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Abstract

Speech interfaces are becoming pervasive among the common public
with the prevalence of smart phones and cloud-based computing. This
pushes Automatic Speech Recognition (ASR) systems to handle wide
range of environments including different channels, noise conditions
and speakers with varying accents. This thesis focuses on the impact
of speakers’ accents on the ASR models and techniques to make them
robust to such variations. State-of-the-art large vocabulary ASRs perform
poorly when presented with accented speech, that is either unseen or
under-represented in the training data. Current approaches to handle
accent variations mainly involve adaptation of acoustic models or the
pronunciation dictionary.

This thesis examines novel adaptation algorithms capable of mod-
eling changes in phonological realizations, that uniquely characterize
accent variations. Techniques that can exploit the contemporary avail-
ability of extensive, albeit unlabeled data resources are also investigated.
We design experiments under various scenarios where accent adaptation
is critical for speech recognition.

In target accent adaptation setup, a source ASR trained on resource-
rich accent(s) is adapted to a target accent with limited adaptation data.
We propose semi-continuous decision tree adaptation and multi-gram
pronunciation models to efficiently model the pronunciation changes
between source and target accents. Active and semi-supervised learning
are studied to extend the improvements obtained from supervised adap-
tation. We introduce relevance criteria based data selection to sample
additional accent-specific data from large, unlabeled speech corpora
with multiple accents.

Finally, we generalize the target accent adaptation techniques to
handle multiple accents in the training set. We formulate an accent
adaptive training framework using factorized models with shared canon-
ical parameters and accent-specific modules. Our proposed algorithms
will be evaluated on Arabic and English accents and compared against
existing adaptation techniques.
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Chapter 1

Introduction

Speech recognition research has seen great strides in the recent years and current
state-of-the-art ASRs scale to large systems with millions of parameters trained
on thousands of hours of audio data. For many tasks such as Broadcast News
transcription, the Word-Error Rate (WER) has been reduced to less than 10% for a
handful of languages [Matsoukas et al., 2006, Soltau et al., 2009, Gauvain et al.,
2005, Hsiao et al., 2009]. This has led to increased adoption of speech recognition
technology in desktop, mobile and web platforms for applications such as dictation,
voice search [Bacchiani et al., 2008], natural language queries, etc. However, these
systems suffer high vulnerability towards variations due to accents that are unseen or
under-represented in the training data [Soltau et al., 2011, Nallasamy et al., 2012a].
The Word-Error-Rate (WER) has been to shown to nearly double for mismatched
train/test accent pairs in a number of languages such as English [Humphries and
Woodland, 1997, Nallasamy et al., 2012a], Arabic [Soltau et al., 2011, Nallasamy
et al., 2012a], Mandarin Chinese [Huang et al., 2001a] or Dutch/Flemish accents
[Compernolle, 2001]. Moreover, the accent-independent ASR trained on pooled,
multiple accents achieves 20% higher WER than accent-specific models [Soltau
et al., 2011, Biadsy et al., 2012, Compernolle, 2001].

1.1 Accent variations

Human speech in any language, exhibits a class of well-formed, stylized speaking
patterns that are common across members that belong to the same clique. These
groups can be characterized by geographical confines, socio-economic class, ethnic-
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2 Chapter 1: Introduction

ity or for second-language speakers, by the speakers’ native language. These spoken
language patterns can vary in their vocabulary, syntax, semantics, morphology
and pronunciation. These set of variations are termed as ’Dialects’ of a language.
Accent is a subset of Dialect variations that is concerned mainly with the pronun-
ciation, although pronunciation can influence other choices such as vocabulary
and word-frequency [Wells, 1982, MHu]. Although non-native pronunciations are
influenced by the speakers’ native language, we do not focus on explicitly modeling
L2 variations in this thesis. Pronunciation variations between different accents can
be further characterized by

• Phonemic inventory - Different accents can have different set of phonemes

• Phonetic realization - Allophones of the same phoneme can be realized differ-
ently

• Phonotactic distribution - The distribution of phonemes can be different

• Lexical distribution - Different words can take different phonemes

All of us have an accent and we express both unique and common speech patterns
with members of similar accents. These accent variations can be represented by
contextual phonological rules of the form

L −m+R → s (1.1)

where L represents the left-context, R the right-context, m the phone to be
transformed and s the realized phone. Such rules result in changes to canonical
pronunciation including addition, deletion and substitutions of sounds units. [Uni]
used such rules in a hierarchical way to convert an accent-independent pronuncia-
tion lexicon to a variety of English accents spanning across US, UK, Australia and
New Zealand.

1.2 Related work

The two main approaches for accent adaptation include lexical modeling and acous-
tic adaptation. Lexical modeling accounts for the pronunciation changes between
accents by adding accent-specific pronunciation variants to the ASR dictionary. It
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is accomplished by either rules created by linguistic experts [Bael and King, 2003,
Tomokiyo, 2000] or automatically learnt using data-driven algorithms [Livescu and
Glass, Humphries and Woodland, 1997, Nallasamy et al., 2011]. [Tomokiyo, 2000]
used both knowledge-based and data-driven methods to generate pronunciation
variants for improving native American ASR on Japanese English. In [Humphries,
1997], the transformation rules from source accent (British English) to target accent
(American English) pronunciations are automatically learnt using a phone decoder
and decision trees. It has also been shown that adding pronunciation variants to the
dictionary has a point of diminishing returns, as over-generated pronunciations can
lead to ambiguity in the decoder and degrade its performance [Riley et al., 1999].

The phonetic variations between accents can also be addressed by acoustic
adaptation techniques like MLLR/MAP [Leggetter and Woodland, 1995, Gauvain
and Lee, 1994] estimation. They are generally model accent variations by linear
transforms or Bayesian statistics [Vergyri et al., 2010, Digalakis et al., 1997, Smit
and Kurimo, 2011, Tomokiyo, 2000]. However, both MLLR and MAP adaptation are
generic adaptation techniques that are not designed to account for the contextual
phonological variations presented by the accent. [Clarke and Jurafsky, 2006]
showed that MLLR has some limitations in modeling accented speech, particularly
if the target accent has some new phones which are not present in the source.
Polyphone decision tree in ASR that is used to cluster context-dependent phones
based on phonetic question is also a candidate for accent adaptation. It decides
which contexts are important to be modeled and which ones are merged, thus
directly influencing the pronunciation. [Wang and Schultz, 2003] used Polyphone
Decision Tree Specialization (PDTS) to model the pronunciation changes between
native and non-native accents. One of the limitations of PDTS is that it creates
too few contextual states at the leaf of the original decision tree with the available
adaptation data, thus having less influence in overall adaptation.

All these supervised adaptation techniques require manually labeled target ac-
cent data for adaptation. The adaptation can benefit from additional data, however
it is costly to collect and transcribe sufficient amount of speech for various accents.
Active and semi-supervised training for the goal of accent adaptation has received
less attention in the speech community. [Novotney et al., 2011] uses self-training
to adapt Modern Standard Arabic (MSA) ASR to Levantine with limited success.
Self-training assumes the unlabeled data is homogeneous, which is not the case
for multi-accented datasets. [Soltau et al., 2011] used an accent classifier to select
appropriate data for MSA to Levantine adaptation on GALE BC corpus. It requires
sufficiently long utterances (≈ 20s) for both accents to reliably train a discriminative
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phonotactic classifier to choose the data.

Finally, the real-world datasets have multiple accents and the ASR models should
be able to handle such accents without compromising on the performance. The
main approaches used in these conditions are multi-style training, which simply
pools all the available data to train accent-independent model. Borrowing from
Multilingual speech recognition, [Caballero et al., 2009, Kamper et al., 2012] have
used tagged decision trees to train accent-adaptive models. In a similar problem
of speaker and language adaptive training in speech synthesis, [Zen et al., 2012]
used acoustic factorization to simultaneously train speaker and language adaptive
models.

1.3 Expected contributions of the Thesis

• Target accent adaptation. We introduce semi-continuous, polyphone deci-
sion trees to adapt source accent ASR to target accent using relatively limited
adaptation data. We also explore lexical modeling using multigram model
based pronunciation adaptation for automatically deriving accent-specific
pronunciations using adaptation data. We evaluate these techniques on Arabic
and English accents and compare their performance against existing adapta-
tion techniques. The acoustic adaptation part of the work has been completed
and published in [Nallasamy et al., 2012a]. The lexical/pronunciation modeling
is part of ongoing work.

• Dataselection for Accent adaptation. We explore active and semi-supervised
learning algorithms for the goal of target accent adaptation. We introduce
relevance based biased sampling to augment traditional data selection to
choose an appropriate subset from a large speech collection with multiple
accents. The additional data is used in active or semi-supervised learning
to retrain the ASR for additional improvements on the target accent. Active
learning part of the work has been completed and submitted to SLT 2012. The
semi-supervised learning has been published in [Nallasamy et al., 2012b].

• Accent Robust and Accent Adaptive training. We introduce an evaluation
framework to test various front-ends based on their robustness to accent
variations. We analyze the performance of MFCC and Bottle-neck features on
a multi-accent Arabic dataset and show that this framework can aid in choosing
accent robust features. We propose accent adaptive training using factorized
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decision trees and accent-specific dictoinaries to better handle multiple accents
in the training data. We evaluate these models on a multi-accented English and
Arabic datasets. Preliminary experiment using the proposed accent robustness
criterion has been completed and published in [Nallasamy et al., 2011]. The
framework will be extended to English accents with detailed analysis. Accent
adaptive training is part of the planned work.

The tasks listed in each chapter and their status are summarized in Table 5.1.

1.4 Proposal Organization

In chapter 2, we discuss target accent adaptation using semi-continuous polyphone
decision tree adaptation. We propose a pronunciation adaptation approach using
multigram model to adapt the pronunciation dictionary to target accent. In chapter
3, we explore active and semi-supervised learning in the context of accent adapta-
tion to make use of large amount of easily available unlabeled speech corpus for
improved performance on the target test set. We introduce a relevance criterion
inaddition to uncertainty or confidence based scores for data selection. In chapter
4, we explore accent robust and accent adaptive techniques to efficiently handle
training and test data with multiple accents. We provide a summary of the tasks,
their status and the timeline for the remaining work in chapter 5.





Chapter 2

Target Accent Adaptation

In this chapter, we investigate techniques that can adapt an ASR model trained on
one accent (source) to a different accent (target) with limited amount of adaptation
data. With the wide-spread adoption of speech interfaces in mobile and web
applications, modern day ASRs are expected to handle speech input from a range of
speakers with different accents. The trivial solution is to build a balanced training
database with representative accents in the target community. It is quite expensive
to collect and annotate a variety of accents for any language, even for the few
major ones. While a one-size-fits-all ASR that can recognize seen/unseen accents
equally well may be the holy-grail, the practical solution is to develop accent-specific
systems, atleast for a handful of major accents in the desired language. Since, it
is difficult to collect large amount of accented data to train an accent-dependent
ASR, the source models are adapted using a relatively small amount of target
data. The initial ASR is trained on available training data and adapted to required
target accents using the target adaptation data. It is imperative that the adaptation
technique should be flexible to efficiently use the small amount of target data to
improve the performance on the target accent. The target accent can either be a new
unseen accent or it can be a regional accent, under-represented in the training data.
In both cases, the source ASR models are adapted to match the target adaptation
data better.

7



8 Chapter 2: Target Accent Adaptation

2.1 Previous work

Two main approaches to target accent adaptation include lexical modeling and
acoustic model adaptation. In lexical modeling, the ASR pronunciation dictionary is
modified to reflect the changes in the target accent. Both rule-based and data-driven
techniques have been used to generate additional pronunciation variants to better
match the decoder dictionary to the target accent.

The Unisyn project [Uni] uses a hierarchy of knowledge-based phonological
rules to specialize an accent-independent English dictionary to a variety of accents
spanning different geographical locations including, US, UK, Australia and New
Zealand. [Bael and King, 2003] used these rules on the British English BEEP
dictionary to create accent-specific ASRs and showed improved performance on
cross-accent scenarios. [Tomokiyo, 2000] used both rule-based and data-driven
rules to recognize Japanese-accented English. [Humphries and Woodland, 1997,
Goronzy et al., 2004, Nallasamy et al., 2011] also used data-driven rules to model
different accents in cross-accent adaptation. The main component of these data-
driven methods is a phone-loop recognizer which decodes the target adaptation
data to recover the ground truth pronunciations. These pronunciations are then
aligned with an existing pronunciation dictionary and phonological rules are derived.
During decoding, the learnt rules are applied to the existing dictionary to create
accent-dependent pronunciation variants.

In the case of acoustic model adaptation, [Vergyri et al., 2010] used MAP adap-
tation and compared the performance on multi-accent and cross-accent scenarios.
[Livescu, 1999] employed different methods including model interpolation to im-
prove the performance of native American English recognizer on non-native accents.
[Smit and Kurimo, 2011] created a stack of transformations to factorize speaker and
accent adaptive training and reported improvements on the EMMIE English accent
setup. Finally, [Humphries, 1997] compared both the lexical and acoustic model
adaptation techniques and showed they can obtain complementary gains on two
accented datasets. The polyphone decision tree (PDT), in addition to the GMMs can
also be a candidate for accent adaptation. [Schultz and Waibel, 2000, Stüker, 2008]
adapted the PDT on the target language/accent and showed improved performance
over MAP adaptation.
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2.2 PDT Adaptation

A polyphone decision tree is used to cluster context-dependent states to enable
robust parameter estimation based on the available training data. Phonetic binary
questions such as voiced yes/no, unvoiced yes/no, vowel yes/no, consonant yes/no,
etc. are used in a greedy, entropy-minimization algorithm to build the PDT based
on the occupational statistics of all the contexts in the training data. These statistics
are accumulated by forced-aligning the training data with context-independent (CI)
models. The leaves of the PDT serve as final observation density functions in the
HMM models. The PDT has great influence in the overall observation modeling as it
determines how different contexts are clustered. Since the acoustic variations of
different accents in a language are usually characterized by contextual phonological
rules, it makes PDT an attractive candidate for accent adaptation.

PDT adaptation has been shown to improve the ASR adaptation for new lan-
guages [Schultz and Waibel, 2000] and non-native speech [Wang and Schultz,
2003]. It involves extending the PDT trained on the source data with relatively
small amount of adaptation data. The extension is achieved by force-aligning the
adaptation data with the existing PDT and its context-dependent (CD) models. The
occupational statistics are obtained in the same way as before based on the contexts
in the adaptation dataset. The PDT training is restarted using these statistics, from
the leaves of the original tree. The parameters of the resulting states are initialized
from their parent nodes and updated on the adaptation set using a MAP training.
The major limitation of this framework is that, each of the newly created states has
a set of state-specific parameters (means, variance and mixture-weights) that need
to be estimated from the relatively small adaptation dataset. This limits the number
of new contexts created to avoid over-fitting.

For example, let us assume we have 3 hours of adaptation data and our source
accent model has 3000 states with 32 Gaussians per state. We enforce a minimum
count of 250 frames (with 10ms frame-shift) per Gaussian. The approximate number
of additional states that can be created from the adaptation dataset is 135 or only
4.5% of the total states in the source model. Such small number of states have quite
less influence on the overall acoustic model. One solution is to significantly reduce
the number of Gaussians in the new states, but this will lead to under-specified
density functions. In the next section, we review the semi-continuous models with
factored parameters to address this issue.
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2.3 Semi-continuous PDT Adaptation

We propose a semi-continuous PDT adaptation to address the problem of data-
sparsity and robust estimation for PDT adaptation. A semi-continuous model extends
a traditional fully-continuous system to incorporate additional states with GMM
mixture weights which are tied to the original codebooks. This factorization allows
more granulated modeling while estimating less parameters per state, thus efficiently
utilizing the limited adaptation data. We briefly review the semi-continuous models
and present the use of it in accent adaptation.

In a traditional semi-continuous system, the PDT leaves have a common pool
of shared Gaussians (codebooks) trained with data from all the context-dependent
states. Each leaf has a unique set of mixture weights (distribution) over these
codebooks trained with data specific to the state. The fully-continuous models on the
other hand, have state-dependent codebooks (Gaussians) and distributions (mixture
weights) for all the leaves in the PDT. Although traditional semi-continuous models
are competitive in low-resource scenarios, they lose to fully-continuous models
with increasing data. The multi-codebook variant of semi-continuous models can
be thought of as an intermediary between semi-continuous and fully-continuous
models. They follow a two-step decision tree construction process: in the first
level, the scenario is the same as for fully continuous models, with clustered leaves
of PDT having individual codebooks and associated mixture-weights. The PDT is
then further extended with additional splitting into the second level, where all the
states that branched out from the same first level node, share the same codebooks,
but have individual mixture-weights. For more details on the difference between
fully-continuous, traditional and multi-codebook semi-continuous models, refer
to [Reidhammer et al., 2012]. These models are being widely adopted in ASR
having performed better than its counterparts, in both low-resource [Reidhammer
et al., 2012] and large-scale systems [Soltau et al., 2009].

One of the interesting features of multi-codebook semi-continuous models is that
the state-specific mixture weights are only a fraction of size of the shared Gaussian
parameters, i.e means and variances even in the diagonal case. This allows us to
have more states in the second-level tree with robustly estimated parameters, thus
more suitable for PDT adaptation on a small dataset of target accent. The codebooks
can also be reliably estimated by pooling data from all the shared states. The accent
adaptation using this setup is carried out as follows:

• We start with a fully-continuous system and its associated PDT trained on the
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source accent.

• The CD models are used to accumulate occupation statistics for contexts
present in the adaptation data.

• The second-level PDT is trained using these statistics, creating new states with
shared codebooks and individual mixture-weights.

• The mixture-weights of the second-level leaves or adapted CD models are then
initialized with parameters from their root nodes (fully-continuous leaves).

• Both the codebooks and mixture-weights are re-estimated on the adaptation
dataset using MAP training.

Recalling the example from previous section, if we decide to train semi-continuous
PDT on a 3 hour adaptation set and a minimum of 124 frames per state (31 free
mixture-weight parameters per state), we will end up with ≈8000 states, 2.6 times
the total number of states in the source ASR (3000)! The MAP update equations for
the adapted parameters are shown below.

Table 2.1: Multi-codebook semi-continuous model estimates.

Estimate Equation

Likelihood p(ot|j) =
∑Nk(j)

m=1 cjmN (ot µk(j),m,Σµk(j),m)

Mixture-weight cMAP
jm =

γjm+τMĉjm∑M
m=1 γjm+τ

Mean µMAP
km = θkm(O)+τµ̂km

γkm+τ

Variance σMAP 2

km =
θkm(O2)+τ(µ̂2km+σ̂2

km)

γkm+τ
− µMAP 2

km

γ, θ(O) and θ(O2) refer to zeroth, first and second-order statistics respectively.
The subscripts j refers to states, k to codebooks and m to Gaussian-level statistics.
k(j ) refers to state-to-codebook index. τ is the MAP smoothing factor.

2.4 Experiment Setup - Speech Corpus, Language Model
and Lexicon

We evaluate the adaptation techniques on 3 different setups on Arabic and English
datasets. The training data for Arabic experiments come from Broadcast News
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(BN) and Broadcast Conversations (BC) from LDC GALE corpus. The BN part
consists of read speech from news anchors from various Arabic news channels
and the BC corpus consists of conversational speech. Both parts mainly includes
Modern Standard Arabic (MSA) but also various other dialects. LDC provided dialect
judgements (Mostly Levantine, No Levantine & None) produced by transcribers on a
small subset of the GALE BC dataset automatically chosen by IBM’s Levantine dialect
ID system. We use 3 hours of ’No Levantine’ and ’Mostly Levantine’ segments as
source and target test sets and allocate the remaining 30 hours of ’Mostly Levantine’
segments as adaptation set. The ’No Levantine’ test set can have MSA or any other
dialect apart from Levantine. The Arabic Language Model (LM) is trained from
various text and transcription resources made available as part of GALE. It is a
4-gram model with 692M n-grams, interpolated from 11 different LMs trained on
individual datasets [Metze et al., 2010]. The total vocabulary is 737K words. The
pronunciation dictionary is a simple grapheme-based dictionary without any short
vowels (unvowelized). The Arabic phoneset consists of 36 phones and 3 special
phones for silence, noise and other non-speech events. The LM perplexity, OOV rate
and number of hours for different datasets are shown in Table 2.2.

We use the Wall Street Journal (WSJ) corpus for our experiments on accented
English. The source accent is assumed to be US English and the baseline models are
trained on 66 hours of WSJ1 (SI-200) part of the corpus. We assign UK English as
our target accent and extract 3 hours from the British version of the WSJ corpus
(WSJCAM0) corpus as our adaptation set. We use the most challenging configuration
in the WSJ test setup with 20K non-verbalized, open vocabulary task and default
bigram LM with 1.4M n-grams. WSJ Nov 93 Eval set is chosen as source accent
test set and WSJCAM0 SI ET 1 as target accent test set. Both WSJ and WSJCAM0
were recorded with the same set of prompts, so there is no vocabulary mismatch
between the source and target test sets. We use US English CMU dictionary (v0.7a)
without stress markers for all our English ASR experiments. The dictionary contains
39 phones and a noise marker.

2.5 Baseline Systems

For Arabic, we trained an unvowelized or graphemic system without explicit models
for the short vowels. The acoustic models use a standard MFCC front-end with
mean and variance normalization. To incorporate dynamic features, we concatenate
15 adjacent MFCC frames (±7) and project the 195 dimensional features into



2.5 Baseline Systems 13

Table 2.2: Database Statistics.
Dataset Accent #Hours Ppl %OOV

Arabic
Train-BN-SRC Mostly MSA 1092.13 - -
Train-BC-SRC Mostly MSA 202.4 - -
Adapt-TGT Levantine 29.7 - -
Test-SRC Non-Levantine 3.02 1011.57 4.5
Test-TGT Levantine 3.08 1872.77 4.9

English
Train-SRC US 66.3 - -
Adapt-TGT UK 3.0 - -
Test-SRC US 1.1 221.55 2.8
Test-TGT UK 2.5 180.09 1.3

a 42-dimensional space using a Linear Discriminant Analysis (LDA) transform.
After LDA, we apply a globally pooled ML-trained STC transform. The speaker-
independent (SI), CD models are trained using a entropy-based polyphone decision
tree clustering process with context questions of maximum width ±2, resulting in
quinphones. The speaker adaptive (SA) system makes use of VTLN and SA training
using feature-space MLLR (fMLLR). During decoding, speaker labels are obtained
after a clustering step. The SI hypothesis is then used to calculate the VTLN, fMLLR
and MLLR parameters for SA decoding. The resulting BN system consists of 6K
states 844K Gaussians and and the BC system has 3K states and 141K Gaussians.
We perform our initial experiments with the smaller BC system and evaluate the
adaptation techniques finally on the bigger BN system.

The BC SA system produced a WER of 17.8% on GALE standard test set Dev07.
The performance of the baseline SI and SA on source and target accents are shown
in Table 3.4. We note that the big difference in WER between these test sets and the
Dev07 is due to relatively clean Broadcast News (BN) segments in Dev07, while our
new test sets are based on BC segments. Similar WERs are reported by others on
this task [Soltau et al., 2011]. The absolute difference of 7.8-9.0% WER between
the two test sets shows the mismatch of baseline acoustic models to the target
accent. For further analysis, we also include the WER of a system trained just on
the adaptation set. The higher error rate of this TGT ASR indicates that 30 hours
isnt sufficient to build a Levantine ASR that can outperform the baseline for this
task. As expected, the degradation in WER is not uniform across the test sets. The
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TGT ASR performed 11.1% absolute worse on unmatched source accent while only
0.4% absolute worse on matched target accent compared to the baseline.

The English ASR essentially follows the same framework as Arabic ASR with
minor changes. It uses 11 adjacent MFCC frames (±5) for training LDA and triphone
models (±1 contexts) instead of quinphones. The decoding does not employ any
speaker clustering, but uses the speaker labels given in the test sets. The final
SRC English ASR has 3K states and 90K Gaussians. The performance of TGT ASR
trained on the adaptation set is worth noting. Although it is trained on only 3
hours, it has a WER 6.4% absolute better than the baseline source ASR, unlike its
Arabic counterpart. This result also shows the difference in performance of ASR in
decoding an accent, which is under-represented in the training data (Arabic setup)
compared to the one in which the target accent is completely unseen during training
(English setup). The large gain of 6.7% absolute for English SA system compared to
SI system on the unseen target accent, unlike the Arabic setup, also validates this
hypothesis.

Table 2.3: Baseline Performance.

System Training Set
Test WER (%)
SRC TGT

Arabic
SRC ML SI Train-SRC 51.2 59.0
SRC ML SA Train-SRC 47.1 56.7
TGT ML SA Adapt-TGT 58.2 57.1

English
SRC ML SI Train-SRC 13.4 30.5
SRC ML SA Train-SRC 13.0 23.8
TGT ML SA Adapt-TGT 33.5 17.4

2.6 Accent Adaptation Experiments

We chose to evaluate accent adaptation with 3 different techniques: MAP adaptation,
fully-continuous PDTS as formulated in [Schultz and Waibel, 2000] and semi-
continuous PDTS or SPDTS. MLLR is also a possible candidate, but its improvement
saturates after 600 utterances (≈ 1 hour), when combined with MAP [Huang et al.,
2001b]. MLLR is also reported to have issues with accent adaptation [Clarke and
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Jurafsky, 2006]. The MAP smoothing factor τ is set to 10 in all cases. We did not
observe additional improvements by fine-tuning this parameter. The SRC Arabic
ASR had 3k states - the adapted fully-continuous PDTS had 256 additional states,
while semi-continuous adapted PDTS (SPDTS) ended up with 15K final states (3K
codebooks). In a similar fashion, SRC English ASR had 3k states - Adapted English
PDTS had 138 additional states while the SPDTS managed 8K final states (3k
codebooks). Inspite of the difference in the number of states, PDTS and SPDTS
have approximately the same number of parameters in both setups. We evaluate
the techniques under two different criterion: Cross-entropy of the adaptation data
according to the model and WER on the target accent test set

The per-frame cross-entropy of the adaptation data D according to the model θ
is given by

Hθ(D) = − 1

T

U∑
u=1

uT∑
t=1

log p(ut|θ)

where U is the number of utterances, uT is the number of frames in utterance
u and T = ΣuuT refers to total number of frames in the training data. The cross-
entropy is equivalent to average negative log-likelihood of the adaptation data. The
lower the cross-entropy the better the model fits the data. Figure 2.1 shows that the
adaptation data has the lowest cross-entropy on SPDTS adapted models compared
to MAP and PDTS.

The adapted models are used to decode both source and target accent test sets
and the WER of all the adaptation techniques are shown in Table 2.4.

MAP adaptation achieves a relative improvement of 9.7% for Levantine Arabic
and 29.4% for UK English. As expected, PDTS performs better than MAP in both
cases, but the relative gap narrowed down for Arabic. SPDTS achieves additional
improvement of 7% relative for Levantine Arabic and 13.6% relative for UK English
over MAP adaptation.

Finally, we tried MAP, PDTS and SPDTS techniques on our 1100 hour large-scale
BN GALE evaluation ML system. We used a 2-pass unvowelized system trained on
the GALE BN corpus for this experiment. It has the same dictionary, phoneset and
front-end as the 200 hour BC system and it has 6000 states and 850K Gaussians.
The results are shown below

We get 5.1% relative improvement for SPDTS over MAP in adapting a large-scale
ASR system trained on mostly BN MSA speech to BC Levantine Arabic. It is also
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Figure 2.1: Cross-entropy of adaptation data for various models

interesting to note the limitation of PDTS for large systems as discussed in Section
2.2. This experiment shows that Semi-continuous PDT Adaptation can scale well to
a large-scale, large vocabulary ASR trained on 1000s of hours of speech data.

We observe that the adapted models perform better on the target accent, while
their performance on the source accent gets worse. We propose to perform a
detailed error analysis between the baseline and adapted models for MAP, PDTS
and SPDTS techniques to determine the influence of the adapted decision tree on
the target accent performance. We aim to verify the hypothesis that the second-level
decision tree captures phonological variations, specific to the target accent.

2.7 Proposed Work: Pronunciation adaptation for Ac-
cented speech

PDT Adaptation improves the performance of the source model on the target model
by modeling the contextual variations between the source and target accents. How-
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Table 2.4: WER of MAP, PDTS and SPDTS on Accent adaptation.

System
Test WER (%)
SRC TGT

Arabic
MAP SA 47.6 51.2
PDTS SA 47.9 50.1
SPDTS SA 48.1 47.6

English
MAP SA 14.7 16.8
PDTS SA 15.1 15.6
SPDTS SA 16.7 14.5

ever, acoustic adaptation by itself cannot account for pronunciation variations
introduced by phonetic insertions and deletions. [Jurafsky et al., 2001] investigated
triphone based acoustic modeling and concluded that while context-dependent mod-
els can account for phone substitutions and prosodic changes, they cannot handle
syllable deletions. [Clarke and Jurafsky, 2006] showed that phonetic insertions
introduced majority of the errors in MLLR based accent adaptation. To handle
all the variations between source and target speech, acoustic adaptation methods
should be complemented by a higher-level lexical changes in the pronunciation
dictionary.

Pronunciation modeling has a rich history in ASR literature [Strik and Cuc-
chiarini, 1999, Riley et al., 1999] in general and accent adaptation in particular
[Humphries, 1997, Livescu and Glass, Tomokiyo, 2000]. It usually involves applying
transformation rules to the canonical pronunciations to better match the target
accent. These transformation rules are formulated either by expert knowledge or
derived automatically from the adaptation data. One of the common techniques is
to use a phone-loop recognizer to obtain a ground-truth phonetic transcription. This
phone sequence is then compared with the canonical pronunciation obtained from
the dictionary to derive the edit rules. The phone-loop recognizer is error-prone as
it does not use any lexical information while decoding. Hence, the rule learning
should account for noisy observations in the ground-truth phonetic sequence.

[Humphries, 1997] employed decision trees to automatically learn the transfor-
mation rules using the aligned phonetic sequences. The same linguistic questions
used by the ASR polyphone decision tree was used during training. Once the
decision trees are trained, they are employed to edit the canonical dictionary to
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Table 2.5: Per-frame cross-entropy on the adaptation set.

System Cross-entropy
Arabic

Baseline SA 49.43
MAP SA 47.21
PDTS SA 46.89
SPDTS SA 46.28

English
Baseline SA 55.99
MAP SA 55.53
PDTS SA 55.01
SPDTS SA 54.75

Table 2.6: Accent adaptation on GALE 1100 hour ML system.

System
Test WER (%)
SRC TGT

Arabic
Baseline ML SA 43.0 50.6
MAP ML SA 44.5 49.1
PDTS ML SA 44.9 48.8
SPDTS ML SA 48.9 46.6

create new variants. The resulting dictionary is used in decoding of the test data.
Experiments on a British English dictionary modified for American English showed
consistent improvements on the target test set. One of the limitations of this decision
tree based models is that the final phonetic sequence is obtained by a series of
locally optimal decisions that may not be globally optimal. It is also cumbersome
to generate n-best pronunciations using decision tree based model, for any further
re-scoring. Each transformation rule originates a possible pronunciation variant, so
the number of possible variants soon become quite large.

A similar problem of automatic grapheme-to-phoneme (G2P) conversion re-
placed decision tree based models using probabilistic multigram or graphone models
with significant improvements [Bisani and Ney, 2008]. [Li et al., 2007] extended
the idea for pronunciation adaptation using acoustic information on a name recog-
nition task. They interpolated the graphone LM trained on limited target data with
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a background LM trained on generic pronunciations to accomplish pronunciation
adaptation. [Li et al., 2011] used a similar LM interpolation technique to perform
G2P on dialectal Arabic words with limited adaptation data and large amount of
Modern Standard Arabic pronunciations. The background model trained on large
canonical dictionary is combined with the small amount of pronunciations obtained
from the adaptation data. Both interpolation based smoothing and data combina-
tion are compared as methods to address the data sparsity in training a multigram
graphone LM on the adaptation data which is used to transform grapheme into
phones in the target domain. The authors found that just combining the source and
target data produced better improvements than interpolation. This is mainly due to
poor alignments obtained solely from the adaptation data before interpolation. The
alignment requires large amount of data to reliably match the grapheme and phone
sequences.

We propose to improve on graphone LM adaptation by using a multigram LM
trained on canonical and ground-truth phone sequences. Such a model will trans-
form the canonical pronunciations in the dictionary to accent-specific variants. The
following section will introduce our proposed model for pronunciation adaptation.

2.8 Multigram pronunciation adaptation model

One of the drawbacks of graphone model adaptation using LM interpolation [Li et al.,
2007, 2011], is that it requires the target graphone LM which is trained on limited
adaptation data. Training a graphone LM requires reliable alignment of phone and
grapheme sequences, which is not accurate with limited examples. As a result,
pronunciation adaptation using LM interpolation is as good or worse than training a
graphone model by pooling both the background and target pronunciations [Li et al.,
2007]. To avoid the harder problem of learning graphone alignments using a small
amount of adaptation data, we propose to learn a mapping between canonical and
accent adapted phone sequences. These sequences are in the common (phonetic)
space and the alignment can be performed with simple dynamic string matching.
This allows us to train the phone-to-phone transformation LM that can adapt the
canonical pronunciations to the target accent. We first use the available canonical
dictionary to train a graphone model. The resulting LM is converted into a finite
state transducer, which produces a phonetic sequence given a grapheme sequence.
We then use a phone-loop ASR to obtain the ground-truth phonetic sequence. We
employ acoustically adapted models during decoding. We then use the canonical
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and the ground-truth phone sequences to train a second-level, phone-to-phone
multigram LM. The resulting FST is then composed with the original canonical
G2P transducer to obtain accent-specific pronunciations. The training process is
illustrated in the following diagram.

Figure 2.2: Step 1: Graphone LM Training

Figure 2.3: Step 2: Phone-to-Phone LM Training

In the first step, the canonical dictionary is used to train a graphone based G2P
model. We use a many-to-one alignment with LM training on 1-best match between
grapheme and phone sequence. During adaptation, we obtain the phone sequence
for each utterance using the canonical dictionary. The pronunciations for words
not present in the dictionary are derived from the graphone LM. The speech data
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for the utterance is used to produce a ground-truth phonetic sequence using a
phone-loop decoder. Adapted context-independent models are used to generate
the phone-sequence. Confidence scores can be used to prune away any outliers
in the hypothesis of the decoder. We align the canonical and ground-truth phone
sequences using string matching and train a phone-to-phone multigram LM.

During dictionary generation, the input vocabulary is appended with canonical
pronunciation using the dictionary. Again, the words not in the dictionary are
processed with the graphone LM. The canonical phone sequence is processed with
the phone-to-phone LM to obtain the accent-specific pronunciations. The newly
created dictionary is used to decode the target test data. We plan to evaluate the
model on WSJ task, adapting American English CMU dictionary to British English.
We will test the effect of pronunciation adaptation on the test data and compare it
against a manually created British English BEEP dictionary. We will also experiment
the technique on a large scale M*Modal dataset with native American and South-
Asian English accents. The large amount of speaker-specific data (≈ 100 hours
of speech per speaker) this database will allow us to build accent-specific and
even speaker-specific pronunciation dictionaries and evaluate their performance.
Experiments on the combination of pronunciation and acoustic adaptation will be
carried out and results will be reported.

2.9 Summary

We have introduced semi-continuous based decision tree adaptation for supervised
accent adaptation. We showed that the SPDTS model achieves better likelihood on
the adaptation data than other techniques. The technique obtains 7-13.6% relative
improvement over MAP adaptation for medium-scale and 5.1% relative for large
scale systems. We have proposed to conduct an error analysis to determine the influ-
ence of the semi-continuous, decision tree in modeling the phonological variations
in the target accent. We have proposed a multi-gram based pronunciation model
for accent adaptation at the lexical level. We will investigate its performance on the
WSJ and M*Modal accent adaptation tasks and report the results. If successfull, we
will also explore different ways of combining acoustic and pronunciation adaptation
techniques for further improvements.





Chapter 3

Dataselection for Accent Adaptation

Supervised adaptation using MAP/SPDTS requires transcribed target data for adapt-
ing the source model to the target accent. As we discussed in the previous chapter,
it is prohibitively costly to obtain large accented speech datasets, due to the effort
involved in collecting and transcribing speech, even for a few of the major accents.
On the other hand, for tasks like Broadcast News (BN) or Voice search, it is easy to
obtain large amounts of speech data with representative accents. However, such
datasets seldom have accent markers or transcriptions. To make use of these large
speech collections, we explore active and semi-supervised accent adaptation in this
chapter.

3.1 Active Learning

Active learning is a commonly used machine learning technique in fields where
the cost of labeling the data is quite high Settles [2009]. It involves selecting a
small subset from vast amount of unlabeled data for human annotation. To reduce
the cost and ensure minimum human effort, the goal of data selection is to choose
an appropriate subset of the data, that when transcribed and used to retrain the
model, provides the maximum improvement in the accuracy. Active learning has
been applied in natural language processing Tomanek and Olsson [2009], spoken
language understanding Tür et al. [2005], speech recognition Riccardi and Hakkani-
Tür [2005], Yu et al. [2010b,a], Itoh et al. [2012], etc.

Many of the approaches in active learning, relied on some form of uncertainty
based measure for data selection. The assumption is that adding the most uncertain

23
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utterances provide the maximum information for re-training the model in the next
round. Confidence scores are typically used for active learning in speech recognition
Hakkani-Tür et al. [2002] to predict uncertainty. Lattice Yu et al. [2010a] and
N-best Itoh et al. [2012] based techniques have been proposed to avoid outliers
with 1-best hypothesis. Representative criterion in addition to uncertainty have also
been shown to improve data selection in some cases Huang et al. [2010], Itoh et al.
[2012].

In the case of accent adaptation, active learning is used to extend the improve-
ments obtained by supervised adaptation by using additional data from a large
speech corpus with multiple accents. This corpus has neither transcriptions nor
accent labels. The goal of active learning here, is to choose relevant subset from this
large dataset that matches the target accent. The subset is then manually transcribed
and used to retrain the target adapted ASR, to provide additional improvements on
the target accent.

3.1.1 Active Learning for Accent Adaptation

Most of the active learning algorithms strive to find the smallest subset from the
untranscribed data set, which when labeled and used to re-train the ASR will have
the same effect of using the entire dataset for re-training, thereby reducing the cost.
However, in the case of accent adaptation using a dataset with multiple accents, our
goal is not to identify the representative subset but to choose relevant utterances
that best match the target test set. Data selection only based on informativeness
or uncertainty criterion, can lead to selecting utterances from the mis-matched
accent. Such a subset when used to retrain the ASR, can hurt the performance on
the target accent. Hence the key in this case, is to choose both informative and
relevant utterances for further retraining to ensure improvements on the target
accent.

We introduce a relevance criterion in addition to uncertainty based informative
measure for data selection to match the target accent. We start with the ASR trained
on a source accent. We use a relatively small, manually labeled adaptation data to
adapt the recognizer to the target accent. We employ the adapted model to choose
utterances from a large, untranscribed mixed dataset for human transcription, to
further improve the performance on the target accent. To this end, we calculate cross-
entropy based measure based on adapted and unadapted model likelihoods, to assess
the relevance of an utterance. We combine this measure with uncertainty based
sampling to choose an appropriate subset for manual labeling. We evaluate our
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technique on Arabic and English accents and we achieve 50-87.5% data reduction for
the same accuracy of the recognizer using purely uncertainty based data selection.
With active learning on the additional unlabeled data, the accuracy of the supervised
models is improved by 7.7-20.7% relative.

3.1.2 Uncertainty based informativeness criterion

In speech recognition, uncertainty is quantified by the ASR confidence score. It is
calculated from the word-level posteriors obtained by consensus network decoding
Mangu et al. [2000]. Confidence scores calculated on 1-best hypothesis are sensitive
to outliers and noisy utterances. Yu et al. [2010a] proposed lattice-entropy based
measure and selecting utterances based on global entropy reduction. Itoh et al.
[2012] observed that lattice-entropy is correlated with the utterance length and
showed N-best entropy to be an empirically better criterion. In this work, we also
use a entropy-based measure as informative criterion for data selection. We calculate
the average entropy of the alignments in the confusion network as a measure of
uncertainty of the utterance with respect to the ASR. It is given by

Informative score ui =

∑
A∈uEATA∑
A∈u TA

(3.1)

where EA is the entropy of an alignment A in the confusion network and TA is the
duration of the link with best posterior in the alignment. EA is calculated over all
the links in the alignment.

EA = −
∑
W∈A

PW log PW (3.2)

3.1.3 Cross-entropy based relevance criterion

In this section, we derive cross-entropy based relevance criteria for choosing utter-
ances from the mixed set, for human annotation. We formulate the source-target
mismatch as a sample selection bias problem Cortes et al. [2008], Blitzer and III
[2010], Bickel et al. [2009] under two different setups. In the multi-accented case,
the source data consists mixed set of accents and the goal is to adapt the model
trained on the source data to the specified target accent. The source model can be
assumed as a background model that has seen the target accent during training,
albeit it is under-represented along with other accents in the source data. In the
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second case, the source and target data belong to two mis-matched accents. The
source model is adapted to a completely different target accent, unseen during
training. We derive the biased sampling criterion for both the multi-accented and
mis-matched accent cases separately in the following section.

Multi-accented case

In this setup, the source data contains a mixed set of accents. The target data, a
subset of the source represents utterances that belong to a specific target accent. An
utterance u in the data set is represented by a sequence of observation vectors and
its corresponding label sequence. Let X denote the space of observation sequences
and Y the space of label sequences. Let S denote the distribution over utterances
U ∈ X × Y from which source data points (utterances) are drawn. Let T denote
the target set distribution over X × Y with utterances Û ⊆ U . Now, utterances in T
are drawn by biased sampling from S denoted by the random variable σ ∈ {0, 1} or
the bias. When σ = 1, the randomly sampled u ∈ U is included in the target dataset
and when σ = 0 it is ignored. Our goal is to estimate the bias Pr[σ = 1|u] given
an utterance u, which is a measure for how likely is the utterance to be part of the
target data. The probability of an utterance u under T can be expressed in terms of
S as

PrT [u] = PrS[u|σ = 1] (3.3)

By Bayes rule,

PrS[u] =
PrS[u|σ = 1]Pr[σ = 1]

Pr[σ = 1|u]
=

Pr[σ = 1]

Pr[σ = 1|u]
PrT [u] (3.4)

The bias for an utterance u is represented by Pr[σ = 1|u]

Pr[σ = 1|u] =
PrT [u]

PrS[u]
Pr[σ = 1] (3.5)

The posterior Pr[σ = 1|u] represents the probability that a randomly selected
utterance u ∈ U from the mixed set belongs to the target accent. It can be used
as a relevance score for identifying relevant target accent utterances in the mixed
set. Since we are only comparing scores between utterances for data selection,
Pr[σ = 1] can be ignored in the above equation as it is independent of u. Further, we
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can approximate PrS[u] and PrT [u], by unadapted and adapted model likelihoods.
Substituting and changing to log domain,

Relevance Score ur ≈ log Pr[u|λT ]− log Pr[u|λS] (3.6)

The utterances in the mixed set can have different durations, so we normalize the
log-likelihoods to remove any correlation of the score with the duration. The length
normalized log-likelihood is also the cross-entropy of the utterance given the model
Moore and Lewis [2010], Nallasamy et al. [2012b] with sign reversed. The score
that represents the relevance of the utterance to target dataset is given by

Relevance Score ur = (−HλT [u])− (−HλS [u]) (3.7)

where

Hλ(u) = − 1

Tu

Tu∑
t=1

log p(ut|λ) (3.8)

is the average negative log-likelihood or the cross-entropy of u according to λ and
Tu is the number of frames in utterance u.

Mis-matched accents case

In this case, source and target correspond to two different accents. let A denote
distribution over observation and label sequences U ∈ X × Y . Let S and T be the
source and target distributions over X × Y and subsets of A, US, UT ⊆ U . The
source and target utterances are drawn by biased sampling from A governed by
the random variable σ ∈ {0, 1}. When the bias σ = 1, the sampled utterance u is
included in the target dataset and σ = 0 it is included in the source dataset. The
distributions S and T can be expressed in terms of A as

PrT [u] = PrA[u|σ = 1];PrS[u] = PrA[u|σ = 0] (3.9)

By Bayes rule,

PrA[u] =
Pr[σ = 1]

Pr[σ = 1|u]
PrT [u] =

Pr[σ = 0]

Pr[σ = 0|u]
PrS[u] (3.10)

Equating LHS and RHS

PrS[u]

PrT [u]
=

Pr[σ = 1]

Pr[σ = 0]

Pr[σ = 0|u]

Pr[σ = 1|u]
(3.11)

=
Pr[σ = 1]

Pr[σ = 0]

[
1

Pr[σ = 1|u]
− 1

]
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As in the previous case, we can ignore the constant terms that don’t depend on
u as we are only comparing the scores between utterances. The relevance score,
which is an approximation of Pr[σ = 1|u] is given by

Relevance score ur ≈
PrT [u]

PrT [u] + PrS[u]
(3.12)

Changing to log-domain,

Relevance score ur ≈ log PrT [u]

− log (PrT [u] + PrS[u])

= log PrT [u] (3.13)

− log

(
PrT [u]

[
1 +

PrS[u]

PrT [u]

])
= − log

(
1 +

PrS[u]

PrT [u]

)
log is a monotonous function, hence log(1 + x) > log(x) and since we are only
comparing scores between utterances, we can replace log(1 + x) with log(x). The
relevance score is then the same as the multi-accented case

Relevance Score ur ≈ log PrT [u]− log PrS[u]

≈ log Pr[u|λT ]− log Pr[u|λS]

Normalizing the score to remove any correlation with utterance length,

Relevance Score ur = (−HλT [u])− (−HλS [u]) (3.14)

3.1.4 Score Combination

Our final data selection algorithm uses a combination of relevance and uncertainty
scores for active learning. The difference in cross-entropy is used a measure of
relevance of an utterance. The average entropy based on the confusion network is
used as a measure of uncertainty or informativeness. Both the scores are in log-scale
and we use a simple weighted combination to combine both the scores Itoh et al.
[2012]. The final score in given by

Final score uF = ur ∗ θ + ui (3.15)

The mixing weight, θ is tuned on the development set. The final algorithm for active
learning that uses both the relevance and informativeness scores is given below.
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Algorithm 1 Active learning using relevance and informativeness scores
Input: XT := Labeled Target Adaptation set ; XM := Unlabeled Mixed set ; λS :=

Initial Model ; θ := Mixing weight minScore := Selection Threshold
Output: λT := Target Model

1: λT := Adapt(λS,XT )
2: for all x in XM do
3: LoglikeS := −CrossEntropy(λS, x)
4: LoglikeT := −CrossEntropy(λT , x)
5: Len := Length(x)
6: RelevanceScore := (LoglikeT − LoglikeS)/Len
7: InformativeScore := −AvgCNEntropy(λT , x)
8: FinalScore := RelevanceScore ∗ θ + InformativeScore
9: if (FinalScore > minScore) then

10: Lx := QueryLabel(x)
11: XT := XT ∪ (x,Lx)
12: XM := XM \ x
13: end if
14: end for
15: λT := Adapt(λS,XT )
16: return λT

3.1.5 Experiment setup

Datasets

We conducted active learning experiments on both multi-accented and mis-matched
accent cases. Multi-accented setup is based on GALE Arabic database discussed in
the previous chapter. 1100 hours of Broadcast News (BN) is used as the source
training data. It contains mostly Modern Standard Arabic (MSA) but also varying
amounts of other dialects. We assinged Levantine as our target accent and randomly
selected 10 hours from 30 hour LDC Levantine annotations and created our adapta-
tion dataset. The remaining 20 hours of Levantine speech is mixed with 200 hours
of BC data to create the Mixed dataset. This serves as our unlabeled dataset for
active learning.

For mis-matched accent case, we chose English WallStreet Journal (WSJ1) as our
source data, as in the previous chapter. We used British English as our target accent
and the British version of WSJ corpus (WSJCAM0) for adaptation. We randomly
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sampled 3 hours from WSJCAM0 for our adaptation set. The remaining 12 hours
of British English speech is mixed with 15 hours of American English from WSJ0
corpus to create our mixed dataset. The test sets, LM and dictionary are similar to
our earlier setup. Table 3.1 provides a summary of the datasets used.

Table 3.1: Database Statistics.
Dataset Accent #Hours Ppl %OOV

Arabic
Training Mostly MSA 1092.13 - -
Adaptation Levantine 10.2 - -
Mixed Mixed 221.9 - -
Test-SRC Non-Levantine 3.02 1011.57 4.5
Test-TGT Levantine 3.08 1872.77 4.9

English
Training US 66.3 - -
Adaptation UK 3.0 - -
Mixed Mixed 27.0 - -
Test-SRC US 1.1 221.55 2.8
Test-TGT UK 2.5 180.09 1.3

Baseline systems

We built HMM-based, speaker-independent ASR systems on the training data. They
are Maximum Likelihood (ML) trained, context-dependent, fully-continuous systems
with global LDA and Semi-Tied Covariance (STC) transform. More details on the
front-end, training and decoding framework are explained in Metze et al. [2010],
Nallasamy et al. [2012a]. We initially adapt our baselines systems on the relatively
small, manually labeled, target adaptation dataset. We used semi-continuous
polyphone decision tree adaptation (SPDTS) Nallasamy et al. [2012a] for the
supervised adaptation. The Word Error Rate (WER) of the baselines and supervised
adaptation systems are given in Table 3.2.
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Table 3.2: Baseline and Supervised adaptation WERs.

System # Hours
Test WER (%)
SRC TGT

Arabic
Baseline 1100 46.3 53.7
Supervised Adapt +10 51.4 52.1

English
Baseline 66 13.4 30.5
Supervised Adapt +3 21.0 17.9

3.1.6 Implementation Details

We use the supervised adapted systems to select utterances from the mixed set for
the goal of target accent adaptation. Our mixed sets were created by combining two
datasets, American and British English or BC and Levantine Arabic. We evaluate 3
different data selection algorithms for our experiments: Random sampling, Uncer-
tainty or informative sampling and relevance augmented uncertainty sampling. In
each case, we select fixed amounts of audio data alloted to each bin and mix it with
the adaptation data. We then re-adapt the source ASR on the newly created dataset.
For this second adaptation, we reuse the adapted polyphone decision tree from the
supervised case, but we re-estimate the models on the new dataset using Maximum
A Posteriori (MAP) adaptation.

In random sampling, we pick at random the required number of utterances from
the mixed dataset. The performance of the re-trained ASR directly depends on the
composition of source and target utterances in the selected subset. Thus, ASR re-
trained on randomly sampled subsets will exhibit high variance in its performance.
To avoid varying results, we can run random sampling multiple times and report the
average performance. The other solution is to enforce that the randomly selected
subset retains the same composition of source and target utterances in the mixed
set. We use the latter approach for the results reported here.

For uncertainty based sampling, we used average entropy calculated over the
confusion networks (CN) as explained in section 3.1.2. We decode the entire mixed
set and choose utterances that have the highest average CN entropy. In the case
of relevance augmented uncertainty sampling, we use a weighted combination
of relevance and uncertainty or informativeness scores for each utterance. The
relevance score is derived from adapted and unadapted model cross-entropies with
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respect to the utterance. We calculate cross-entropy or average log-likelihood scores
using the lattices produced during decoding. The uncertainty score is calculated
using average CN entropy as before. We tuned the mixing weights on the English
development set and we use the same weight (0.1) for all the experiments. We
selected 5, 10, 15, 20 hour bins for English and 5, 10, 20, 40, 80 bins for Arabic.
We choose utterances for each bin and combine it with the initial adaptation set,
re-adapt the ASR and evaluate it on the target test set.

Table 3.3 shows WER of the oracle and select-all benchmarks for the two datasets.
The oracle involves selecting all the target (relevant) data for human transcription,
that we combined with source data to create the mixed dataset. The selected data
is added to the initial adaptation set and used to re-adapt the source ASR. We note
that in the case of Arabic, the source portion (BC) of the mixed dataset can have
additional Levantine utterances, so oracle WER is not the lower bound for Arabic.
Select-all involves selecting the whole mixed dataset for manual labeling. From
Table 3.3, we can realize the importance of the relevance measure for active learning.
In the case of Arabic, one-tenth of relevant data produces better performance on
the target test set than the whole mixed dataset. The case is similar for English,
where half of the relevant utterances help ASR achieve better performance than
presenting all the available data for labeling.

Table 3.3: Oracle and Select-all WERs.
System # Hours Target WER

Arabic
Oracle 10 + 20 48.7
Select-all 10 + 221.9 50.8

English
Oracle 3 + 12 14.2
Select-all 3 + 27 14.9

3.1.7 Active Learning Results

The results for active learning for Arabic is shown in Figure 3.1. It is clear from the
plot that the weighted combination of relevance and informative scores perform
significantly better than uncertainty based score and random sampling techniques.
We observe a 1.7% absolute WER reduction at the peak (40hours) for the weighted
score when compared to the CN entropy based data selection technique. Also, with
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only 5 hours, the weighted score reaches WER of 49.5% while the CN-entropy based
technique required 40 hours of data to reach a similar WER of 49.8%. Thus the
combined score requires 87.5% less data to reach the same accuracy of CN-entropy
based sampling. It is also interesting to note that our algorithm has identified
additional Levantine data than the oracle from the generic BC portion of the mixed
set which resulted in further WER reductions.

Figure 3.1: Active learning results for Arabic

Figure 3.2 shows the equivalent plots for English. The combined score outper-
forms other techniques in terms of the WER and reaches the performance of the
oracle benchmark. It obtains similar performance with 10 hours of data (14.5%)
compared to CN-entropy based technique at 20 hours (14.8%), thus achieving a
50% reduction in labeling costs.
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Figure 3.2: Active learning results for English

3.1.8 Analysis

In this section we analyze the influence of relevance score in choosing the utterances
that match the target data in both the setups. We plot the histogram of both CN-
entropy and weighted scores for each task. Figure 3.3 shows the normalized
histograms for the American and British English utterances in the mixed set. We
note that the bins for these graphs are in the ascending order of their scores. Data
selection starts with the high-scoring utterances, hence the utterances from the right
side of the plot are chosen first during active learning. Figure 3.3(a) shows the
entropy scores for source (American English) and target (British English) are quite
similar and the algorithm will find it harder to differentiate between relevant and
irrelevant utterances based solely on uncertainty score. Figure 3.3(b) shows the
influence of adding relevance scores to uncertainty scores. In this case, the target
utterances have higher scores than source utterances and the algorithm chooses
relevant ones for re-training the ASR.

Figure 3.4 shows similar plots for Arabic. The distinction between CN-entropy
and the weighted score in source/target discrimination is less clear here compared
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(a) Entropy (b) Weighted Score

Figure 3.3: Histogram of source and target scores for English.

to English plots. However, we can still see that target utterances achieve better
scores with weighted combination than the CN-entropy score. We observed many
of the utterances from ‘LBC NAHAR’ shows, part of the BC portion of the mixed
set, ranked higher in the weighted score. The plot of LBC scores in the histogram
shows these utterances from the BC portion have high scores in the weighted case.
They are recording of the ‘Naharkum Saiid’ (news) programmes from Lebanese
Broadcasting Corporation originating from the Levantine region and likely to have
Levantine speech. This observation shows that the relevance score identifies addi-
tional Levantine speech from the BC utterances.

3.2 Semisupervised Learning

Semi-supervised learning has become attractive in ASR given the high cost of
transcribing audio data. Unlike active learning, where one chooses a subset of
the untranscribed data for manual transcription, semi-supervised learning uses the
existing ASR to choose and transcribe the required data for further training.

Self-training is a commonly used technique for semi-supervised learning in
speech recognition Yu et al. [2010b], Wessel and Ney [2005], Kemp and Waibel
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(a) Entropy (b) Weighted Score

Figure 3.4: Histogram of source and target scores for Arabic.

[1999], Ramabhadran [2005], Ma and Schwartz [2008], whereby the initial ASR
trained using carefully transcribed speech is used to decode the untranscribed
data. The most confident hypotheses are chosen to re-train the ASR. Self-training
has been successfully employed under matched training conditions where the
labeled training set used to train the seed ASR and the unlabeled dataset have
similar acoustic characteristics. It has also enjoyed some success in cross-domain
adaptation where the source seed ASR is adapted using untranscribed data from
a different target language, dialect or channel Lööf et al. [2009], Novotney et al.
[2011]. In the latter task the target data, while different from the initial source
training dataset, is still assumed to be homogeneous. Our work differs from these
setups as the unannotated data in our experiments is not homogeneous. It can have
multiple accents, with or without transcriptions. The goal is to select the relevant
subset to match the target accent. Hence, choosing hypotheses solely based on
confidence scores is not ideal for accent adaptation in this case.

In this section we discuss cross-entropy based data selection to identify speakers
that match our target accent, before filtering the utterances by confidence scores.
The seed ASR is initially adapted on the target accent using limited, manually
labeled adaptation data. We then make use of the adapted and unadapted models to
select speakers based on their change in average likelihoods or cross-entropy under
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adaptation. We couple the speaker selection with confidence based utterance-level
selection to choose an appropriate subset from the unlabeled data to further improve
the performance on the target accent. We evaluate our technique with Arabic
and English accents and show that we achieve between 2.0% and 15.9% relative
improvement over supervised adaptation using cross-entropy based data selection.
Self-training using only confidence scores fails to achieve any improvement over
the initial supervised adaptation in both tasks.

Semi-supervised learning for ASR adaptation involves three steps - training/adapting
initial ASR on limited target data with manual labels, decoding the unlabeled data
with the initial adapted model and selecting a suitable subset to re-train the seed
ASR, thereby improving its performance on the target test set. The criteria to select
an utterance for further re-training, can be based on the following:

• Confidence - How confident is the system about the newly generated hypothe-
sis for the utterance?

• Relevance - How relevant is the utterance for additional improvement in the
target test set?

3.2.1 Self-training

Self-training employs confidence scores to select the data for re-training. Confidence
scores in ASR are computed using word-level posteriors obtained from consensus
network decoding Mangu et al. [2000]. The selection can be done at utterance,
speaker or session level. The average confident score for the appropriate level is
calculated as

CSS =

∑
WεS CWTW∑

WεS TW
(3.16)

where S can be utterance or speaker or session, CSS is average confidence score
for S and CW , TW are the word-level score and duration respectively for the 1-best
hypothesis. To avoid outliers with 1-best hypothesis, lattice-level scores have also
been proposed for semi-supervised training Yu et al. [2010a], Fraga-Silva et al.
[2011]. One of the issues with self-training is that it assumes all the data to be
relevant and homogeneous. So, data selection is based only on ASR confidence
and the relevance criteria is ignored. In our experiments, the unlabeled data has
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speakers with different accents and data selection based entirely on confidence
scores fails to find suitable data for further improvement with re-training.

3.2.2 Cross-entropy based data selection

In this section, we formulate cross-entropy based speaker selection to inform rele-
vance in addition to confidence based utterance selection for semi-supervised accent
adaptation. Let us assume that the initial model λS is trained on multiple accents
from unbalanced training set. It is then adapted on a limited, manually labeled
target accent data set to produce the adapted model λT . We have available a large
mixed dataset without any accent labels. The goal is to select the target speakers
from this mixed dataset and re-train the initial ASR for improved performance
on the target test set. We formulate the problem of identifying target data in a
mixed dataset similar to sample selection bias correction Blitzer and III [2010],
Cortes et al. [2008], Bickel et al. [2009]. We follow the same derivation as the
active learning, but we calculate the relevance at the speaker-level, as we work with
speaker-adapted systems in the following experiments.

The final score for target data selection for both the multi-accented and mis-
matched accents case is given by

Selection Score = (−HλT [s])− (−HλS [s]) (3.17)

where

Hλ(s) = − 1

Ts

Us∑
u=1

uT∑
t=1

log p(ut|λ) (3.18)

is the average negative log-likelihood or the cross-entropy of s according to λ, Us

is the number of utterances for s, uT is the number of frames in utterance u and
Ts = ΣuuT refers to total number of frames for s.

We can now sort the speakers in the mixed dataset using this selection score
and choose the top scoring subset based on a threshold. The algorithm 2 shows
the pseudo code for cross-entropy based semi-supervised learning for target accent
adaptation.

3.2.3 Implementation Details

We start with a GMM-HMM model trained on the source data. We adapt this model
to the target accent using a small amount of manually transcribed target data. We
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Algorithm 2 Cross-entropy based semi-supervised learning
Input: XT := Target Adaptation set ; XM := Mixed set ; λS := Initial Model ;

minScore := Selection Threshold
Output: λT := Target Model

1: λT := Adapt(λS,XT )
2: for all x in XM do
3: LoglikeS := Score(λS, x)
4: LoglikeT := Score(λT , x)
5: Len := Length(x)
6: Score := (LoglikeT − LoglikeS)/Len
7: if (Score > minScore) then
8: XT := XT ∪ x
9: XM := XM \ x

10: end if
11: end for
12: λT := Adapt(λS,XT )
13: return λT

use enhanced polyphone decision tree adaptation based on semi-continuous models
(SPDTS) Nallasamy et al. [2012a] for supervised adaptation. It involves using
the fully continuous source model to collect occurance statistics for each state in
the target data. These statistics are used to grow a semi-continuous, second-level
decision tree on the adaptation dataset to better match the new contexts with the
target accent. We then use Maximum A Posteriori (MAP) adaptation Gauvain and
Lee [1994] to refine the Gaussians (codebooks) and associated mixture weights
(distributions) on the adaptation data. SPDTS gives additional improvements over
the traditional MAP adaptation.

We use the target accent adapted ASR as the baseline and select suitable data
from the mixed set for further improvements on the target test set. Data selection
can be performed at multiple level segments: utterance, speaker or session. In
our experiments, we rely on both speaker-level and utterance-level scores for
both self-training and cross-entropy based data selection. All our baselines are
speaker adapted systems, so we need a reasonable amount of speaker-specific data
(minimum 15s) for robust Constrained Maximum Likelihood Linear Regression
(CMLLR) based speaker-adaptive training Povey and Yao [2012]. Utterance-level
selection alone does not ensure this constraint. Secondly, the accent information
(relevance) and hypothesis accuracy (confidence) can be asserted reliably at the
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speaker and utterance levels respectively. For self-training, we sort the speakers
based on speaker-level, log-likelihood scores normalized by number of frames. For
each best-scoring speaker in the list, we enforce the additional limitation that the
selected speaker should have at least 15s of utterances that passed the minimum
confidence threshold. This allows us to choose speakers with enough utterances
for reliable CMLLR based speaker-adaptive (SA) training. For cross-entropy based
data selection, we replace the speaker-level confidence score with the difference of
length normalized log-likelihoods as specified in Equation 3.17.

We experiment with two different setups. In the first task, the mixed set has
transcriptions available, but doesn’t have accent labels. The goal is to choose a
relevant subset of audio and its transcription for re-training the initial model. We
evaluate both self-training and cross-entropy based data selection for choosing
useful data from the mixed set. Given that we have transcriptions available, we omit
confidence-based filtering at the utterance level during data selection for this task.
In self-training, we use the adapted model to Viterbi align the transcription with the
audio for the utterances of each speaker in the mixed set. The confidence score in
Equation 3.16 is replaced with the speaker-level, length normalized alignment score
for this task. We then select different amounts of data by varying the threshold and
re-train the seed ASR to test for improvements. In cross-entropy based data selection,
the normalized log-likelihoods corresponding to the adapted and unadapted models
are used to select the relevant speakers. Given the transcriptions for each utterance
of speaker s, Equation 3.18 becomes

Hλ(s) = − 1

Ts

Us∑
u=1

uT∑
t=1

log p(ut|λ,Wr) (3.19)

where Wr is the transcription of the audio.

For the second task, the mixed set does not have either transcriptions or accent
labels available. Self-training in this case, relies on confidence scores obtained by
consensus network decoding Mangu et al. [2000]. The speaker-level scores are used
to choose the most confident speakers and for each speaker, utterances that have
an average confidence score greater than 0.85 are selected. 0.85 threshold was
chosen as it gave us a good trade-off between WER and amount of available data
for selection. Additionally, we enforce the 15s minimum constraint for all selected
speakers as explained above. In the case of cross-entropy based selection, we
replace the speaker-level confidence score with difference in cross-entropy between
adapted and unadapted models. The cross-entropy of a speaker with a model is
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calculated based on the lattice instead of 1-best hypothesis to avoid any outliers.
The lattice-based cross-entropy can be calculated as

Hλ(s) = − 1

Ts

Us∑
u=1

uT∑
t=1

log p(ut|λ,W ) (3.20)

where W is the set of paths in the lattice of the decoded hypothesis and

p(u|λ,W ) =
W∑
w=1

p(u|λ,w)p(w) (3.21)

where p(w) is LM prior probability of path w. We choose best scoring speakers on the
cross-entropy based selection score and for each speaker, we select utterances same
as self-training with minimum confidence score of 0.85. Speakers are constrained
to have minimum of 15s duration as above. We re-train the seed ASR using the
additional data and report improvements on the test set.

3.2.4 Experiment Setup

We used the same setup as active learning for semi-supervised learning experiments.
For baseline, we used a speaker-adaptive setup with CMLLR-SAT training and MLLR
based model adaptation during decoding. For semi-supervised learning, we start off
with supervised adaptation of baseline systems on the target accent using limited,
manually labeled Adaptation set. These adapted systems are used as seed models to
select an appropriate subset from the Mixed set to further improve the performance
on the target accent. Table 3.4 shows the Word-Error Rates (WER) of the baseline
and adapted systems.

Semi-supervised Learning Experiments

In this section we study semi-supervised learning on the Mixed set in two different
setups. In the first, we assume that the Mixed set is transcribed, but with no accent
labels. We compare self-training and cross-entropy data selection based on Viterbi
alignment scores to select appropriate speakers for improving the initial system.
In the second setup, we assign the Mixed set to have neither transcriptions nor
accent labels. In this experiment, we decode the utterances using initial ASR(s) to
obtain the likely hypotheses. We then use lattice likelihoods and confidence scores
to choose the appropriate subset for accent adaptation.
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Table 3.4: Baseline and Supervised adaptation WERs.

System # Hours
Test WER (%)
SRC TGT

Arabic
Baseline 1100 43.0 50.6
Supervised Adapt +10 44.0 47.8

English
Baseline 66 12.9 23.6
Supervised Adapt +3 13.7 14.5

Task 1 - Mixed set with transcriptions, no accent labels

For English, we choose 5, 10, 12, 15, 20 hours of audio from the mixed set to
re-train the initial ASR in the case of self-training and cross-entropy based selection.
We selected 10, 20, 30, 40 and 50 hours of audio data for Arabic from the mixed set.
Figure 1 shows the WER of English and Arabic semi-supervised data selection with
self-training and cross-entropy difference. The bin 0 corresponds to the supervised
adaptation on manually labeled adaptation data. The graphs contain two baselines
in addition to self-training and cross-entropy plots. Select-ALL refers to the scenario
where all of the available data in the mixed set (27 hours for English and 222
hours for Arabic) are selected for re-training. This corresponds to the lower bound
for semi-supervised learning. ORACLE refers to selection of all of the target data
in the mixed set. This includes 12 hours of British accent in the case of English
and 20 hours of Levantine for Arabic. We note that, ORACLE is only included for
comparison and doesn’t correspond to the upper bound for our task. A robust data
selection would exclude utterances with noise, wrong transcriptions, etc. which will
improve the accuracy of the re-trained model. In the case of Arabic, 20 hours of
Levantine only correspond to data annotated by LDC. The remaining BC data can
have more Levantine speech, which will also help improve on the ORACLE.

In both Arabic and English, self-training does not produce any improvements
from semi-supervised learning over the supervised adaptation baseline. In Table.3.4,
the WER on the target test set is higher than the source test set, even for the
adapted systems. Hence, log-likelihood or confidence based data selection based on
the adapted model cannot differentiate between relevant data (target accent) and
irrelevant data (source accent). The initial speakers selected for self-training belong
exclusively to the source accent which is the reason for the poor performance of
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Figure 3.5: Semi-supervised data selection with transcriptions

re-trained models. This experiment clearly shows that data selection based only on
confidence scores fails when the source ASR is adapted on a limited target data and
the unlabeled data is not homogeneous. Cross-entropy based selection on the other
hand, relies on change in log-likelihood before and after adaptation to identify the
relevant speakers from the mixed set. It obtains an improvement of 2.3% absolute
(or 15.9% relative @12 hours) for English and 1.8% absolute (or 3.8% relative @20
hours) for Arabic over the supervised baseline.

It is also interesting to note that in the case of English 90% of the selected
speakers at 12 hours were WSJCAM0 (British English) speakers, while only 40%
of the Arabic speakers at 20 hours were from the LDC annotated Levantine set.
We also found that some of the remaining speakers from the target accent left
out for data selection, had worse scores due to transcription errors, etc. This is
probably the reason for slight improvement of the best semi-supervised system over
the ORACLE (or fully-supervised) adaptation. More analysis is needed to explore
the characteristics of the speakers selected for Arabic from the BC portion of the
mixed set.
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Task 2 - Mixed set without transcriptions and no accent labels

We used the same framework and bins as in the previous experiment. For self-
training, speaker and utterance selection rely on confidence scores as in Eq. 3.16.
For cross-entropy based data selection, speaker level selection is based on the
difference in lattice likelihoods as in Eq 3.20. Figure 2 shows the WER of semi-
supervised data selection with self-training and cross-entropy difference for English
and Arabic datasets. The Select-ALL and ORACLE numbers correspond to 1-best
hypothesis from the adapted target ASR.

Figure 3.6: Semi-supervised data selection without transcriptions

As expected, the results are similar to the previous experiment as self-training
fails to obtain any additional improvements with the mixed data. We get 2%
absolute (or 13.8% relative @12 hours) improvement over supervised baseline for
English and 0.8% absolute (or 2.0% relative @12 hours) for Arabic. The total
improvement is lower for Arabic compared to English (2.0-3.8% relative vs. 13.8-
15.9% relative). However, it is comparable to the gain obtained using a dialect
classifier on a similar setup Soltau et al. [2011].
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3.3 Summary

In this chapter, we investigated the use of additional untranscribed data for the goal
of accent adaptation. We proposed a relevance criterion based biased sampling, in
addition to the informativeness criterion for data selection. The combined criterion
was evaluated under active and semi-supervised learning scenarios. It performed
better than random and informative sampling techniques in identifying the relevant
data for additional improvements on the target test set.





Chapter 4

Accent Robust and Accent Adaptive
training

In this chapter, we deal with training ASR models on datasets with multiple accents.
Given that real-world datasets often have speakers with varying accents, it is
necessary for ASR to cope with such diversity in the training data. It can be achieved
in two different ways. In accent normalization, we seek models that are robust to
acoustic variations presented by different accents. As we discussed earlier, these
variations can include pronunciation changes, prosody and stress. In accent adaptive
training, we use a factorized model with accent-specific parameters and accent-
independent, canonical models. The goal is that the accent-specific parameters will
learn the intricate variations specific to a particular accent, while the canonical
models will learn the shared patterns between different accents. We explore both
the topics in this chapter.

4.1 Previous Work

Accent normalization has very little prior work in ASR, however robust ASR models
to compensate for other variations such as noise, channel, gender, etc. have been
investigated in the past. The normalization can be performed at the feature-level
or model-level. At the feature-level, front-ends such as PLP [Hermansky and Jr.,
1991] and RASTA [Hermansky and Morgan, 1994] have been proposed earlier.
Probabilistic front-ends based on Multi-Layer Perceptron (MLP) have also been
tested for their noise robustness [Ikbal et al., 2004]. A review of feature-based and

47
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model based techniques for noise robustness in speech recognition is presented in
[Deng, 2011, Gales, 2011b]. The idea behind the design of noise-robust features is
that these front-ends are independent of the noise conditions, while still maintaining
the discrimination in the phonetic space. Thus, when trained on datasets with
multiple noise conditions, the ensuing models are unaffected by these variations. In
a similar manner, we seek to evaluate different front-ends based on their robustness
to different accents.

Accent adaptive training has mainly involved techniques borrowed from multi-
lingual speech recognition. They include simple data pooling based multi-style
training, using accent-tags in the phonetic decision tree for data sharing [Chengal-
varayan, 2001, Caballero et al., 2009, Kamper et al., 2012] and using individual
distributions while sharing the codebooks [Kamper et al., 2012]. [Smit and Kurimo,
2011] introduced stacked transforms, a two-level MLLR transforms to integrate ac-
cent and speaker adaptation, similar to factorized CMLLR proposed in [Seltzer and
Acero, 2011]. As in normalization, accent adaptive training has also commonalities
with speaker [Gales, 2011a] and noise [Kim and Gales, 2009] adaptive training.

4.2 Accent normalization or Robustness

We focus on seeking robust features that will ensure accent-independent acoustic
models when trained on datasets with multiple accents. We formulate a framework
which can be used to evaluate different front-ends on their ability to normalize the
accent variations. We use ASR phonetic decision trees as a diagnostic tool to analyze
the influence of accent in the ASR models. We introduce questions pertaining to
accent in addition to context in the building of the decision tree. We then build
the tree to cluster the contexts and calculate the number of leaves that belong to
branches with accent questions. The ratio of such ’accent’ models to the total model
size is used as a measure for accent normalization. The higher the ratio, the more
models are affected by the accent, hence less normalization and vice versa.

4.2.1 Decision Tree based Accent Analysis

Phonetic decision trees have been traditionally used in ASR to cluster context-
dependent acoustic models based on the available training data. The number of
leaves in a phonetic decision tree refers to the size of the acoustic model. In our
training process, the decision tree building is initialized by cloning the CI models
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to each available context in the training data. Two iterations of Viterbi training
is performed to update the distributions while the codebooks remain tied to their
respective CI models. Several phonetic classes of the underlying phones such as
voiced/unvoiced, vowels/consonants, rounded/unrounded, etc are presented as
questions, to the decision tree algorithm. The algorithm then greedily chooses the
best question at each step which maximizes the information gain in a top-down
clustering of CD distributions. The clustering is stopped once the desired model size
is reached or when the number of training samples in the leaves has reached the
minimum threshold.

In this framework, we combine questions about the identity of accents with
contextual questions and let the entropy-based search algorithm to choose the best
question at each stage. The resulting decision tree will have a combination of
accent and contextual phonetic questions. An example is shown in Figure 4.1. As
shown in the figure, the begin state of phoneme /f/ is clustered into 4 contexts.
f-b(1) and f-b(2) are considered accent-dependent contexts, as they are derived by
choosing a accent question (Is current phone belong to IRAQI accent?). f-b(3) and
f-b(4) are accent-independent contexts, because their derivation does not involve a
accent question in the decision tree. The earlier the question is asked, the greater
its influence on the ensuing models. In the above tree, a robust front-end should
push the accent questions as low as possible in the tree, so only a few models are
influenced by them. Hence, the ratio of accent leaves to total model size is used as
an estimate to evaluate MFCC and MLP front-ends. We build a decision tree using
the combined set of questions. For each leaf node, we traverse the tree back to the
root node. If we encounter a accent question in a node, then that leaf is assigned
as a accent-dependent model. The ratio of accent-dependent to total leaves is then
calculated. The experiment is repeated by varying the model size.

4.2.2 Dataset

All our experiments are carried out on the Pan-Arabic dataset provided by AFRL.
The database consists of Arabic speech collected from regional Arabic speakers,
corresponding transcriptions and lexicons for 5 different accents - United Arab
Emirates (UAE), Egyptian, Syrian, Palestinian and Iraqi. It is a balanced data
set with approximately 50 recording sessions for each accent, with each session
comprising of 2 speakers. The amount of data broken down according to accent is
shown in Table 4.1 below.

Each speaker is recorded in separate channels, including long silences between
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Figure 4.1: Decision tree for begin state of /f/

speaker-turns. Hence the actual conversational speech in the dataset amounts to
around 60 hours. The transcriptions of the speech are fully diacritized and included
both UTF8 and Buckwalter representations. The first 5 sessions in each accent are
held out and used as test data, while the remaining form the training set. The
database also contains accent-specific pronunciation dictionaries. All the accents
have a common phone set, except for one minor variation. UAE, Egyptian and Iraqi
have the voiced postalveolar affricate, /dZ/ phone. Palestinian and Syrian have the
voiced postalveolar fricative, the /Z/ phone instead. These phones are merged into
one, while designing the ASR phone set. The final phone set contains 41 phones,
including, 6 vowels, 33 consonants in SAMPA representation plus a noise and a
silence phone.

4.2.3 Baseline

The baseline ASR is trained on speech data pooled from all five accents. The individ-
ual, accent-specific dictionaries are merged to form a single ASR dictionary which



4.2 Accent normalization or Robustness 51

Table 4.1: PanArabic Dataset
Dataset Num. Hours

UAE (AE) 29.61
Egyptian (EG) 28.49

Syrian (SY) 28.51
Palestinian (PS) 29.29

Iraqi (IQ) 24.92
Total 140.82

contains pronunciation variants derived from each accent. The total vocabulary
size is 75046 words with an average of 1.6 pronunciations per word. The language
model is a 3-gram model trained on the training transcriptions and Arabic back-
ground text, mainly consisting of broadcast news and conversations. The OOV rate
of the LM on the test data is 1.8%. The perplexity of LM on the test set is 112.3.

We trained two sets of acoustic models based on MFCC and MLP features.
For MFCC features, we extract the power spectrum using an FFT with a 10 ms
frame-shift and a 16 ms Hamming window from the 16 kHz audio signal. We
compute 13 MFCC features per frame and perform cepstral mean subtraction and
variance normalization on a per-speaker basis. To incorporate dynamic features, we
concatenate 15 adjacent MFCC frames (7) and project the 195 dimensional features
into a 42-dimensional space using a Linear Discriminant Analysis (LDA) transform.
After LDA, we apply a globally pooled ML-trained semi-tied covariance matrix. For
the development of our context dependent (CD) acoustic models, we applied an
entropy-based, poly-phone decision tree clustering process using context questions
of maximum width 2, resulting in quinphones. The system uses 2000 states with a
total of 62K Gaussians with diagonal covariance matrices assigned using merge and
split training. The total number of parameters in the acoustic model amounted to
7.8M.

In addition to MFCC system, we trained another set of acoustic models using
MLP Bottle-neck features [Grézl and Fousek, 2008, Frankel et al., 2008]. A multi-
layer perceptron is trained using ICSI’s QuickNet MLP package [Qui]. We stack
7 MFCC frames, which serve as input to the MLP. The context-independent (CI)
state labels are used as targets. The MLP has a 4-layer architecture - input (195), 2
intermediate (1000, 42) and output (125) layers, with a total of 243,292 parameters.
The training data for the MLP is derived from the ASR training set, 90% of the
training speaker list is used for training MLP while the remainder 10% of the
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speakers is used as a development set. For each training iteration MLP’s accuracy
on the development set is calculated. The training is stopped when the accuracy
saturates on the development set. In our case, MLP training took 5 epochs and
reached a frame-level accuracy of 63.86% on the training data and 63.56% on the
development data. The activations in the third layer, also called the bottle-neck
layer [Grézl et al., 2007] are used as inputs to build GMM-based HMM acoustic
models. Apart from MLP parameters, the MFCC and MLP acoustic models used
same number of parameters. The baseline Word Error Rate (WER) for the MFCC
and MLP system is given in Table 4.2 below. The WER of MLP ASR system is 0.6%
(absolute) lower than the MFCC system. The speaker adapted system produces a
WER of 26.8%

Table 4.2: Baseline Performance.

Accent
Baseline ASR
MFCC MLP

AE 28.7 28.2
EG 30.0 29.5
SY 27.9 27.2
PS 29.4 28.6
IQ 27.7 27.0
Average 28.7 28.1

4.2.4 Preliminary experiments

In the first experiment, we examine the influence of accent in MFCC front-end.
Table 4.3 summarizes the accent analysis for different model sizes.

We observe that speaker adaptation, including vocal tract length normalization
(VTLN) and feature space adaptation (FSA) training, only marginally reduce the
influence of accent (≈ 0.5% absolute) in the acoustic models. In the resulting
decision trees, we observe that the /Z/ appears very early in the split. This is the
phone we merged from /dZ/ and /Z/ that belongs to two different accent classes.
accent questions in the decision tree allowed the phone to split into its accent
counterparts. The distribution of different accents for each model size is shown in
Figure 4.2.

We noticed that most accent models belong to Egyptian across different model
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Table 4.3: Ratio of accent nodes in MFCC decision tree.

Model Size Accent Nodes Non-Accent Nodes Ratio
MFCC

1000 13 987 1.3%
2000 82 1918 4.1%
3000 224 2776 7.5%
4000 483 3517 12.1%

MFCC (VTLN + FSA)
1000 9 991 0.9%
2000 72 1928 3.6%
3000 226 2774 7.5%
4000 465 3535 11.6%

sizes. This behavior is consistent with the results found in the literature, where
Egyptian is found to be most distinguishable from other accents [Biadsy et al.,
2010]. We also observed that vowels are more influenced by accent than consonants.
Table 4.4 shows the ratio of accent models to all clustered models for vowels and
consonants. Except for the case of model size 1000, vowels have more accent
models and hence more accent influence, than consonants. This result is in line with
the fact that the majority of differences between Arabic accents are characterized by
vowels. These observations indicate that decision trees can be used as an effective
analytic tool to evaluate the effect of different accents in acoustic models.

Table 4.4: Ratio of accent models for vowels and consonants.

Model Size Accent models
Ratio of Accent Models
Vowels Consonants

1000 13 1.1% 1.4%
2000 82 6.2% 2.9%
3000 224 10.8% 5.4%
4000 483 17.1% 8.8%
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Figure 4.2: Accent Distribution in MFCC models

4.2.5 MFCC vs. MLP Accent Analysis

In this section, we examine the influence of accent in MLP and MFCC front-ends.
The number of accent models for MLP and MFCC systems is shown in Figure 4.3.
From the graph, it can be seen that speaker adaptation marginally reduces the
influence of accent in the final models, in both MFCC and MLP. Comparing, the two
front-ends, MFCC has less accent models than MLP for all cases.

To confirm the hypothesis that MLP features are more sensitive to accent, we
created a more rigorous setup. The pilot experiment used a combined dictionary
obtained by composing individual, accent-specific dictionaries. The use of different
”‘accent”’ pronunciation variants can render the models to be insensitive to accent
variations. Hence, in our next experiment, we constrained the dictionary to have
only one pronunciation for each word. The training data is force-aligned with the
combined dictionary and the most frequent pronunciation variant is selected for
each word, which is the only variant used in the experiment. Also, in the previous
experiment only singleton accent questions (eg. Is current phone IRAQI?) were
used. We experimented with combinations of accent questions in the following
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Figure 4.3: MLP vs. MFCC models

setup (eg. Is current phone IRAQI OR EGYPTIAN?). This would allow more accent
questions to be available for clustering. Figure 4.4 shows the results of the new
setup. It can be observed that more MLP models are influenced with accent than
in the case of MFCC. These results show that MLP features are more sensitive to
linguistic variations, i.e. accent. We also note that similar framework has been used
for gender analysis and we find that both MLP and FSA based speaker adaptation
greatly reduce the influence of gender in the clustered models.

To analyze the accent sensitive behavior of MLP, we calculated the frame-level
accuracy of vowels and consonants in the MLP outputs on the development set. The
average accuracy for vowels and consonants is shown in Table 4.5.

It is clear from Table 4.5 that MLP frame level accuracy is higher for vowels than
consonants. We already observed that accented models are dominated by vowels,
which indicates that most accent variations occur in vowels in Arabic. Hence, we
hypothesize that the low MLP frame accuracy for vowels, rendered MLP to be more
sensitive to accent variations.

We have presented an evaluation framework to test different front-ends for their
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Figure 4.4: Single Pronunciation models

ability to normalize accent variations. We analyzed MFCC and MLP front-ends
and showed that although MLPs are better at gender normalization than MFCCs,
they are slightly more sensitive to accent variations than MFCCs. We investigated
the MLP frame accuracies and hypothesized that their sensitivity could stem from
lower accuracy on the vowels which are highly influenced by accent variations. The
analysis also showed us the characteristics of the accents and how they are related.

We propose to extend this framework to multi-accented English datasets in-
cluding the ones used in chapters 2 and 3. We will evaluate different front-ends
including articulatory features, MLP Bottle-neck features and MFCC to rank them
according to the decision tree based accent robustness criterion. We will analyze
the robustness criterion of these front-ends to reveal any relation between the
characteristics of the English accents used in this experiment. The word error rate
of these front-ends on a multi-accented English test set will also be reported.
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Table 4.5: MLP frame accuracy for Vowels and Consonants.

Phone Class MLP Accuracy
Vowels 26.41

Consonants 40.80
Noise/Silence 85.78

4.3 Proposed Work: Accent Adaptive training

In this section, we propose to formulate a training procedure for accent adaptive
training. In our framework, we simultaneously train accent-dependent and accent-
independent parameters on a dataset with multiple accents. To achieve this, we
generalize the techniques proposed for target accent adaptation in chapter 2 for
multiple accents. We propose both acoustic and lexical-level adaptive training to
efficiently train a accent-adaptive model that can handle different accents in the
training set. The following sections details the techniques and experiments for each
case.

4.3.1 Accent Adaptive training - Acoustic Level

In this section, we extend the semi-continuous decision tree based adaptation for
target accent adaptation to multiple accent scenario. We grow multiple, accent-
specific, two-level decision trees and train accent-dependent distributions, while
maintaining a common set of shared codebooks. We aim to integrate the accent-
adaptive training with speaker-adaptive training, so the factorization schemes
benefit from each other. The speaker-specific parameters are characterized by
CMLLR transforms, while the accent-specific parameters are chosen to be two-level
decision trees. The accent-adaptive model is shown below.

Training Procedure

As shown in Figure 4.5, the acoustic level accent training consists of the following
steps:

• We train the CI model, its codebooks and distributions are trained on a
common pool of data with all the accents combined.
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Figure 4.5: Accent Adaptive Model

• We accumulate statistics for each context to grow a first-level, fully continuous
model.

• This model is then further split, using multiple, two-level decision trees along
the distributions for each accent.

• During training procedure, for each speaker, we load the appropriate ac-
cent tree based on his/her accent and accumulate the codebook-level and
distribution-level statistics.

• In the update phase, codebook-level statistics are merged across all accents to
estimate accent-independent codebooks. The distributions for the individual
accents are independently updated.

One of the critical aspects of this model is the parameter ratio between shared
and accent-specific parameters. Ideally, we would like to delegate accent-independent
contextual modeling to the first-level decision tree, while accent-dependent contexts
are assined to the multiple second-level decision trees. We propose to identify
the accent-dependent contexts by introducing accent-questions as in the accent
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normalization analysis. We stop growing the first-level tree once an accent ques-
tion is encountered. These leaves are then further split using the second-level
distribution tree with accent-specific parameters. We will evaluate this model on
a multi-accented dataset for Arabic and English accents. Our baseline will be a
multi-style trained system which is trained on data pooled from all the accents. We
will perform a detailed error analysis to show that the accent-dependent, second-
level trees help achieve accent-adaptive training, while sharing accent-independent
parameters.

4.3.2 Accent Adaptive training - Lexical Level

Accent adaptive training can also be carried out at the lexical level, by employing
accent-specific pronunciations for each accent group during training. We extend
our lexical adaptation technique proposed in chapter 2 to transform a canonical
dictionary into accent-specific dictionaries, which are then employed in re-training
the acoustic models. The transformation rules are derived by comparing the ground-
truth sequence obtained by a phone decoder to the canonical phone sequence. A
phone-to-phone LM is trained individually for each accent. These FSTs can be
applied to the original dictionary to get matching pronunciation variants for each
accent. These pronunciation variants are chosen based on the accent of a particular
speaker which training or decoding. Accent adaptive training at the lexical level
will involve the following steps

• We train the accent-independent model using data from all accents combined.

• We use this model to generate ground truth phone sequence using a phone
loop decoding for all the utterances in the training set. These sequences are
then paired up with the pronunciations from the canonical dictionary.

• Accent-specific multi-gram phone-to-phone transformation LMs are trained
using the paired phone sequences from the respective accents.

• These transformations are applied to the canonical pronunciation dictionary
to derive accent-specific dictionaries.

• During training, the appropriate accent-specific pronunciation dictionary is
chosen based on the accent of the speaker.
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The final model will be evaluated on dataset with multiple accents. During
decoding, the same dictionary selection procedure is repeated. The results are
compared against the model trained with the canonical dictionary. A detailed
error analysis to compare the difference in performance between accent-specific
and canonical pronunciations will be performed and the results will be reported.
The final system will be combined with acoustic-level adaptive training for any
additional gains.

4.4 Summary

We proposed an evaluation framework to test different front-ends on their accent
normalization ability. We analyzed MFCC and MLP front-ends and concluded
what MLP is more sensitive to accent variations than MFCC. We investigated the
results and identified the poor accuracy of the MLP on vowels could lead to its
sensitivity to different accents. We have proposed to extend this framework for
English accents and analyze the robustness of various front-ends. We also proposed
accent adaptive training by using factorized models to model the shared and unique
patterns between different accents. We plan to perform experiments with accent
adaptive training at acoustic and lexical level and compare its performance against
a simple multi-style baseline.



Chapter 5

Tasks and Timeline

In this section, we outline the problems addressed in this proposal, along with the
results obtained, work to be done and datasets used. This proposal starts by address-
ing the simple adaptation problem in accent modeling - Adapting a source accent to
a specific target accent using relatively small amount of transcribed adaptation data
(Chapter 2). We propose acoustic and lexical/pronunciation adaptation techniques
to address this problem. In acoustic adaptation, we introduced semi-continuous,
two-level decision tree based accent adaptation and showed that it out-performed
conventional adaptation techniques [Nallasamy et al., 2012a]. We will investigate
pronunciation adaptation using phone-to-phone multigrams to model lexical level
accent variations. We will analyze the results to examine the type of accent vari-
ations modeled by each technique and explore a suitable combination to benefit
from complimentary nature of acoustic and lexical accent adaptation.

The gains from the supervised adaptation are improved further by making use
of large amount of untranscribed data with multiple accents, for target accent
adaptation (Chapter 3). Data selection using a relevance criterion is carried out
under active and semi-supervised learning to select appropriate subset for retraining
the target ASR. This criterion allowed us to identify useful unlabeled target accent
data that further improved a ASR adapted on a limited amount of transcribed data,
in a supervised manner [Nallasamy et al., 2012b].

Finally, we deal with a practical scenario of handling different accents in the
training dataset (Chapter 4). We introduce decision tree based accent normalization
criterion by adding accent-level questions in the ASR decision tree. The ratio of
accent-dependent to total leaves conveys the normalization ability of a front-end.
We found that the normalization or robustness behavior of a front-end is influenced

61
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by language-specific characteristics, such as in the case of MLP features whose
low vowel accuracy led to its increased sensitivity to accent variations in Arabic
[Nallasamy et al., 2011]. The accent tags on the decision trees can also reveal the
relationship between different accents which allows us to model them efficiently. We
propose to extend this framework to analyze various front-ends on their robustness
to English accents. As in the case of Arabic, our analysis will also reveal interesting
relationships between the different accents in the database.

We have proposed accent adaptive training to simultaneously train accent-
dependent and canonical parameters from a multi-accented dataset. We will explore
both acoustic and lexical level approaches to address this problem. In both cases,
we generalize the techniques experimented in target accent adaptation to design
algorithms that can handle phonological variations between multiple accents in the
database.

Table 5.1 shows a list of tasks that are part of this thesis and their status. Table
5.2 shows the timeline for completion of the thesis.

5.1 Remaining Work

We list the remaining work in each chapter below.

• Target accent adaptation.

1. Pronunciation modeling for accent adaptation

2. Combination of pronunciation adaptation with acoustic adaptation.

3. Performance analysis of both approaches and diagnostic experiments to
understand their modeling of accent variations.

• Accent Robust and Adaptive training.

1. Accent robust analysis of different front-ends on accented English.

2. Accent adaptive training model using multiple accent-factorized two-level
decision trees.

3. Extension of pronunciation modeling to multiple accents.



5.1 Remaining Work 63

Table 5.1: Tasks and their status .
Chapter Task Datasets used Status Results obtained
Target Accent
Adaptation

Acoustic adap-
tation based
on semi-
continuous
decision trees
[Nallasamy
et al., 2012a]

WSJ English and
GALE Arabic

Experiments
Completed.
More analysis
proposed

7-13.6% relative
improvement
over MAP
adaptation

Target Accent
Adaptation

Lexical adapta-
tion based on
multi-gram LM

WSJ English
and M*Modal
English

Proposed -

Data selection Active learning
[Submitted to
SLT 2012]

WSJ English and
GALE Arabic

Completed 7.7-20.7% rel
improvement
over supervised
baseline

Data selection Semi-supervised
learning [Nal-
lasamy et al.,
2012b]

WSJ English and
GALE Arabic

Completed 2.0-15.9% rel
improvement
over supervised
baseline

Accent Robust
and Adaptive
training

Accent nor-
malization
[Nallasamy
et al., 2011]

RADC Pan-
Arabic dataset
and WSJ En-
glish/GALE
Arabic

Preliminary
experiments
Completed,
Experiments
on English
accent and
more analysis
proposed

Evaluated and
analyzed MLP
and MFCC front-
ends on Arabic
accents.

Accent Robust
and Adaptive
training

Accent Adaptive
training - Acous-
tic Level

WSJ English and
GALE Arabic

Proposed -

Accent Robust
and Adaptive
training

Accent Adaptive
training - Lexical
Level

WSJ English
and M*Modal
English

Proposed -
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Table 5.2: Timeline for the thesis .

Task Time
Pronunciation Modeling Oct 1, 2012 - Dec 31, 2012

Combination and Diagnostic experiments Jan 1, 2013 - Mar 1, 2013
Accent Robustness for English accents Mar 1, 2013 - Apr 1, 2013

Accent Adaptive training - Acoustic level Apr 1, 2013 - June 1, 2013
Accent Adaptive training - Lexical level June 1, 2013 - Aug 1, 2013

Thesis writing and wrap up Aug 1, 2013 - Oct 1, 2013
Defense Nov 1, 2013



Bibliography

Accents research. http://www.phon.ucl.ac.uk/home/mark/accent. 2

Quicknet toolkit. http://www1.icsi.berkeley.edu/Speech/qn.html. 51

Unisyn lexicon. http://www.cstr.ed.ac.uk/projects/unisyn. 2, 8

Michiel Bacchiani, Françoise Beaufays, Johan Schalkwyk, Mike Schuster, and Brian
Strope. Deploying goog-411: Early lessons in data, measurement, and testing. In
ICASSP, pages 5260–5263, 2008. 1

Christophe Van Bael and Simon King. An accent-independent lexicon for automatic
speech recognition. In ICPhS, pages 1165–1168, 2003. 3, 8

Fadi Biadsy, Julia Hirschberg, and Michael Collins. Dialect recognition using a
phone-gmm-supervector-based svm kernel. In INTERSPEECH, pages 753–756,
2010. 53

Fadi Biadsy, Pedro Moreno, and Martin Jansche. Google’s cross-dialect arabic voice
search. In ICASSP, 2012. 1

Steffen Bickel, Michael Brückner, and Tobias Scheffer. Discriminative learning under
covariate shift. Journal of Machine Learning Research, 10, 2009. 25, 38

Maximilian Bisani and Hermann Ney. Joint-sequence models for grapheme-to-
phoneme conversion. Speech Communication, 50(5):434–451, 2008. 18
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and bottle-neck features for lvcsr of meetings. In ICASSP, volume 4, pages IV–757
–IV–760, april 2007. doi: 10.1109/ICASSP.2007.367023. 52

Dilek Z. Hakkani-Tür, Giuseppe Riccardi, and Allen L. Gorin. Active learning for
automatic speech recognition. In ICASSP, pages 3904–3907, 2002. 24

Hynek Hermansky and Louis Anthony Cox Jr. Perceptual linear predictive (plp)
analysis-resynthesis technique. In EUROSPEECH, 1991. 47

Hynek Hermansky and Nelson Morgan. Rasta processing of speech. IEEE Transac-
tions on Speech and Audio Processing, 2(4):578–589, 1994. 47

Roger Hsiao, Mark Fuhs, Yik-Cheung Tam, Qin Jin, Ian Lane, and Tanja Schultz.
The cmu-interact mandarin transcription system for gale. In GALE Book, 2009. 1

Chao Huang, Eric Chang, and Tao Chen. Accent issues in large vocabulary continu-
ous speech recognition. Technical Report MSR-TR-2001-69, Microsoft Research,
2001a. 1

Sheng-Jun Huang, Rong Jin, and Zhi-Hua Zhou. Active learning by querying
informative and representative examples. In NIPS, pages 892–900, 2010. 24

Xuedong Huang, Alex Acero, and Hsiao-Wuen Hon. In Spoken Language Processing:
A Guide to Theory, Algorithm and System Development. Prentice Hall, 2001b. 14

J. J. Humphries and Philip C. Woodland. Using accent-specific pronunciation
modelling for improved large vocabulary continuous speech recognition. In
EUROSPEECH, 1997. 1, 3, 8

J.J. Humphries. Accent modelling and adaptation in automatic speech recogni-
tion. http://svr-www.eng.cam.ac.uk/~jjh11/publications/PhD_thesis.ps.

gz, 1997. 3, 8, 17

Shajith Ikbal, Hemant Misra, Sunil Sivadas, Hynek Hermansky, and Hervé Bourlard.
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Herman Kamper, Félicien Jeje Muamba Mukanya, and Thomas Niesler. Multi-
accent acoustic modelling of south african english. Speech Communication, 54(6):
801–813, 2012. 4, 48

Thomas Kemp and Alex Waibel. Unsupervised training of a speech recognizer:
recent experiments. In EUROSPEECH, 1999. 35

D. K. Kim and M. J. F. Gales. Adaptive training with noisy constrained maximum
likelihood linear regression for noise robust speech recognition. In INTERSPEECH,
pages 2383–2386, 2009. 48

C.J. Leggetter and P.C. Woodland. Maximum likelihood linear regression for speaker
adaptation of continuous density hidden markov models. Computer Speech &
Language, 9(2):171–185, 1995. 3

T. Li, Philip C. Woodland, Frank Diehl, and Mark J. F. Gales. Graphone model
interpolation and arabic pronunciation generation. In INTERSPEECH, pages
2309–2312, 2011. 19

Xiao Li, Asela Gunawardana, and Alex Acero. Adapting grapheme-to-phoneme
conversion for name recognition. In ASRU, pages 130–135, 2007. 18, 19

K. Livescu. Analysis and modeling of non-native speech for automatic
speech recognition. http://www.sls.lcs.mit.edu/sls/publications/1999/

msthesis-livescu.pdf, 1999. 8

Karen Livescu and James Glass. Lexical modeling of non-native speech for automatic
speech recognition. In ICASSP, pages 1683 – 1686. 3, 17
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