to complete the appropriate fields for a form.
VIO used the log of this interaction to label processed
messages and train machine-learning models for form
selection, instance selection, and form-field pre-filling. The
resulting models a

Figure 3. Email augmented with a ranked list of tasks and a structured list of all tasks. Clicking on the ta
user from the augmented email to the task-form displayed in a web browser.

Source email with
extracted terms
highlighted in
orange.

Figure 4. Task form where webmaster repairs any VIO errors and completes the request. Completed r
training examples, improving VIO performance.

EVALUATION
In order to understand the impact of VIO we conducted two
evaluations. An empirical study compared the performance
of webmasters interacting with VIO against webmasters
interacting with a traditional content-management system
(CMS). A Keystroke-Level Modeling (KLM) analysis

compared how skilled users would
goes from knowing nothing to perfo

Evaluation Background
In order to ground the study in the re
corpus of email messages from a p
To preserve privacy, all email mes

Ranked list
of tasks
Structures list of all
update tasks VIO
can perform

sk links transitions the

eq

pe
rm

al
ro

sa
Pulldown for
modifying task-
form.

Orange highlights
show fields VIO has
filled.

Blue highlights
show fields the user
has filled. Fields
without a highlight
will not be
modified.
Pulldown for
modifying selected
record. Orange
indicates VIO
selected record.
Blue link transitions to preview of

updated page. Modify button makes
changes to site database.

uests get added as

rform with VIO as it
ing perfectly

 world, we acquired a
fessional webmaster.

ges were anonymized

by replacing references to names, organizations, URLs, and
personal data. In addition, we removed threaded discussions
and split multiple requests into separate messages. During
this procedure, we were careful to preserve the original
language. This procedure produced a corpus of 228
messages sorted in roughly chronological order. The first
200 messages were used to train VIO. The remaining 28

ays,
y a modest amount of training.

,
eneral usability issues around the VIO interface.

 selection, instance selection, and pre-

hat

s then returned
t e ient to ss the next task.

k

messages were used for the evaluation.

During training, the appropriate form was selected, the
appropriate target instance of the form was selected, and the
appropriate fields were completed for each of the 200
messages. VIO used the log of this interaction to label
processed messages and train machine-learning models for
form selection, instance selection (reference resolution),
and form field pre-filling. Note that in many domains
human-service-agents process 200 requests every few d
so the VIO receives onl

Empirical Evaluation
For the empirical evaluation of the interaction, we selected
one hypothesis to test: Does interacting with VIO
significantly reduce the amount of time needed to complete
website update requests? In addition, we wanted to
investigate (i) how errors committed by VIO impacted the
participants’ performance speed, (ii) how errors made by
VIO impacted errors participants committed to the database
and (iii) g

Method
Participants played the role of the webmaster in one of two
conditions: CMS and VIO. In the CMS condition
participants completed tasks using a web interface designed
to look like a traditional content management system
(CMS). In the VIO condition participants completed tasks
using the same interface, augmented with VIO’s
suggestions for form
filled field values.

Participants first received instructions from the
experimenter. The experimenter walked participants
through an example task to quickly familiarize them with
the interface. Next, participants completed 20 practice tasks.
The goal of this extensive practice was to train the
participants to work more like skilled users. While working
on these tasks, participants could ask questions of the
experimenter. Following the practice questions, participants
completed the 8 evaluation tasks (Table 1). The number of
tasks was kept small due to the amount of time spent on
training. Following the completion of the final task,
participants answered a survey on their perception of
usability and were graded using a grading script t
compared the final database state with the correct state.

Participants in the VIO condition first viewed an incoming
email to the webmaster that had been modified with a
prioritized and structured list of task-forms. Participants
selected one of these, transitioning them from the email
client to a web browser that displayed the task-form. In the
task-form, participants repaired any agent errors and then

clicked the update button, causing the database to update. A
few participants chose to preview the results of an update
before clicking the update button. Participant
o their mail cl addre

Tas Form Task
T1 Add person

organization,
Create a new person record with first
name, last name, email,
city, and state.

T2 image to an existing person Modify
person

Add an
record.

T3 ce Modify
person

Add title, street address, and offi
location to an existing person record.

T4 Add news ws record with headline Add a new ne
and body text.

T5 Delete a person record. Delete
person

T6 Add image to an existing person record. Modify
person

T7 Add news cord with headline, Add a new news re
body text and URL.

T8 ed name in an existing Modify
person person record.

Fix a misspell

Table 1. Evaluation tasks from the webmaster corpus.

Participants in the CMS condition followed a similar task
flow. They first viewed the incoming request in the email
client. Next they navigated to their browser, which
displayed the “Task Picker” page, showing the same
structured list of tasks that appeared in VIO’s modified
email (Figure 3). Here they selected the appropriate task
from a structured list of links to all task-forms. Selecting a
task caused the browser to transition to the task-form page.
This form used the same layout as the VIO task-form
(Figure 4) with the following exceptions. First, in the CMS
condition, the task-form did not show the source email.
Second, in the CMS condition there was no orange
background color to indicate actions VIO had taken, since
VIO had taken no actions. In the real world, software
products do not make a connection between the requesting

em to work

of new email message windows. The experimenter kept

email and a website update task.

For incentives, participants were offered $30 to complete
the experiment and penalized $5 for each mistake with a
guaranteed minimum of $15. In addition, a $20 bonus was
given to the top 50% of all participants based on a
combination of their speed and accuracy. In this case
accuracy entailed correctly making the requested update to
the website. Our intent was to motivate th
quickly and accurately, like a real webmaster.

As participants worked, a logging application and a screen-
capture application ran in the background. The logging
software captured the title of the window in focus.
Participants opened each email message in its own window,
performed the task, and closed the message window before
moving on to the next one. Task completion time was
defined as the amount of time between subsequent openings

track of the approximate time by hand for each session in
order to check if the log analysis was working.

Forty people (31 men, 9 women) ranging in age from 18 to
35 with an average age of 22.62 participated. All subjects
had previous experience with building or updating websites.
Twenty were randomly assigned to each condition.

Measures
Task time. Task time was measured in milliseconds and is
reported in seconds. Because task time was positively
skewed, we truncated extreme values at the mean + 2.5 SD
for each task.

Screen switches. The number of times an email message
was in focus for greater than 1 second during the
completion of a single task was recored.

Survey responses. To investigate participants’ perception of
the VIO and CMS interfaces, we asked them to complete a
survey based on the instrument for measuring usability
developed by van Schaik et al. [18]. Questions addressed
the ease of use, usefulness, involvement, and flow control.
Responses were made on a 7-point Likert scale (1 =
“strongly agree,” 4 = “neutral,” 7 = “strongly disagree”).
Prior to analysis, scores were inverted such that high scores
indicated more positive assessments.

Survey responses were factor analyzed using Varimax
rotation. The solution indicated the presence of five factors
that accounted for 77% of the variance. Factor 1 (19% of
the variance) was comprised of three questions about the
ease of use of the system (e.g., “learning to use the system
was easy”). The three factors formed a reliable scale (alpha
= .90) and were averaged prior to analysis. Factor 2 (19%
of the variance) was comprised of four questions about the
perceived usefulness of the software (e.g., “using similar
software would enhance my effectiveness”). These four
questions formed a reliable scale (alpha = .88) and were
averaged prior to analysis. Factor 3 (14% of the variance)
was comprised of two involvement questions (e.g., “I made
an effort to keep my mind on the activity”). These two
questions were averaged prior to analysis (alpha = .72).
Factor 4 (13% of the variance) was comprised of 4
questions about participant’s feeling of control during the
task (e.g., “I felt in control of myself”, “I felt in harmony
with the environment”). Responses to these four questions
were averaged prior to analysis (alpha = .69).

Empirical Evaluation Results
We analyzed the results using a 2 (interface condition) by 8
(task) repeated measures ANOVA, in which interface was a
between-subjects factor and task was a within-subjects
factor. Table 2 details the average task completion times
and standard deviation for these times for both conditions.
As can be seen, subjects in the VIO condition performed
significantly faster than those in the CMS condition (F [1,
38] = 5.98, p < .05). There was also a main effect of task (F
[7, 38] = 105.63, p < .001), indicating that some procedures

took longer than others, and a significant task by interface
interaction (F [7, 38] = 5.36, p < .001).

The far right column details the decrease in time for VIO as
a percentage of the total time from the CMS condition. The
results show that across all questions, the VIO interface
decreases the amount of time needed to complete a task by
approximately 17%.

 CMS VIO
Task Ave Stdev Ave Stdev decrease
T1* 89.22 27.70 69.29 27.64 22%
T2* 40.36 12.54 23.09 10.18 43%
T3 68.15 17.70 76.35 27.61 -12%
T4 43.12 11.97 44.26 18.80 -3%
T5* 25.33 5.46 18.05 12.38 29%
T6* 36.93 7.14 22.04 14.69 40%
T7* 42.81 9.89 34.80 9.90 19%
T8 41.25 9.56 32.66 18.31 21%
Ttl*** 387.17 76.40 321.74 104.41 17%

Table 2. Mean completion time in seconds for each task by
condition. * indicates p < .05, *** indicates p < .001

Agent Learning Errors
For each learning problem, the agent can make two general
types of errors. A false negative error occurs when the
agent fails to produce a valid suggestion. A false positive
error occurs when the agent produces an incorrect
suggestion. False negative errors represent a lost
opportunity to help the user. False positive errors require
the user first to recognize and then correct an error.
Specifically, the following errors are possible:
WF: [Wrong form: false positive] selected wrong task-

form as its top choice, but placed the correct task-
form on the prioritized list.

MF: [Missed form: false positive] failed to list the correct
form on the prioritized list.

WR: [Wrong record: false positive] selected the wrong
record when displaying the task-form.

MR: [Missed record: false negative] failed to suggest a
record for a form.

WX: [Wrong extraction: false positive] extracted the
wrong information and added it to the task-form.

MX: [Missed extraction: false negative] failed to extract
data included in the email needed in the task-form.

Table 3 lists errors VIO made. Note that VIO never made
an MF, MR or WX error during the test. Column” VIO
Ext” shows the number of items the VIO extracted from the
email to the task-form. Task T3 requires additional
explanation. T3’s source email requests a modification to a
person’s title, address, and office location; however, VIO
selected the wrong person. VIO selected “David
Rodgerson” instead of “David McCullar.” Additionally,
VIO infers the requestor wishes to update his last name, and
it extracts the last name “McCullar” of the actual requestor
and overwrites “Rodgerson” with “McCullar.”

Task VIO Ext Error Error Summary
T1 2 of 5 WF Suggests Modify Person

(incorrect) followed by Add
Person (correct).

 MX misses: organization, city, and
state.

T2 1 of 1 No errors made.
T3 1 of 3 WR

Extracts wrong person’s
record—matches first name but
not last.

 MX Misses: office location and
street address.

T4 1 of 4 MX Misses: headline and body text.
T5 n/a No errors made.
T6 1 of 1 No errors made.
T7 0 of 3 MX Misses: headline, body and

URL.
T8 0 of 1 MX Misses: last name.

Table 3. Errors made by VIO.

Participant Errors
Participants introduced few errors into the web site database.
CMS participants introduced 12 errors and VIO participants
introduced 15 errors. In looking more closely at the errors,
we can see that the error VIO made to task T3 caused 13 of
the participants in the VIO condition to introduce an error.

Usability survey
Participants’ responses to our survey measures were
averaged to create four factors: ease of use, usefulness of
the software, feelings of involvement, and flow control.
Means for each scale are shown in Table 4.

Responses were analyzed using one-way analyses of
variance. For flow control, there was a borderline
significant effect of condition (F [1, 38] = 3.64, p = .06),
indicating that participants in the VIO condition perceived
that they experienced less flow than participants in the
CMS condition. ANOVAs on the other three scales showed
no significant effects (all F < 1, ns.). VIO improved users'
speed, yet it did not result in any loss in users' perceptions
of ease of use, usefulness, or personal involvement.

Scale CMS VIO p-value

Ease of Use 5.57 5.51 ns.

Usefulness 5.26 5.26 ns.

Involvement 5.23 5.39 ns.

Flow Control 4.79 4.29 0.06

Table 4. Average ratings from usability survey.

Discussion of Empirical Evaluation
The results in terms of performance support our hypothesis
that VIO, even when it has had little training and makes
errors, will significantly decrease the amount of time
needed to perform a task. In this case participants
experience approximately a 17% reduction in task time.

This reduction comes from reduced navigation and from a
reduced need to copy and paste.

Participants in the VIO condition reduced navigation in
three ways. First, they had the list of tasks appear in the
email, eliminating the need to navigate to the task picker
page. Second, because they had the incoming email
message displayed within the task-form, they did not need
to toggle between the email and the task-form in order to
copy and paste content. Third, the VIO selected the correct
record automatically for the participant.

To further understand the impact of placing the email next
to the form we examined the participants’ logs. Table 5
shows the average number of times the task email window
was in focus for greater than 1 second. The VIO and CMS
columns show the number of times participants viewed the
source email in each condition, and the “decrease” column
shows the percentage decrease in time to complete a task
for the VIO condition as compared to the CMS (from Table
1). Overall, the table indicates that the task email is viewed
far less frequently in the VIO condition. Thus, users save
the labor of switching between the email and the form.

Task CMS VIO decrease
T1 8.30 2.50 22%
T2 2.50 1.60 43%
T3 5.90 1.85 -12%
T4 3.70 1.65 -3%
T5 2.05 1.75 29%
T6 2.45 1.90 40%
T7 3.50 1.70 19%
T8 2.70 1.70 21%

Average 3.89 1.83 17%
Table 5. Average number of times task email is in focus for

greater than 1 second.

A 2 (interface condition) by 8 (task) repeated measures
ANOVA, in which task was the repeated factor, indicated a
significant main effect of condition (F [1, 38] = 49.07, p
< .001), indicating that switches were much less common in
the VIO condition. There was also a significant effect of
task (F [7, 38] = 37.96, p < .001) and a significant task by
condition interaction (F [7, 38] = 23.39, p < .001),
indicating that the switches were more common in some
tasks than others, and that the benefits of VIO over CMS
for task switches were larger for some tasks than others.
Interestingly, while tasks T2 and T6 showed the greatest
reduction for the VIO condition, they both had very little
difference in window toggling behavior. These tasks both
involved adding a photo, and the time reduction seems to
come from reducing the number of steps in saving the file
from the email and linking it to the task-form.

With respect to task T3, VIO clearly generated an error that
many participants allowed to enter the dataset. Even though
the interface used an orange background to indicate that
VIO had made a change to the last name field, 13 of the 20
participants failed to notice and correctly compensate for

the error. Two (2) of the 13 participants noticed the error
but incorrectly compensated for it.

We propose three ways to address this problem of selecting
the wrong record. First, the algorithm that selects the record
could use machine learning to improve its accuracy. Second,
VIO could be tuned to reduce the number of false positives
at expense of reducing suggestions. This solution would
mean users select the record for more tasks; however, the
slight increase in effort would be offset by reduced errors.
Third, when VIO has high confidence for more than one
record, the record information could be included in the
modified email suggestion. For example, the email list of
tasks might include “Modify Person: David Rodgerson,”
“Modify Person: David McCullar,” “Add Person: David
Rodgerson,” and “Add Person: David McCullar.”

Participants gave good usability scores for both conditions.
This result indicates that the experiment was unbiased with
respect to the design of VIO and CMS forms, and that the
time and performance differences were not due to
qualitative usability differences. In addition, the high scores
for VIO indicate that it would likely be accepted by users.

KLM evaluation
The empirical evaluation demonstrated that the agent with a
little training can provide significant benefit. However, this
evaluation raised three questions: (i) How much does VIO
action reduce time as compared to the interface design? (ii)
How does learning reduce task time? and (iii) How much
total time reduction can a perfect VIO provide? In order to
gain some insight, we performed a Keystroke-Level
Modeling (KLM) analysis. This method predicts average
performance for skilled users by assigning values to user
and system actions.

We used CogTool [9], a software tool that allows interface
designers to import their interface screens, to measure the
sizes and map the locations of buttons and other clickable
targets, and to provide a script of a user’s actions such as
button presses, reading time, pointing time, system
processing time, etc. The automation the tool provides
significantly reduces the time and effort required to perform
a KLM.

In both the CMS and the VIO interfaces there are multiple
ways to perform each task. For this KLM we chose to have
the skilled user do what we observed most participants in
the empirical study do: read the message, navigate to the
task-picker page (CMS only), select the correct form, toggle
between the message window and the task-form for each
field’s content and paste it in (CMS), or copy and paste
from the embedded message (VIO). There are two
exceptions:
• T1 requests an update to the person’s city and state to

“Alexandria, VA.” In the KLM the expert user pastes
“Alexandria” into the city field, but simply types “VA”
into the state field.

• T8 requests a one-letter correction to a person’s last name
(change “Grainder” to “Grainger”). In the KLM the

expert user simply selects the incorrect letter and types
the correction.

When interacting with the pull-down menu, the skilled user
types the first few letters to get to the correct item in the list,
then types the enter key to select it.

For this KLM we used a reading time of 300 words per
minute. To apply the reading rate we considered the number
of words in each email message, excluding blocks of text
that are generally not read. For example, add-news tasks
sometimes included the text of the news story, which we
excluded from the word count. Text such as URLs and
email addresses each counted as a single word. Reading
times for the tasks ranged from 4 to 10 seconds.

Design
For this analysis we used the same eight tasks from the
empirical study, under four conditions:
• CMS: This KLM was based on our CMS interface. This

condition works as a benchmark for revealing the
performance gains from the other conditions.

• VIO-interface-only: This KLM was based on a VIO with
no training (no VIO suggestions were provided). In this
condition the incoming email had the structured list of
tasks, but no prioritized list. Also, in the task-form, no
fields were updated by the VIO. This condition measures
interaction design effects without interference from VIO.

• VIO with our current agent: This KLM makes the same
errors as VIO made during our empirical study. This
condition provides a view of an agent with some training.
Also, this condition helps us see how accurately the KLM
matches human performance, allowing us to investigate
the time difference needed to recognize a VIO error.

• VIO with a perfect agent: This KLM models a perfect
VIO: the VIO always selects the correct form and
correctly extracts all elements from the email to use to fill
in the form. This condition shows the maximum benefit
the VIO can provide.

Results
Table 6 shows the modeled task-completion times in
seconds. Column CMS shows the completion time for the
CMS interface; column VIO-interface shows the
completion time for VIO interface with no learning; column
current-VIO shows completion time the VIO with the same
level of learning as the empirical study; and column
perfect-VIO shows the completion time for VIO with no
errors. The bottom row details the total time for all tasks in
each condition and the percent decrease in task time for the
different VIO conditions as compared to the CMS condition.

The VIO-interface-only condition reduces the task time by
15% compared to the CMS; the current-VIO condition
reduces task time by 43% compared to the CMS; and the
perfect-VIO condition reduces the task time by 71%
compared to the CMS.

The KLM models the time needed to make corrections to
agent errors, but it is not intended to model time taken for
users to think about the message and examine the agent-

filled form for mistakes. This accounts for part of the time
difference between the KLM-estimated reduction in time of
43% for the current-VIO and the 17% found in the
empirical study. In this way the KLM provides an
approximation of actual behavior.

Task CMS
VIO-

interface
current-

VIO
perfect-

VIO
T1 58.980 46.499 27.212 8.984
T2 33.047 31.958 13.435 13.435
T3 62.075 45.001 29.772 8.952
T4 32.044 27.228 27.206 9.200
T5 15.501 14.702 9.180 7.830
T6 29.988 27.984 10.580 10.58
T7 36.594 32.255 32.193 13.97
T8 23.592 22.754 15.483 10.761

Total 291.821 248.381 165.061 83.712
% decrease in time 15% 43% 71%

Table 6. Performance data for the four KLM conditions.

Discussion
The VIO-interface-only condition produced a 15%
reduction in time over the CMS condition. This 15% benefit
comes exclusively from the interface because in this
condition VIO uses no learning to automate the task. The
savings comes exclusively from eliminating the need to
navigate to the task-picker page and select the correct form,
and from eliminating the need to toggle between email and
the browser by embedding the message in the task-form.

The perfect-VIO condition produced a 71% reduction in
time compared to the CMS. Subtracting the 15% benefit
provided by the interface reveals the maximum benefit from
the VIO’s learning at 56%. This number may be high, as
users of the system would still need to check to see if an
error occurred, something not modeled in the KLM.

The current-VIO condition produced a 43% reduction
compared to the CMS, revealing a 28% reduction provided
by VIO in addition to the interface. The KLM prediction of
human behavior clearly shows that as the agent learns, the
users reduce task time by having more and more of the task
automated. However, this savings of 43% is much higher
than the 17% found in the empirical study.

Two main factors help explain this difference: skilled
performance and error recognition. The 20 practice tasks
participants completed before the timed tasks may not have
provided enough training for them to perform at the level of
an expert, particularly for the VIO interface, which requires
interaction methods that are unfamiliar to participants. In
addition, KLM results do not take into account the time
needed to recognize errors; they only take into account the
amount of time to fix it.

Figure 5 provides some insight into the issue of skilled
performance and error recognition. This chart shows a plot
of ranked participants by task-completion times in the

empirical study. Assuming that the completion of the 20
training tasks aided some participants more than others, the
ranked list can be viewed as a list of most-skilled to least-
skilled users. Surprisingly the chart shows a set of near
parallel lines, revealing that VIO reduced task competition
time by the same amount regardless of the skill level. While
the total amount of time reduced remains the same, as skill
increases, and the total completion time gets small, the
percentage of time saved by the agent as a factor of total
task time increases.

y = 16.005x + 152.5

R2 = 0.8223

y = 12.606x + 254.81

R2 = 0.9527

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16 18 20 22
Participant rank for both conditions

CMS
VIO

Figure 5. Ranked task completion time for VIO and CMS.

The five fastest (most-skilled) CMS participants had an
average total task completion time of 300.6 seconds, just
3% slower than the KLM prediction of skilled performance.
This data indicates that these participants may have been
performing at skilled level after the 20 training tasks. The
five fastest VIO participants had an average total task
competition time of 207 seconds, 25% slower than the
KLM predicted. From this data we can speculate that the
additional time needed to recognize VIO errors is
approximately 25% of the KLM prediction of total task
time for skilled users. In considering reduction in task time,
while VIO reduced task time by 17% for all users, it
reduced task time by 31% for the top five performers when
compared to the top five performers in the CMS condition.

CONCLUSION
This paper presents a new mixed-initiative interaction
design where users train an agent to automate completion of
mundane, procedural update tasks. The design embraces the
idea that agents make mistakes through an interaction
design that asks users to repair agent errors as a method of
providing training data that improves the agent’s learning.
The design allows users to simply perform their work in
order to train the agent.

Our empirical evaluation demonstrates that this interface
coupled with an agent that has very little training can
significantly reduce the amount of time that workers spend
on mundane, procedural tasks. In addition our KLM
analysis provides additional insights, such as the time

savings provided by the interaction design alone, and the
time reduction provided by the assistance the agent offers.

5. Fogarty, J., Hudson, S.E., Atkeson, G.G., Avrahami, D.,
Forlizzi, J., Kiesler, S., Lee, J.C., Yang, J. Predicting
human interruptibility with sensors. ACM Transactions
on Computer-Human Interaction 12, 1 (2004), 119-146. One main insight gained during the design and evaluation

of VIO is the need to develop the machine-learning system
and the interface simultaneously. Co-development allowed
for negotiation between the input requirements of the
learning system and the actions required by the user to
complete the work.

6. Hearst, M. Mixed Initiative Interaction. IEEE Intelligent
Systems 14, 5 (1999), 14-23.

7. Horvitz, E. Principles of Mixed Initiative User
Interfaces. Proc. of CHI, ACM Press (1999), 159-166.

These studies provide evidence to support our research
direction of using agents with little or no training to
improve users’ performance on procedural tasks, thus
freeing workers to focus on tasks requiring more creative
thinking.

8. John, B.E. Information processing and skilled behavior.
In J. M. Carroll (Ed.) Toward a multidisciplinary
science of human computer interaction Morgan
Kaufman (2003), 55-101.

9. John, B.E., Salvucci. D.D., Multipurpose prototypes for
assessing user interfaces in pervasive computing
systems. IEEE Pervasive Computing 4, 4 (2005), 27-34.

Future Work
VIO has recently been deployed to assist a real webmaster
in the maintenance of a large project website. In the current
log of webmaster requests, approximately 50% of messages
contain single tasks that can be executed with the existing
system. As a next step, we plan to add machine learning
and interaction capabilities to handle multiple tasks in a
single message.

10. Lieberman, H. Autonomous interface agents. Proc. of
CHI, ACM Press (1997), 67-74.

11. Liebermann, H. Beating Some Common Sense into
Interactive Applications. Seminar talk given at Carnegie
Mellon’s Human-Computer Interaction Institute.
(February 23, 2005).

In addition, we are now developing a new mixed-initiative
interface where end-users can construct their own
workflows, allowing them to design the tasks they wish the
agent to learn to automate.

12. Lockerd, A., Pham, H., Sharon, T., Selker, T. Mr. Web:
An Automated Interactive Webmaster. Ext. Abstracts
CHI, ACM Press (2003), 812-813.

13. Malone, T., Grant, K., Lai, K., Rao, R., Rosenblitt, D.
Semistructured Messages are Surprisingly Useful for
Computer-Supported Coordination. ACM Transactions
on Information Systems 5, 2 (1987), 115-131.

Acknowledgements
This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA), through
the Department of the Interior, NBC, Acquisition Services
Division, under Contract No. NBCHD030010, Delivery
Order No. D0300100003. The authors wish to thank
professors Susan Fussell, Robert Kraut, and Bonnie John
for help with study design and data analysis. We also thank
the reviewers and Chris Scaffidi for detailed comments.

14. Meng, F. A Natural Language Interface for Information
Retrieval from Forms on the World Wide Web. Proc. of
IS, ACM Press (1999), 540-545.

15. Remedy: http://www.bmc.com/remedy/
16. Shneiderman, B., Maes, P. Direct Manipulation Versus

Interface Agents. Interactions 4, 6, ACM Press (1997),
43-61.

REFERENCES
1. Belotti, V., Ducheneaut, M., Howard, M., Smith, I.

Taking Email to Task: The Design and Evaluation of a
Task Management Centered E-Mail Tool. In Proc. of
CHI, ACM Press (2003), 345-352.

17. Stylos, J, Myers, B.A., Faulring, A. Citrine: Providing
Intelligent Copy-and-Paste. Proc. of UIST, ACM Press
(2004), 185-188.

2. Cypher, A., Eager: Programming Repetitive Tasks by
Demonstration. in Watch What I Do: Programming By
Demonsration Cypher, A. et. al. (eds), MIT Press, 1993.

18. Van Schaik, P., Jing, J. Five Psychometric Scales for
Online Measurement of the Quality of Human-
Computer Interaction in Web Sites. International
Journal of Human-Computer Interaction 18, 3 (2005),
309-322.

3. Ducheneaut, N., Bellotti, V. E-mail as habitat: An
exploration of embedded personal information
management. Interactions 8, 5 (2001), 30-38. 19. Tomasic, A., Simmons, I., Zimmerman, J., Learning

Information Intent via Observation. Proc. of the 16th
International World Wide Web Conference (WWW),
2007.

4. Ferguson, G., Allen, J., Miller, B. TRAINS-95: Towards
a Mixed-Initiative Planning Assistant. In Proc. of AIPS,
AAAI Press (1996) 70–77.

	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	RELATED WORK
	DESIGN
	VIO MACHINE LEARNING
	EVALUATION
	Evaluation Background
	Empirical Evaluation
	Method

	Measures
	Empirical Evaluation Results
	Agent Learning Errors
	Participant Errors
	Usability survey

	Discussion of Empirical Evaluation
	KLM evaluation
	Design
	Results
	Discussion

	CONCLUSION
	Future Work
	Acknowledgements

	REFERENCES

