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ABSTRACT 
Today many workers spend too much of their time 
translating their co-workers’ requests into structures that 
information systems can understand. This paper presents 
the novel interaction design and evaluation of VIO, an 
agent that helps workers translate request. VIO monitors 
requests and makes suggestions to speed up the translation. 
VIO allows users to quickly correct agent errors. These 
corrections are used to improve agent performance as it 
learns to automate work. Our evaluations demonstrate that 
this type of agent can significantly reduce task completion 
time, freeing workers from mundane tasks. 
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INTRODUCTION 
Today many workers in companies spend time translating 
requests into language and structures that information 
systems can understand. Consider the task of transferring a 
student from a waitlist to a course. The requester, a 
professor, has an intent that matches a common work task. 
The professor expresses her intent in an email to the 
department coordinator with relevant information such as 
the student’s and course’s names. The coordinator then logs 
in to the appropriate systems and makes the changes, 
translating the request into information the system can 
understand.  

Organizations address translation tasks by assigning a 
human-service-agent, such as administrative assistants, 
webmasters, network administrators, purchasers, etc., who 
perform procedural translation tasks on behalf of coworkers 
or customers. Procedural translation tasks are good 
candidates for automation because the input is easily 
captured, the output is structured, and the tasks are 
repeatedly executed. In order to study this opportunity we 
have developed a machine-learning-based agent and mixed-

initiative interface. Called VIO, our agent takes on the role 
of a webmaster’s assistant (Figure 1). Requesters email 
requests (i.e., updates for a website) to the webmaster using 
natural language. VIO preprocesses the requests and pre-
fills website update forms with suggestions. These pre-
filled forms are presented to the webmaster for approval. 
The forms are an augmentation of a traditional direct-
manipulation interface that allow the webmaster to quickly 
recognize the task and repair mistakes made by VIO. Our 
interaction design focuses on making repairs easy because 
(i) we accept that agents make errors, and (ii) having an 
interface that lets webmasters correct errors by doing their 
regular work and without generating additional work allows 
VIO to be deployed with little or no training. Through the 
process of repairing and approving forms, webmasters 
provide training data, allowing VIO to “learn in the wild,” 
that is, directly from use. This frees the webmaster to then 
focus on non-procedural tasks that require more human skill. 

 
Figure 1. Webmaster repairs and approves the task form 

causing the web database to update and VIO to learn from the 
addition of a new training example. 

Casting VIO as a webmaster’s assistant is a first step to 
concretely test our ideas. However, the design principles of 
VIO generalize to a much larger set of procedural tasks 
found within organizations. 

The design of VIO raises several fundamental HCI research 
questions including: (1) How effective is a human-service-
agent collaborating with an agent that has had little training 
compared to a traditional direct manipulation interface? (2) 
How effective is VIO if it performs perfectly? (3) How do 
VIO’s errors impact overall performance? In this paper we 
address all these questions. We begin by describing our 
novel interaction method that combines natural language 
interaction—in this case the preprocessing of incoming 
email requests—with existing direct manipulation tools, 
and a feedback loop to the machine-learning algorithms. In 
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addition, the paper describes two evaluations. The first is an 
empirical study where collaboration with VIO reduced task 
completion time by 17%. The second is a Keystroke-Level 
Model [8] analysis that provides more detail on the benefits 
provided by VIO. In addition, these evaluations provide 
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RELATED WORK 
Some researchers in the Human-Computer Interaction 
(HCI) community have championed the benefits of 
automation while others focus on the power of direct 
manipulation [16]. While the work on embodied agents has 
yet to demonstrate significant effects, the implementation of 
automation via machine learning in underlying systems has 
become core to both HCI research and development. Our 
system tries to find a happy medium in th
full automation and direct manipulation.  

Our presentation of the request in terms of a form builds on 
Malone et al.’s work on Information Lens, where they 
found that semi-structured messages improve 
communication and coordination activities [13]. In 
discussing future work they predict a graceful degradation 
between automatically and manually handled tasks. Our 
interaction design follows this principle, allowi
experience the graceful improvement of VIO.  

Previous research has explored the use of natural language 
processing to automatically fill out forms [14, 17]. 
Additionally research prototypes have been built that 
convert email requests into website updates [12]. However, 
these systems have not presented agents that perform 
perfectly, nor have they addressed how users handle agent 
errors. In fact, previous work in this area presents no 
evidence of in
with an agent. 

Out of the tension between automation and direct 
manipulation, the mixed-initiative community has arisen. 
They focus on exploring how humans and AI systems can 
more effectively collaborate to solve complex tasks. Hearst 
captures the essence of this when she notes that AI 
researchers want to model humans in order to make 
computers that act intelligently, while HCI researchers want 
to leverage computing to make it easier for users to make 
intelligent decisions [6]. The goal of the mixed-initiative 
community is to develop intelligent systems that allow for 
collaborative interaction to solve problems [6]. While most 
mixed-initiative systems have focused on solving complex 
planning tasks such as generating train schedules [4] w
focus on how agents can free users from mundane tasks.  

One mixed-initiative project that has focused on mundane 
tasks is the LookOut [7] system, which assists users with 
adding meetings to calendars. Like VIO, the system 
processes incoming email and attempts to fill a form, in this 
case a calendar event. While LookOut at a high level is 
quite similar, our design offers some advances. Our system 
has been designed to be domain independent, where 
LookOut only addresses meetings. Our system handles add, 

delete, and modify tasks, while LookOut only addresses add 
tasks. LookOut interrupts the user and focuses on assessing 
whether a message warrants an interruption [5]. Our design 
instead follows an interaction model set by Letizia [10], 
where the assistance falls to the side of the locus of 
attention, allowing the user to easily ignore the assistance 
but to also benefit from it by having it close. Finally, our 
system uses a deeper le
effective help over time. 

The Eager system [2], an early example of programming by 
demonstration, detected simple tasks that a user repeated 
twice during an interaction. The system then used 
highlighting (as we do) to draw the user’s attention to 
extracted information. Eager would use the extracted 
information to construct a repetitive task for the user. Eage
however, has no feedback mechanism for repairing errors. 

Previous research on email use claims that email is a 
“habitat” where much project-management work is done [3]. 
Bellotti et al. extended this, designing a system that assists 
users with completing tasks that arrive via email [1]. They 
developed a “thrask” (tasks and threads) interface to help 
users complete tasks that involve multiple email exchanges. 
Their system does not employ machine learning, but instead 
addresses the presentation of emails. We view our system 
as complementary in that VIO provides automation of 
munda
tasks. 

Finally, many commercial products exist to help 
organizations manage and automate their workflows. 
Business process automation software such as Remedy [15] 
provides an abstraction layer between the application logic 
and the business practice to be automated. This layer allows 
businesses to connect different systems together, but also 
creates environments where many
the form filling, translation tasks.  

In summary, our system (i) integrates theories from mixed-
initiative computing and natural-language research into a 
working system that has been demonstrated to improve 
human performance, (ii) advances the design of human-
agent interfaces by addressing the issues of agent error and 
learning, and (iii) extends the research done on blend
email app

DESIGN 
The interaction design of VIO embraces the fact that agents 
make errors. Instead of investing huge engineering efforts 
in an attempt to build perfect agents, our design allows an 
agent with little or no training to observe a task and begin 
making suggestions. The interaction design allows users to 
repair agent errors without increasing the work they would 
have done without VIO. As VIO learns, the interaction style 
allows its suggestion
completion time.  

Figure 2 illustrates VIO’s functional architecture. A 
requester initiates a task by sending an email request to the 

 



  

webmaster that gets routed to the analysis module. VIO 
modifies the incoming email by adding a ranked list of 
likely tasks followed by a structured list of all possible tasks 
(Figure 3). The webmaster reviews the email and selects the 
appropriate task-form link. This transitions the webmaster 
to a task-form showing all of the elements available for 
update with as many fields as possible completed (Figure 4). 
The webmaster then adds any missing information and 
repairs any information VIO extracted incorrectly. She then 
submits the form, causing the execution module to execute 
a database transaction, and by extension, update the website. 
The results of the interaction are then forwarded to the 
learning module, which analyzes the entire interaction and 
improves VIO’s performance.  

 
Figure 2. Functional architecture of VIO. 

Figure 3 shows an incoming email request VIO has 
modified with a ranked and structured list of tasks. An 
earlier design presented a completed form based on VIO’s 
best guess instead of a list of tasks. However, in pilot 
testing participants had difficulty recognizing when VIO 
had selected the wrong form. To address this problem we 
borrowed a technique from information retrieval and used a 
ranked list. This approach is a form of “soft fail” [11]: an 
agent error that still moves the user closer to their goal.  

In an earlier prototype the ranked list showed only the top 
three items; however, pilot testing revealed problems with 
this interaction. When participants encountered a list where 
the appropriate task did not appear as one of the top three 
items, they hesitated before making a selection from the 
structured list. Participants spent time re-examining the 
incoming email, apparently worried that they had not 
understood the requester’s intent. The current design 
addresses this hesitation by using a threshold value to 
determine the length of the ranked list. When the VIO has 
high confidence in a single form, it lists only one item like 
in the example above (Figure 3). When VIO has high 
confidence in several forms, it lists several forms. When 
VIO has low confidence for all forms, it makes no 
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Figure 4 displays a Modify Person task-form. An earlier 
design placed the message text at the top of the task-form to 
communicate that users should start at the top and work 
down to the update button. In piloting, however, 
participants spent a great deal of time scrolling so they 

could copy and paste text between the email and the form 
elements. The current task-form layout addresses this issue 
by placing the source message on the left. This arrangement 
reduces scrolling and makes comparisons between the 
email and the form elements much easier. The form 
elements use background color to help communicate 
actions. Elements updated by VIO have an orange 
background, elements updated by the human-service-agent 
have a blue background, and elements that have not 
changed have a white background. Additionally, an orange 
highlight in the email helps users see items that have been 
extracted. In pilot studies VIO would occasionally make 
incomplete extractions that participants failed to see. In one 
example, the incoming email asked the webmaster to add 
“School of Information Sciences, University of Portlandia” 
as an affiliated organization. However, VIO extracted 
“Information Sciences University” as the organization. 
Highlighting the extracted text in the e
more easily notice partial ex

VIO MACHINE LEARNING 
In this section we briefly summarize the machine learning 
of VIO. For more on the machine learning of VIO, please 
see [19]. VIO addresses three interaction problems via 
machine learning: form ranking, entity-instance selection 
(i.e., selecting the record for a form), and field completion.  

For form ranking, VIO logs the form selected for each 
message. The history of selections is used as a label to the 
log of messages. Messages are represented as a bag of 
words. A k-way boosted decision tree algorithm is trained 
to generate the model for form ranking. For the experiment 
described in the evaluation background
has a mean reciprocal rank above .90.  

For entity-instance selection, VIO logs the records selected 
for forms. The record selected is the label for (conceptually) 
a data set represented as the difference between the records 
and the words in the message. A Naïve Bayes classifier is 
trained to generate the model for entity instance se
This model has the mean reciprocal rank above .85. 

For form-field completion, each field value v completed by 
the user in a form is logged. A domestication algorithm 
searches the message for a string s similar to v and declares 
s a label for the field. The labels are used for a corpus of 
messages represented as strings. A conditional random field 
algorithm is trained to generate an extraction model. 
Extraction model entity F1 performance ranges from 0.0 to 
1.0. Extraction performance depends most stron
number of labels for training and the length of v. 

To summarize, during use the user is assumed to select the 
appropriate form, to select the appropriate target instance of 
the form, and to complete the appropriate fields for a form. 
VIO used the log of this interaction to label processed 
messages and train machine-learning models for form 
selection, instance selection, and form-field pre-filling. The 
resulting models a

 



  

Figure 3. Email augmented with a ranked list of tasks and a structured list of all tasks. Clicking on the ta
user from the augmented email to the task-form displayed in a web browser. 

Source email with 
extracted terms 
highlighted in 
orange. 

Figure 4. Task form where webmaster repairs any VIO errors and completes the request. Completed r
training examples, improving VIO performance.

EVALUATION 
In order to understand the impact of VIO we conducted two 
evaluations. An empirical study compared the performance 
of webmasters interacting with VIO against webmasters 
interacting with a traditional content-management system 
(CMS). A Keystroke-Level Modeling (KLM) analysis 

compared how skilled users would 
goes from knowing nothing to perfo

Evaluation Background 
In order to ground the study in the re
corpus of email messages from a p
To preserve privacy, all email mes
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by replacing references to names, organizations, URLs, and 
personal data. In addition, we removed threaded discussions 
and split multiple requests into separate messages. During 
this procedure, we were careful to preserve the original 
language. This procedure produced a corpus of 228 
messages sorted in roughly chronological order. The first 
200 messages were used to train VIO. The remaining 28 

ays, 
y a modest amount of training.  

, 
eneral usability issues around the VIO interface.  

 selection, instance selection, and pre-

hat 

s then returned 
t  e ient to ss the next task. 

k 

messages were used for the evaluation.  

During training, the appropriate form was selected, the 
appropriate target instance of the form was selected, and the 
appropriate fields were completed for each of the 200 
messages. VIO used the log of this interaction to label 
processed messages and train machine-learning models for 
form selection, instance selection (reference resolution), 
and form field pre-filling. Note that in many domains 
human-service-agents process 200 requests every few d
so the VIO receives onl

Empirical Evaluation 
For the empirical evaluation of the interaction, we selected 
one hypothesis to test: Does interacting with VIO 
significantly reduce the amount of time needed to complete 
website update requests? In addition, we wanted to 
investigate (i) how errors committed by VIO impacted the 
participants’ performance speed, (ii) how errors made by 
VIO impacted errors participants committed to the database
and (iii) g

Method 
Participants played the role of the webmaster in one of two 
conditions: CMS and VIO. In the CMS condition 
participants completed tasks using a web interface designed 
to look like a traditional content management system 
(CMS). In the VIO condition participants completed tasks 
using the same interface, augmented with VIO’s 
suggestions for form
filled field values.  

Participants first received instructions from the 
experimenter. The experimenter walked participants 
through an example task to quickly familiarize them with 
the interface. Next, participants completed 20 practice tasks. 
The goal of this extensive practice was to train the 
participants to work more like skilled users. While working 
on these tasks, participants could ask questions of the 
experimenter. Following the practice questions, participants 
completed the 8 evaluation tasks (Table 1). The number of 
tasks was kept small due to the amount of time spent on 
training. Following the completion of the final task, 
participants answered a survey on their perception of 
usability and were graded using a grading script t
compared the final database state with the correct state.  

Participants in the VIO condition first viewed an incoming 
email to the webmaster that had been modified with a 
prioritized and structured list of task-forms. Participants 
selected one of these, transitioning them from the email 
client to a web browser that displayed the task-form. In the 
task-form, participants repaired any agent errors and then 

clicked the update button, causing the database to update. A 
few participants chose to preview the results of an update 
before clicking the update button. Participant
o their mail cl  addre

Tas Form Task 
T1 Add person 

organization, 
Create a new person record with first 
name, last name, email, 
city, and state. 

T2  image to an existing person Modify 
person 

Add an
record. 

T3 ce Modify 
person 

Add title, street address, and offi
location to an existing person record. 

T4 Add news ws record with headline Add a new ne
and body text. 

T5 Delete a person record. Delete 
person 

T6 Add image to an existing person record. Modify 
person 

T7 Add news cord with headline, Add a new news re
body text and URL. 

T8 ed name in an existing Modify 
person person record. 

Fix a misspell

Table 1.  Evaluation tasks from the webmaster corpus. 

Participants in the CMS condition followed a similar task 
flow. They first viewed the incoming request in the email 
client. Next they navigated to their browser, which 
displayed the “Task Picker” page, showing the same 
structured list of tasks that appeared in VIO’s modified 
email (Figure 3). Here they selected the appropriate task 
from a structured list of links to all task-forms. Selecting a 
task caused the browser to transition to the task-form page. 
This form used the same layout as the VIO task-form 
(Figure 4) with the following exceptions. First, in the CMS 
condition, the task-form did not show the source email. 
Second, in the CMS condition there was no orange 
background color to indicate actions VIO had taken, since 
VIO had taken no actions. In the real world, software 
products do not make a connection between the requesting 

em to work 

of new email message windows. The experimenter kept 

email and a website update task.  

For incentives, participants were offered $30 to complete 
the experiment and penalized $5 for each mistake with a 
guaranteed minimum of $15. In addition, a $20 bonus was 
given to the top 50% of all participants based on a 
combination of their speed and accuracy. In this case 
accuracy entailed correctly making the requested update to 
the website. Our intent was to motivate th
quickly and accurately, like a real webmaster. 

As participants worked, a logging application and a screen-
capture application ran in the background. The logging 
software captured the title of the window in focus. 
Participants opened each email message in its own window, 
performed the task, and closed the message window before 
moving on to the next one. Task completion time was 
defined as the amount of time between subsequent openings 

 



  

track of the approximate time by hand for each session in 
order to check if the log analysis was working.  

Forty people (31 men, 9 women) ranging in age from 18 to 
35 with an average age of 22.62 participated. All subjects 
had previous experience with building or updating websites. 
Twenty were randomly assigned to each condition. 

Measures 
Task time. Task time was measured in milliseconds and is 
reported in seconds. Because task time was positively 
skewed, we truncated extreme values at the mean + 2.5 SD 
for each task. 

Screen switches. The number of times an email message 
was in focus for greater than 1 second during the 
completion of a single task was recored. 

Survey responses. To investigate participants’ perception of 
the VIO and CMS interfaces, we asked them to complete a 
survey based on the instrument for measuring usability 
developed by van Schaik et al. [18]. Questions addressed 
the ease of use, usefulness, involvement, and flow control. 
Responses were made on a 7-point Likert scale (1 = 
“strongly agree,” 4 = “neutral,” 7 = “strongly disagree”).  
Prior to analysis, scores were inverted such that high scores 
indicated more positive assessments. 

Survey responses were factor analyzed using Varimax 
rotation. The solution indicated the presence of five factors 
that accounted for 77% of the variance. Factor 1 (19% of 
the variance) was comprised of three questions about the 
ease of use of the system (e.g., “learning to use the system 
was easy”). The three factors formed a reliable scale (alpha 
= .90) and were averaged prior to analysis. Factor 2 (19% 
of the variance) was comprised of four questions about the 
perceived usefulness of the software (e.g., “using similar 
software would enhance my effectiveness”). These four 
questions formed a reliable scale (alpha = .88) and were 
averaged prior to analysis. Factor 3 (14% of the variance) 
was comprised of two involvement questions (e.g., “I made 
an effort to keep my mind on the activity”). These two 
questions were averaged prior to analysis (alpha = .72).  
Factor 4 (13% of the variance) was comprised of 4 
questions about participant’s feeling of control during the 
task (e.g., “I felt in control of myself”, “I felt in harmony 
with the environment”). Responses to these four questions 
were averaged prior to analysis (alpha = .69). 

Empirical Evaluation Results 
We analyzed the results using a 2 (interface condition) by 8 
(task) repeated measures ANOVA, in which interface was a 
between-subjects factor and task was a within-subjects 
factor. Table 2 details the average task completion times 
and standard deviation for these times for both conditions. 
As can be seen, subjects in the VIO condition performed 
significantly faster than those in the CMS condition (F [1, 
38] = 5.98, p < .05).  There was also a main effect of task (F 
[7, 38] = 105.63, p < .001), indicating that some procedures 

took longer than others, and a significant task by interface 
interaction (F [7, 38] = 5.36,  p < .001). 

The far right column details the decrease in time for VIO as 
a percentage of the total time from the CMS condition. The 
results show that across all questions, the VIO interface 
decreases the amount of time needed to complete a task by 
approximately 17%. 

 CMS VIO  
Task Ave  Stdev Ave  Stdev decrease  
T1* 89.22 27.70 69.29 27.64 22% 
T2* 40.36 12.54 23.09 10.18 43% 
T3 68.15 17.70 76.35 27.61 -12% 
T4 43.12 11.97 44.26 18.80 -3% 
T5* 25.33 5.46 18.05 12.38 29% 
T6* 36.93 7.14 22.04 14.69 40% 
T7* 42.81 9.89 34.80 9.90 19% 
T8 41.25 9.56 32.66 18.31 21% 
Ttl*** 387.17 76.40 321.74 104.41 17% 

Table 2. Mean completion time in seconds for each task by 
condition. * indicates p < .05, *** indicates p < .001 

Agent Learning Errors 
For each learning problem, the agent can make two general 
types of errors. A false negative error occurs when the 
agent fails to produce a valid suggestion. A false positive 
error occurs when the agent produces an incorrect 
suggestion. False negative errors represent a lost 
opportunity to help the user. False positive errors require 
the user first to recognize and then correct an error. 
Specifically, the following errors are possible:  
WF:  [Wrong form: false positive] selected wrong task-

form as its top choice, but placed the correct task-
form on the prioritized list. 

MF:  [Missed form: false positive] failed to list the correct 
form on the prioritized list. 

WR:  [Wrong record: false positive] selected the wrong 
record when displaying the task-form. 

MR:  [Missed record: false negative] failed to suggest a 
record for a form. 

WX:  [Wrong extraction: false positive] extracted the 
wrong information and added it to the task-form.  

MX:  [Missed extraction: false negative] failed to extract 
data included in the email needed in the task-form. 

Table 3 lists errors VIO made. Note that VIO never made 
an MF, MR or WX error during the test. Column” VIO 
Ext” shows the number of items the VIO extracted from the 
email to the task-form. Task T3 requires additional 
explanation. T3’s source email requests a modification to a 
person’s title, address, and office location; however, VIO 
selected the wrong person. VIO selected “David 
Rodgerson” instead of “David McCullar.” Additionally, 
VIO infers the requestor wishes to update his last name, and 
it extracts the last name “McCullar” of the actual requestor 
and overwrites “Rodgerson” with “McCullar.” 

 



  

Task VIO Ext Error  Error Summary 
T1 2 of 5 WF Suggests Modify Person 

(incorrect) followed by Add 
Person (correct). 

  MX misses: organization, city, and 
state. 

T2 1 of 1                  No errors made.  
T3 1 of 3 WR 

 
Extracts wrong person’s 
record—matches first name but 
not last. 

  MX Misses: office location and 
street address. 

T4 1 of 4 MX Misses: headline and body text. 
T5 n/a                 No errors made. 
T6 1 of 1                  No errors made.  
T7 0 of 3 MX Misses: headline, body and 

URL. 
T8 0 of 1 MX Misses: last name. 

Table 3. Errors made by VIO. 

Participant Errors  
Participants introduced few errors into the web site database. 
CMS participants introduced 12 errors and VIO participants 
introduced 15 errors. In looking more closely at the errors, 
we can see that the error VIO made to task T3 caused 13 of 
the participants in the VIO condition to introduce an error.  

Usability survey 
Participants’ responses to our survey measures were 
averaged to create four factors: ease of use, usefulness of 
the software, feelings of involvement, and flow control. 
Means for each scale are shown in Table 4.  

Responses were analyzed using one-way analyses of 
variance.  For flow control, there was a borderline 
significant effect of condition (F [1, 38] = 3.64, p = .06), 
indicating that participants in the VIO condition perceived 
that they experienced less flow than participants in the 
CMS condition.  ANOVAs on the other three scales showed 
no significant effects (all F < 1, ns.). VIO improved users' 
speed, yet it did not result in any loss in users' perceptions 
of ease of use, usefulness, or personal involvement.  

Scale CMS VIO p-value 

Ease of Use  5.57 5.51 ns. 

Usefulness  5.26 5.26 ns. 

Involvement  5.23 5.39 ns. 

Flow Control 4.79 4.29 0.06 

Table 4. Average ratings from usability survey.  

Discussion of Empirical Evaluation 
The results in terms of performance support our hypothesis 
that VIO, even when it has had little training and makes 
errors, will significantly decrease the amount of time 
needed to perform a task. In this case participants 
experience approximately a 17% reduction in task time. 

This reduction comes from reduced navigation and from a 
reduced need to copy and paste. 

Participants in the VIO condition reduced navigation in 
three ways. First, they had the list of tasks appear in the 
email, eliminating the need to navigate to the task picker 
page. Second, because they had the incoming email 
message displayed within the task-form, they did not need 
to toggle between the email and the task-form in order to 
copy and paste content. Third, the VIO selected the correct 
record automatically for the participant.  

To further understand the impact of placing the email next 
to the form we examined the participants’ logs. Table 5 
shows the average number of times the task email window 
was in focus for greater than 1 second. The VIO and CMS 
columns show the number of times participants viewed the 
source email in each condition, and the “decrease” column 
shows the percentage decrease in time to complete a task 
for the VIO condition as compared to the CMS (from Table 
1). Overall, the table indicates that the task email is viewed 
far less frequently in the VIO condition. Thus, users save 
the labor of switching between the email and the form.  

Task CMS VIO decrease 
T1 8.30 2.50 22% 
T2 2.50 1.60 43% 
T3 5.90 1.85 -12% 
T4 3.70 1.65 -3% 
T5 2.05 1.75 29% 
T6 2.45 1.90 40% 
T7 3.50 1.70 19% 
T8 2.70 1.70 21% 

Average 3.89 1.83 17% 
Table 5. Average number of times task email is in focus for 

greater than 1 second.  

A 2 (interface condition) by 8 (task) repeated measures 
ANOVA, in which task was the repeated factor, indicated a 
significant main effect of condition (F [1, 38] = 49.07, p 
< .001), indicating that switches were much less common in 
the VIO condition. There was also a significant effect of 
task (F [7, 38] = 37.96, p < .001) and a significant task by 
condition interaction (F [7, 38] = 23.39, p < .001), 
indicating that the switches were more common in some 
tasks than others, and that the benefits of VIO over CMS 
for task switches were larger for some tasks than others. 
Interestingly, while tasks T2 and T6 showed the greatest 
reduction for the VIO condition, they both had very little 
difference in window toggling behavior. These tasks both 
involved adding a photo, and the time reduction seems to 
come from reducing the number of steps in saving the file 
from the email and linking it to the task-form. 

With respect to task T3, VIO clearly generated an error that 
many participants allowed to enter the dataset. Even though 
the interface used an orange background to indicate that 
VIO had made a change to the last name field, 13 of the 20 
participants failed to notice and correctly compensate for 

 



  

the error. Two (2) of the 13 participants noticed the error 
but incorrectly compensated for it.  

We propose three ways to address this problem of selecting 
the wrong record. First, the algorithm that selects the record 
could use machine learning to improve its accuracy. Second, 
VIO could be tuned to reduce the number of false positives 
at expense of reducing suggestions. This solution would 
mean users select the record for more tasks; however, the 
slight increase in effort would be offset by reduced errors. 
Third, when VIO has high confidence for more than one 
record, the record information could be included in the 
modified email suggestion. For example, the email list of 
tasks might include “Modify Person: David Rodgerson,” 
“Modify Person: David McCullar,” “Add Person: David 
Rodgerson,” and “Add Person: David McCullar.”  

Participants gave good usability scores for both conditions. 
This result indicates that the experiment was unbiased with 
respect to the design of VIO and CMS forms, and that the 
time and performance differences were not due to 
qualitative usability differences. In addition, the high scores 
for VIO indicate that it would likely be accepted by users. 

KLM evaluation 
The empirical evaluation demonstrated that the agent with a 
little training can provide significant benefit. However, this 
evaluation raised three questions: (i) How much does VIO 
action reduce time as compared to the interface design? (ii) 
How does learning reduce task time? and (iii) How much 
total time reduction can a perfect VIO provide? In order to 
gain some insight, we performed a Keystroke-Level 
Modeling (KLM) analysis. This method predicts average 
performance for skilled users by assigning values to user 
and system actions.  

We used CogTool [9], a software tool that allows interface 
designers to import their interface screens, to measure the 
sizes and map the locations of buttons and other clickable 
targets, and to provide a script of a user’s actions such as 
button presses, reading time, pointing time, system 
processing time, etc. The automation the tool provides 
significantly reduces the time and effort required to perform 
a KLM.  

In both the CMS and the VIO interfaces there are multiple 
ways to perform each task. For this KLM we chose to have 
the skilled user do what we observed most participants in 
the empirical study do: read the message, navigate to the 
task-picker page (CMS only), select the correct form, toggle 
between the message window and the task-form for each 
field’s content and paste it in (CMS), or copy and paste 
from the embedded message (VIO). There are two 
exceptions: 
• T1 requests an update to the person’s city and state to 

“Alexandria, VA.” In the KLM the expert user pastes 
“Alexandria” into the city field, but simply types “VA” 
into the state field. 

• T8 requests a one-letter correction to a person’s last name 
(change “Grainder” to “Grainger”). In the KLM the 

expert user simply selects the incorrect letter and types 
the correction. 

When interacting with the pull-down menu, the skilled user 
types the first few letters to get to the correct item in the list, 
then types the enter key to select it. 

For this KLM we used a reading time of 300 words per 
minute. To apply the reading rate we considered the number 
of words in each email message, excluding blocks of text 
that are generally not read. For example, add-news tasks 
sometimes included the text of the news story, which we 
excluded from the word count. Text such as URLs and 
email addresses each counted as a single word. Reading 
times for the tasks ranged from 4 to 10 seconds. 

Design 
For this analysis we used the same eight tasks from the 
empirical study, under four conditions: 
• CMS: This KLM was based on our CMS interface. This 

condition works as a benchmark for revealing the 
performance gains from the other conditions. 

• VIO-interface-only: This KLM was based on a VIO with 
no training (no VIO suggestions were provided). In this 
condition the incoming email had the structured list of 
tasks, but no prioritized list. Also, in the task-form, no 
fields were updated by the VIO. This condition measures 
interaction design effects without interference from VIO.  

• VIO with our current agent: This KLM makes the same 
errors as VIO made during our empirical study. This 
condition provides a view of an agent with some training. 
Also, this condition helps us see how accurately the KLM 
matches human performance, allowing us to investigate 
the time difference needed to recognize a VIO error. 

• VIO with a perfect agent: This KLM models a perfect 
VIO: the VIO always selects the correct form and 
correctly extracts all elements from the email to use to fill 
in the form. This condition shows the maximum benefit 
the VIO can provide. 

Results 
Table 6 shows the modeled task-completion times in 
seconds. Column CMS shows the completion time for the 
CMS interface; column VIO-interface shows the 
completion time for VIO interface with no learning; column 
current-VIO shows completion time the VIO with the same 
level of learning as the empirical study; and column 
perfect-VIO shows the completion time for VIO with no 
errors. The bottom row details the total time for all tasks in 
each condition and the percent decrease in task time for the 
different VIO conditions as compared to the CMS condition.  

The VIO-interface-only condition reduces the task time by 
15% compared to the CMS; the current-VIO condition 
reduces task time by 43% compared to the CMS; and the 
perfect-VIO condition reduces the task time by 71% 
compared to the CMS.  

The KLM models the time needed to make corrections to 
agent errors, but it is not intended to model time taken for 
users to think about the message and examine the agent-

 



  

filled form for mistakes. This accounts for part of the time 
difference between the KLM-estimated reduction in time of 
43% for the current-VIO and the 17% found in the 
empirical study. In this way the KLM provides an 
approximation of actual behavior. 

Task CMS 
VIO-

interface 
current-

VIO 
perfect-

VIO 
T1 58.980 46.499 27.212 8.984 
T2 33.047 31.958 13.435 13.435 
T3 62.075 45.001 29.772 8.952 
T4 32.044 27.228 27.206 9.200 
T5 15.501 14.702 9.180 7.830 
T6 29.988 27.984 10.580 10.58 
T7 36.594 32.255 32.193 13.97 
T8 23.592 22.754 15.483 10.761 

Total 291.821 248.381 165.061 83.712 
% decrease in time  15% 43% 71% 

Table 6. Performance data for the four KLM conditions. 

Discussion 
The VIO-interface-only condition produced a 15% 
reduction in time over the CMS condition. This 15% benefit 
comes exclusively from the interface because in this 
condition VIO uses no learning to automate the task. The 
savings comes exclusively from eliminating the need to 
navigate to the task-picker page and select the correct form, 
and from eliminating the need to toggle between email and 
the browser by embedding the message in the task-form.  

The perfect-VIO condition produced a 71% reduction in 
time compared to the CMS. Subtracting the 15% benefit 
provided by the interface reveals the maximum benefit from 
the VIO’s learning at 56%. This number may be high, as 
users of the system would still need to check to see if an 
error occurred, something not modeled in the KLM. 

The current-VIO condition produced a 43% reduction 
compared to the CMS, revealing a 28% reduction provided 
by VIO in addition to the interface. The KLM prediction of 
human behavior clearly shows that as the agent learns, the 
users reduce task time by having more and more of the task 
automated. However, this savings of 43% is much higher 
than the 17% found in the empirical study. 

Two main factors help explain this difference: skilled 
performance and error recognition. The 20 practice tasks 
participants completed before the timed tasks may not have 
provided enough training for them to perform at the level of 
an expert, particularly for the VIO interface, which requires 
interaction methods that are unfamiliar to participants. In 
addition, KLM results do not take into account the time 
needed to recognize errors; they only take into account the 
amount of time to fix it.  

Figure 5 provides some insight into the issue of skilled 
performance and error recognition. This chart shows a plot 
of ranked participants by task-completion times in the 

empirical study. Assuming that the completion of the 20 
training tasks aided some participants more than others, the 
ranked list can be viewed as a list of most-skilled to least-
skilled users. Surprisingly the chart shows a set of near 
parallel lines, revealing that VIO reduced task competition 
time by the same amount regardless of the skill level. While 
the total amount of time reduced remains the same, as skill 
increases, and the total completion time gets small, the 
percentage of time saved by the agent as a factor of total 
task time increases. 
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Figure 5. Ranked task completion time for VIO and CMS. 

The five fastest (most-skilled) CMS participants had an 
average total task completion time of 300.6 seconds, just 
3% slower than the KLM prediction of skilled performance. 
This data indicates that these participants may have been 
performing at skilled level after the 20 training tasks. The 
five fastest VIO participants had an average total task 
competition time of 207 seconds, 25% slower than the 
KLM predicted. From this data we can speculate that the 
additional time needed to recognize VIO errors is 
approximately 25% of the KLM prediction of total task 
time for skilled users. In considering reduction in task time, 
while VIO reduced task time by 17% for all users, it 
reduced task time by 31% for the top five performers when 
compared to the top five performers in the CMS condition. 

CONCLUSION 
This paper presents a new mixed-initiative interaction 
design where users train an agent to automate completion of 
mundane, procedural update tasks. The design embraces the 
idea that agents make mistakes through an interaction 
design that asks users to repair agent errors as a method of 
providing training data that improves the agent’s learning. 
The design allows users to simply perform their work in 
order to train the agent. 

Our empirical evaluation demonstrates that this interface 
coupled with an agent that has very little training can 
significantly reduce the amount of time that workers spend 
on mundane, procedural tasks.  In addition our KLM 
analysis provides additional insights, such as the time 

 



  

savings provided by the interaction design alone, and the 
time reduction provided by the assistance the agent offers. 
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