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Abstract
The introduction of deep neural networks (DNNs) has advanced the performance

of automatic speech recognition (ASR) tremendously. On a wide range of ASR
tasks, DNN models show superior performance than the traditional Gaussian mix-
ture models (GMMs). Although making significant advances, DNN models still
suffer from data scarcity, speaker mismatch and environment variability. This thesis
resolves these challenges by fully exploiting DNNs’ ability of integrating heteroge-
neous features under the same optimization objective. We propose to improve DNN
models under these challenging conditions by incorporating context information into
DNN training.

On a new language, the amount of training data may become highly limited.
This data scarcity causes degradation on the recognition accuracy of DNN models.
A solution is to transfer knowledge from other languages to the low-resource condi-
tion. This thesis proposes a framework to build cross-language DNNs via language-
universal feature extractors (LUFEs). Convolutional neural networks (CNNs) and
deep maxout networks (DMNs) are employed to improve the quality of LUFEs,
which enables the generation of invariant and sparse feature representations. Also,
we study a parallelization mechanism to speed up training of LUFEs over multiple
GPUs.

As with GMMs, the performance of DNNs degrades when the mismatch between
acoustic models and testing speakers exists. For GMMs, speaker adaptive training
(SAT) trains the acoustic models in a normalized space so that the resulting mod-
els generalize better to unseen testing speakers. In this thesis, we present a novel
framework to perform feature-space SAT for DNN models. We leverage i-vectors
as speaker representations to project DNN inputs into a normalized feature space.
The DNN model fine-tuned in this new feature space rules out non-speech variabil-
ity and becomes more independent of specific speakers. Our SAT-DNN approach is
a general framework that can be naturally extended to other deep learning models
such as CNNs. Also, the recognition results of SAT-DNNs can be further improved
by applying model-space DNN adaptation atop of SAT-DNNs during decoding.

Environment variability such as noise and reverberation poses challenges to ASR.
In real-world applications, a critical part of the variability comes from the varying
distance between the speakers and microphones. In the final part of this thesis, we
improve the robustness of DNN models by incorporating this distance information.
The distance descriptors are derived from a DNN model which is trained on a meet-
ing corpus. With these descriptors, our distance-aware DNNs capture the speaker-
microphone distance dynamically at the frame level. Furthermore, on the task of
transcribing videos, visual features from the video stream provide additional indica-
tion about the acoustic environment. For instance, images from the videos may indi-
cate the scenes (offices, cars, etc.) where the speech data have been recorded. We ex-
amine the utility of visual features as additional environment descriptors, and study
DNN architectures that can fuse context information from heterogeneous sources.
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Chapter 1

Introduction

In recent years, automatic speech recognition (ASR) systems have seen evident improvement on
their performance and rapid expansion on their applicability. A major driving force for this ad-
vancement is the introduction of deep neural networks (DNNs) as acoustic models. Compared to
the traditional Gaussian mixture models (GMMs), the advantage of DNN models has been con-
firmed on a wide variety of ASR tasks [11, 29, 78]. Applications of DNNs generally fall into two
categories. In hybrid systems, DNNs are trained to classify tied context-dependent (CD) states
and estimate their posterior probabilities. In tandem systems, we use DNNs to generate phone
posteriors or bottleneck features (BNF), and build normal GMM models with the discriminative
front-end [19, 20]. In addition to DNNs, other deep structures, such as convolutional neural net-
works (CNNs) [3, 4, 72, 73, 84] and recurrent neural networks (RNNs) [23, 51, 74, 75], have
also been exploited as acoustic models. More details about these architectures will be presented
in Chapter 2.

1.1 Current Challenges for DNN Acoustic Models
Although making significant advances, the performance of DNN acoustic models still suffers
from challenges such as noise, channel mismatch, speaker mismatch [33]. This thesis focuses on
alleviating the effects of the following three challenges.
• Data Scarcity. DNN models differ from the earlier ANN-HMM systems [17] in that there

are more hidden layers in the DNN architecture. Therefore, DNN models tend to have
much more parameters than GMM models. For example, in [95], the hybrid system with a
5-hidden-layer fully-connected DNN has 12 times more parameters than its corresponding
GMM model. When the amount of transcribed speech becomes limited (e.g., less than
10 hours), the large parameter space of DNNs can cause overfitting easily during DNN
training. This may degrade the recognition performance of DNN models greatly on unseen
testing data.

• Speaker Mismatch. Another long-standing issue for ASR is the mismatch between the
acoustic models and testing speakers. A degradation of recognition accuracy is typically
observed when porting a recognizer to a testing set where the speakers have not been in-
cluded in the training set. An effective step to mitigate this mismatch is to perform speaker
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adaptation during decoding. There are two types of speaker adaptation. Model-space
adaptation modifies the speaker-independent (SI) model towards particular testing speak-
ers, whereas feature-space adaptation transforms the features of testing speakers towards
the acoustic model.

• Environment Variability. Real-world applications require ASR systems to handle var-
ious types of environment variability such as noise and reverberation. In recent years,
DNN models have dramatically advanced the recognition accuracy on clean, close-talking
speech. However, robustness still remains to be a challenge for DNNs. It is revealed in [33]
that as with GMMs, the performance of DNNs drops significantly as the SNR decreases.
One example of environment variability is on amateur videos (e.g., YouTube videos) where
the distance between the speakers and the microphones varies frequently. Also, the scenes
(e.g., car, office, street) of the conversations may differ a lot among videos. Because of
these factors, previous work [34, 49] has reported the state-of-the-art WER of around 40%
on transcribing YouTube videos.

1.2 Proposal Statement
This thesis proposes to solve these challenges by incorporating additional context information
into DNN acoustic models. In comparison to GMMs, DNN models can take input features of
large dimensions. For example, the inputs of DNNs are normally concatenation of neighbouring
frames whose dimension can go up easily to 500. This nice property enables DNNs to com-
bine information from different sources. The simplest form of this combination is to concatenate
distinct features types (e.g., MFCCs and filterbanks) as DNN inputs. Corresponding to the afore-
mentioned three challenges, our research work can be described as the following three aspects.

1.2.1 Cross-Language DNNs with Language-Universal Feature Extractors
As discussed in the previous section, DNN models generally have more parameters than GMMs.
The performance of DNNs typically degrades when we have limited training data. From a trans-
fer learning perspective, DNN models under low-resource conditions can benefit from sharing
knowledge among languages. Previous work [27, 32, 55] has studied multilingual DNNs to
realize knowledge transfer across languages. The application of multilingual DNNs for cross-
language acoustic modeling is also briefly investigated in [32]. The contribution of this thesis is
to propose a more flexible framework for cross-language DNN acoustic modeling. More impor-
tantly, we further extend this framework from different aspects. These extensions are orthogonal
to choices of acoustic modeling methods. Therefore, they are also applicable to previous propos-
als such as [32].
• We establish our framework to build cross-language DNN models via language-universal

feature extractors (LUFEs). A LUFE consists of the shared hidden layers of the multilin-
gual DNN. Given a new language, DNN models are built over the outputs from the LUFE.
Our approach differs from [32] in that on the new language, we are learning a complete
DNN model instead of a single softmax layer. This gives us greater modeling flexibility,
as well as better recognition results, on the new language.
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• The quality of LUFE is improved by two techniques. First, we propose to train LUFEs
with CNNs. Due to local filters and max-pooling layers, CNNs normalize spectral varia-
tion in the speech signal more effectively than DNNs. Thus, CNN-based LUFEs give us
more invariant feature representations. Second, we introduce sparsity into the LUFE fea-
ture representations by taking advantage of the deep maxout networks (DMNs) [22]. Our
previous work [57] makes the first attempt to apply maxout networks to ASR. In a DMN,
units at each hidden layer are divided into groups, and each group generates a single output
with max-pooling. With a non-maximum masking operation, feature representations with
truly-zero sparsity can be generated from the maxout layer.

• We propose the DistModel strategy to accelerate training of LUFEs over multiple GPUs.
Learning LUFEs can be highly expensive because training data have to contain multiple
languages. In DistModel, the multilingual data are split into equally-sized partitions. A
complete LUFE is trained on a GPU and using one of the data partitions. After a particular
number of mini-batches, the different LUFE model instances are averaged to form the
starting model for the subsequent training. After configuration optimization, this time-
synchronous method results in over 2 times speed-up on LUFE training and negligible
WER loss on the new language.

1.2.2 Speaker Adaptive Training of DNN Models using I-vectors

For GMM models, an effective procedure to alleviate the effect of speaker mismatch is speaker
adaptation [18, 43]. Model-space adaptation modifies the SI model towards particular testing
speakers, while feature-space adaptation transforms the features of testing speakers towards the
SI model. Another technique closely related with speaker adaptation is speaker adaptive training
(SAT) [5, 6]. When carried out in the feature space, SAT performs adaptation on the training set
and projects training data into a speaker-normalized space. Parameters of the acoustic models
are estimated in this new feature space. Acoustic models trained this way become independent
of specific training speakers and thus generalize better to unseen testing speakers. In practice,
SAT models generally give better recognition results than SI models, when speaker adaptation is
applied to both of them.

For DNN models, a large amount of previous work has been dedicated to speaker adaptation.
For example, in [45, 93], SI-DNN models are augmented with additional speaker-specific layers
which are trained on the adaptation data. Also, [69, 78] achieve adaptation of DNNs by training
DNNs using speaker-adaptive features, and [48] adapts the entire SI-DNNs to testing speakers
with DNN fine-tuning. In comparison to speaker adaptation, past work has made fewer attempts
on SAT of DNNs. Training DNNs with SA features [35, 69, 78] or additional speaker-specific
information [26, 76, 80] can be treated as a form of SAT. In [92], Xue et al. append speaker codes
[1, 2] to the hidden and output layers of the DNN model. SAT is achieved by jointly learning
the speaker-specific speaker codes and the SI-DNN. In [64], speaker availability is normalized
by allocating certain layers of the DNN as the SD layers that are learned on a speaker-specific
basis. Over different speakers, the other layers are adaptively trained by picking the SD layer
corresponding to the current speaker. Although showing promising results, the application of
these proposals is constrained to specific feature types or model structures. For example, the
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approach in [92] is not applicable to CNNs because it is infeasible to append speaker codes to
the hidden convolution layers. Also, in these methods, adaptation of the resulting SAT models
generally needs multiple decoding passes, which undermines the decoding efficiency.

In this thesis, we propose a general framework to carry out feature-space SAT for DNNs.
Building of SAT-DNN models starts from an initial SI-DNN model that has been trained over
the entire training set. Then, our framework uses i-vectors extracted at the speaker level as a
compact representation of each speaker’s acoustic characteristics. An adaptation neural network
is learned to convert i-vectors to speaker-specific linear feature shifts. Adding the shifts to the
original DNN input vectors (e.g., MFCCs) produces a speaker-normalized feature space. The
parameters of the SI-DNN are updated in this new feature space, which finally gives us the
SAT-DNN model. This thesis explores the optimal configuration of SAT-DNNs for LVCSR
tasks. Apart from hybrid models, we demonstrate the extension of our SAT framework to CNNs
and BNF generation. Furthmore, we study the combination of SAT and speaker adaptation for
DNNs. During decoding, model-space adaptation is applied atop of SAT-DNN models for further
improved recognition results.

1.2.3 Robust Speech Recognition with Distance-Aware and Video-Aware
DNNs

Environment variability such as noise and reverberation poses special challenges for ASR sys-
tems. For robust ASR, previous work [79] has attempted to incorporate noise information into
DNN models. In real-world applications, another critical type of variability comes from the vary-
ing distance between speakers and microphones. For example, on amateur videos, the distance
between the speakers and microphones may vary frequently, even within a single utterance. In
this thesis, we enhance the robustness of DNN models by explicitly incorporating the speaker-
microphone distance information. Extraction of the distance information relies on a distance-
discriminative DNN (DD-DNN) that is trained on an external meeting corpus, with distance
types (e.g., distant, close-talking, etc.) of speech files as labels. This DD-DNN can be trans-
ferred to our target dataset. At each speech frame, outputs from the DD-DNN’s hidden layers
are taken as descriptors of distance types. We build distance-aware DNN (DA-DNN) models
by appending these distance descriptors to the original input features. By doing this, DA-DNNs
capture the distance information dynamically at the frame level.

On the task of transcribing video data, the video stream provides additional indication about
the acoustic environment. For instance, images from the videos indicate the scenes in which the
speech data have been recorded. Moreover, actions (running, lifting, walking, etc.) performed
by the speakers correlate to speaking rates and styles. This thesis investigates the incorporation
of different types of visual features into DNN acoustic models. Traditional audio-visual ASR
[16, 24] has successfully combined audio and visual features (e.g., lip contours, mouth shapes,
etc.) for robust ASR. However, the applicability of these methods is limited by the availability
of the mouth-region features, especially on open-domain videos (e.g., YouTube videos). An-
other limitation of the traditional audio-visual ASR is that the alignment between the speech and
video frames is required. In this thesis, we explore open-domain audio-visual ASR by employing
video/segment-level visual features that can be extracted readily from real-world videos. Extrac-
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tion of the visual features is achieved with models trained on external datasets. We also study
approaches to fusing context information from different sources with a single DNN architecture.

1.3 Proposal Organization
The remainder of this proposal is organized as follows. Chapters 3, 4 and 5 correspond to the
three proposal statements in Section 1.2 respectively. In each chapter, we present the work we
have completed, and the proposed work we plan to work on for the next step.
• Chapter 2 reviews acoustic modeling with DNNs. In addition to hybrid models, we also

review how DNNs are used for BNF extraction. Other deep learning architectures CNNs
and RNNs are also explained.

• Chapter 3 presents our work on cross-language DNNs with language-universal feature
extractors.

• Chapter 4 presents our work on SAT of DNN models using i-vectors. In this chapter,
we perform feature-space SAT of DNNs by taking advantage of i-vectors as the speaker
representations.

• Chapter 5 improves the robustness of DNN models by incorporating speaker-microphone
distance information. On the task of video transcribing, Chapter 5 also describes fusion of
visual features into DNN acoustic modeling.

• Chapter 6 shows a time line for the proposed work.

5
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Chapter 2

Review of DNN Acoustic Models

In this chapter, we first give a brief review of DNN acoustic models, for both hybrid models
and BNF generation. Then, more advanced deep learning models, i.e., CNNs and RNNs, are
described for the task of acoustic modeling.

2.1 DNN Models

The architecture of the DNN we use is shown in Figure 2.1. A DNN is an multilayer perceptron
(MLP) which consists of many hidden layers before the softmax output layer. Each hidden
layer computes the outputs of conditionally independent hidden units given the input vector. We
denote the feature vector at the t-th frame as ot. Normally ot is the concatenation of multiple
neighbouring frames centered at t. The quantities shown in Figure 2.1 can be computed as:

ai
t = Wixi

t + bi yi
t = σ(ai

t) 1 ≤ i ≤ L (2.1)

where L is the total number of layers, the weight matrix Wi connects the i-1-th and i-th layers,
and bi is the bias vector of the i-th layer. The inputs to the i-th layer xi

t can be formulated as:

xi
t =

{
ot i = 1
yi−1
t 1 < i ≤ L

(2.2)

Figure 2.1: Architecture of the DNN model.
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where L is the total number of layers, Wi is the weight matrix connecting the i-1-th and i-th
layers, bi is the bias vector of the i-th layer, σ(x) is the activation function. For 1 ≤ i < L and
i = L, σ(x) takes the form of the logistic sigmoid and softmax functions respectively.

When applied as a hybrid model, the DNN is trained to classify each speech frame to CD
tied states. Suppose that we use the negative cross-entropy as the loss function and the training
set contains T frames. DNN training involves minimizing the following objective:

L = −
T∑
t=1

S∑
s=1

gt(s) log yL
t (s) (2.3)

where S is the total number of CD states (classes), gt is the ground-truth label vector on frame
t which is obtained via forced alignment with an existing GMM/DNN model, yL

t is the output
vector of the softmax layer. Error back-propagation is commonly adopted to optimize this objec-
tive. The gradients of the model parameters can be derived from the derivatives of the objective
function with respect to the pre-nonlinearity outputs ai

t. At the softmax layer, the error vector for
frame t is:

εLt =
∂L
∂aL

t

= yL
t − gt (2.4)

At each of the previous layers, we have the errors as

εit =
∂L
∂ai

t

= WT
i+1ε

i+1
t � yi

t � (1− yi
t) (2.5)

where � represents element-wise multiplication. In practice, we use mini-batch based stochas-
tic gradient descent (SGD) as the optimizer. In this case, model parameters are updated with
gradients accumulated over the entire mini-batches.

Outputs from the whole DNN architecture represent the posterior probabilities of HMM
states given the input ot. During decoding, we in fact need the emission probability of the feature
vector with respect to each state. According to the Bayes rule, the observation probability given
each state can be computed as:

p(ot|s) ∝ yL
t (s)/p(s) (2.6)

where p(s) is the prior probability of state s which can be estimated from the alignment of the
training data.

In hybrid models, DNNs are used as classifiers with respect to CD states. Alternatively,
DNNs can also be employed as discriminative feature extractors. In the traditional tandem sys-
tems [28], a DNN (or MLP) is trained to classify context-independent (CI) states. The outputs
from the DNN are projected down to a low-dimensional space with principal component analysis
(PCA). The projected features are treated as the news features, over which the standard GMM
models can be built. To avoid loss of discriminative information during PCA, [71] achieves
dimension reduction by adopting a deep autoencoder following the DNN. The autoencoder net-
work takes the DNN outputs as the inputs, and is trained to minimize the difference between these
inputs and the outputs from this autoencoder. Outputs from the narrow layer of this autoencoder
network are fed to GMMs as the new features.

When the DNN outputs are used in tandem systems, each of its hidden layers has the same
number of units. A large amount of work [19, 20, 25, 94] has attempted to train the DNN
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Figure 2.2: Architecture of the DBNF network.

with a bottleneck layer, a hidden layer which is significantly narrower than the other hidden
layers. When training finishes, outputs from this narrow layer are taken as the new BNF features.
Training of the BNF-DNN follows the same protocol as training of the standard DNN. The
bottleneck layer acts to squeeze the discriminative information into a highly low-dimensional
space.

In our previous work [20], we have established the deep BNF (DBNF) architecture for more
effective BNF extraction. Our method differs from the previous BNF proposals [25, 94] in that
the hidden layers are arranged in a non-symmetric manner around the bottleneck layer. In the
DNN architecture, we insert multiple hidden layers prior to the bottleneck layer, whereas only
one hidden layer is placed between the bottleneck and the softmax layers. As discovered in
[96], activations from the higher layers of a DNN are more robust to variations and distortions
from the speech signal. Therefore, placing the bottleneck layer at a high layer generates both
discriminative and invariant feature representations that benefit the subsequent GMM training.
Figure 2.2 depicts the architecture of our DBNF network.

2.2 CNN Models

CNNs have been applied widely in the areas of image processing and computer vision [41]. In the
time-delay neural networks (TDNNs) for phoneme recognition [89], the convolution operation
is applied on the time dimension of acoustic frames. In recent years, CNNs have been proved to
outperform DNNs on large scale acoustic modeling tasks [3, 4, 72, 73, 84]. Instead of using fully-
connected parameter matrices, CNNs are characterized by parameter sharing and local feature
filtering. The local filters help to capture locality along the frequency bands. On top of the
convolution layer, a max-pooling layer is usually added to normalize spectral variations. As a
result, the CNN hidden activations become invariant to various types of speech and non-speech
variability.

Figure 2.3 exemplifies a convolution layer, as well as a max-pooling layer applied atop. In the
convolution layer, we only consider filters along frequency, assuming that the time variability can
be modeled by HMM. Inputs into CNNs are N neighbouring frames of acoustic features (e.g.,
filterbanks), where each frame vi is a one-dimensional feature map. The hidden outputs from
this layer contain J vectors ([h1,h2, ...,hJ ]). The trainable one-dimensional filter rji connects
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Figure 2.3: Convolution and max-pooling layers in the CNN architecture.

input feature map vi and output feature map hj , and is shared across the frequency axis along vi.
Outputs from this convolution layer can be computed as

hj = σ(
N∑
i=1

rji ∗ vi + bj) (2.7)

where ∗ represents the one-dimensional discrete convolution operator, and bj is the trainable bias
attached to hj . In this chapter, we use the logistic sigmoid activation function σ.

Then, a max-pooling layer is added on top of the convolution layer. Max-pooling is carried
out in a vector-wise mode. More formally, for each vector hj , we divide its units into non-
overlapping groups and output the maximum activation within each group. When the pooling
size is k, the size of each after-pooling feature map pj is 1/k of the size of the before-pooling
hj . The convolution and pooling layers together are called a convolution stage. In our setups,
CNNs stack two such stages where outputs from the lower pooling layer are propagated to the
higher convolution layer. Multiple fully-connected DNN layers and finally the softmax layer are
added over these two stages. From the feature learning perspective, the convolution and pooling
layers in this structure are trained to extract invariant features, while the fully-connected layers
use these high-level features to better classify HMM states.

2.3 RNN Models
DNNs and the follow-up CNNs have set the state of the art for large-scale acoustic modeling
tasks. However, both DNNs and CNNs can only model the limited temporal dependency within
the fixed-size context window. To resolve this limitation, previous work [23, 51, 74, 75] has
studied the application of RNNs to acoustic modeling. In Section 5.4, we propose to perform the
extraction of the speaker-microphone distance information with RNNs. Therefore, we also give
a brief review of RNNs here.

Compared to the standard feedforward architecture, RNNs have the advantage of learning
complex temporal dynamics on sequences. Given an input sequence X = (x1, ..., xT ), a tra-
ditional recurrent layer iterates from t = 1 to T to compute the sequence of hidden states
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Figure 2.4: A memory block of LSTM.

H = (h1, ...,hT ) via the following equations:

ht = σ(Whxxt + Whhht−1 + bh) (2.8)

where Whx is the input-to-hidden weight matrix, Whh is the hidden-to-hidden (recurrent) weight
matrix. In addition to the inputs xt, the hidden activations ht−1 from the previous time step are
fed to influence the hidden outputs at the current time step. Learning of RNNs can be done using
back-propagation through time (BPTT). However, in practice, training RNNs to learn long-term
temporal dependency can be difficult due to the well-known vanishing and exploding gradients
problem [7]. Gradients propagated though the many time steps (recurrent layers) decay or blow
up exponentially. The LSTM architecture [31] provides a solution that partially overcomes the
weakness of RNNs. LSTM contains memory cells with self-connections to store the temporal
states of the network. Additionally, multiplicative gates are added to control the flow of infor-
mation: the input gate controls the flow of inputs into the memory cells; the output gate controls
the outputs of memory cells activations; the forget gate regulates the memory cells so that their
states can be forgotten. Furthermore, as research on LSTM has progressed, the architecture is
enriched with peephole connections [21]. These connections link the memory cells to the gates
to learn precise timing of the outputs.

Given the input sequence, a LSTM layer computes the gates (input, output, forget) and mem-
ory cells activations sequentially from t = 1 to T . The computation at the time step t can be
described as:

it = σ(Wixxt + Wihht−1 + Wicct−1 + bi) (2.9a)
ft = σ(Wfxxt + Wfhht−1 + Wfcct−1 + bf ) (2.9b)

ct = ft � ct−1 + it � φ(Wcxxt + Wchht−1 + bc) (2.9c)
ot = σ(Woxxt + Wohht−1 + Wocct−1 + bo) (2.9d)

ht = ot � φ(ct) (2.9e)

where it, ot, ft, ct are the activation vectors of the input gate, output gate, forget gate and memory
cell respectively. The W.x terms denote the weight matrices connecting the inputs with the units.
The W.h terms denote the weight matrices connecting the memory cell outputs from the previous
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time step t − 1 with different units. The terms Wic, Woc, Wfc are diagonal weight matrices for
peephole connections. Also, σ is the logistic sigmoid nonlinearity which squashes its inputs to
the [0,1] range, whereas φ is the hyperbolic tangent nonlinearity squashing its inputs to [-1, 1].
The operation � represents element-wise multiplication of vectors.
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Chapter 3

Cross-Language DNNs with
Language-Universal Feature Extractors

As discussed in Section 1.1, DNN acoustic models normally contain much more parameters
than their GMM counterparts. To get good recognition performance, training of DNN models
generally requires a large amount of training data. However, adequate transcribed speech is not
always available, e.g., when we construct ASR systems on a low-resource language or a new
domain. This data scarcity can cause overfitting easily during DNN training, which degrades the
performance of DNN models on unseen testing data. The sensitivity of DNN training to data
scarcity is experimentally demonstrated in [57], where DNNs fail to outperform GMMs with
only 10 hours of training speech.

In this chapter, we focus on improving DNN models under low-resource languages. Our
solution is to perform cross-language DNN acoustic modeling by borrowing knowledge from
other languages. Knowledge transfer across languages is achieved via language-universal feature
extractors (LUFEs) trained over a group of source languages. After reviewing related work, we
first establish our cross-language DNN framework. Then, a series of improvements are made to
enhance the quality of LUFEs and speed up the training of LUFEs. Our work described in this
chapter has been published in [55, 56, 57, 61]

3.1 Related Work

Previous work has proposed various methods to improve DNNs under low-resource conditions.
A potential solution is to build sparse DNNs [95], either through regularizing hidden layer pa-
rameters or through rounding tiny parameters to zero. Although speeding up model training,
sparse DNNs fail to improve recognition performance. Meanwhile, dropout is presented as a
useful strategy to prevent overfitting in DNN fine-tuning [30]. Random dropout is observed to
perform effectively on phone recognition [12] and LVCSR [55, 99], displaying special benefits
when language resources become highly limited. In [57], the maxout networks are applied as an
alternative to standard DNNs for acoustic modeling. The hidden units at the maxout layer are
divided into disjoint groups and each group outputs a single activation. This reduces the number
of hidden-layer outputs and therefore model parameters. Maxout networks are demonstrated to
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be particularly effective for low-resource acoustic modeling.
Another long-standing solution is to share/borrow knowledge across languages. This knowl-

edge transfer has been traditionally realized by the use of a global phone set shared by all the
languages [77]. For GMM models, the subspace Gaussian mixture models (SGMMs) [66] have
been exploited extensively for multilingual and cross-language acoustic modeling. Instead of
learning GMM parameters, the SGMM learns low-dimensional subspaces which capture the
main phonetic and speaker variability. In a multilingual setting, the SGMM subspace parameters
can be estimated with combined statistics from multiple languages [8]. Then, these subspace
parameters are transferred to a low-resource target language on which only the non-subspace
parameters need to be estimated [50]. This effectively reduces the number of parameters on
the target language and improves the robustness of model training. Along this line of work,
other techniques [59] have been proposed to increase the flexibility of the multilingually-trained
subspace parameters on the target language.

In [96], the hidden layers of DNNs are treated as a series of nonlinear transforms that convert
the original input features into a high-dimensional space. The final softmax layer is added as
a linear classifier for state classification. It is revealed in [96] that the effectiveness of DNNs
comes largely from the invariance of the representations to variability such as speakers, environ-
ments and channels. Following this feature learning formulation, [32, 55] view the DNN hidden
layers as a deep feature extractor that is jointly trained over multiple languages. The resulting
multilingual DNN outperforms the monolingual DNN trained using language-specific data.

Our work in this thesis follows the feature learning formulation and focuses on cross-language
acoustic modeling with DNNs. In [32], the authors investigate the application of multilingual
DNNs for cross-language modeling. Specifically, the feature extractor that has been trained with
multilingual data is transferred to a new language. On this new language, a softmax layer is
added atop of the feature extractor and fine-tuned with the new-language data. Although giving
nice gains [32], this approach has limitations: only fine-tuning a single softmax layer may not
give us enough modeling power. Our thesis extends this approach to a more general framework
that is characterized by greater flexibility on the new language. More importantly, we develop
our framework in different ways, from improving recognition results on the new language to
speeding up the multilingual training of DNNs.

3.2 Cross-Language DNNs with LUFEs
Our framework is illustrated in Figure 3.1. On the left of Figure 3.1, a multilingual DNN is
learned over a group of source languages. The hidden layers of the multilingual DNN are shared
across all the languages, whereas each language has its own softmax layer to classify CD states
specific to that language. Fine-tuning of the multilingual DNN is carried out using the standard
mini-batch based SGD. The difference is that each epoch traverses data from all the source
languages, instead of one single language. The SGD estimator loops over languages iteratively,
each time picking one mini-batch from a language. At the same time, it switches to the softmax
layers and class labels corresponding to the language from which the current mini-batch comes.
Parameters of the shared layers are updated with gradients accumulated from all the languages.

After the multilingual DNN is trained, the shared hidden layers serve as the LUFE. Suppose
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Figure 3.1: Cross-language DNNs with the LUFE.

that we have a new language as shown on the right of Figure 3.1. This LUFE is applied to this
new language, transforming the raw acoustic features (e.g., MFCCs or filterbanks) to high-level
feature representations. A hybrid DNN model is trained on this new language to classify the CD
states. This DNN model takes feature representations generated from the LUFE as the inputs.
The LUFE is fixed during the process of new-language DNN training. That is, the parameters
of the LUFE are not re-updated on the new language. This manner of cross-language acoustic
modeling enables knowledge transfer across languages. Thus, it improves the recognition perfor-
mance on the new language, especially when the new language has limited transcribed speech.
This framework differs from the method in [32] in that [32] estimates a softmax layer on the new
language. In comparison, in our framework, a fully-connected DNN model is constructed on the
new language, with LUFE outputs as DNN inputs. This modification results in greater flexibility
and is empirically proved to give notable improvement on the new language.

3.3 Improving LUFEs with Deep Convolutional and Maxout
Networks

The quality of LUFEs plays a crucial role in our cross-language DNN framework. LUFEs have
been trained conventionally with the multilingual DNNs. In this section, we explore two strate-
gies to further improve LUFEs. First, we replace the standard sigmoid nonlinearity with the
recently proposed maxout units. The resulting maxout LUFEs have the nice property of gen-
erating sparse feature representations. Second, the CNN architecture is applied to obtain more
invariant feature space.

3.3.1 LUFEs with Convolutional Networks
As discussed in Section 2.2, CNNs can normalize variability of the speech signal more effec-
tively than DNNs. Therefore, CNNs outperform DNNs on a variety of acoustic modeling tasks
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[3, 4, 72, 73, 84]. This motivates us to apply CNNs as the building block of LUFEs. Our
CNN architecture used in LUFE training follows the previous studies [3, 72, 73, 84]. It has
two convolution layers each of which is followed immediately by a max-pooling layer. Multiple
fully-connected hidden layers are added atop of the final max-pooling layer. Finally we have the
softmax layer for classification.

When using CNNs, learning of the LUFE involves training a multilingual CNN. The training
process also exploits the parameter sharing idea. The hidden convolution and fully-connected
layers are shared and collaboratively trained over the source languages. When the training fin-
ishes, these shared hidden layers are taken as the LUFE and transferred to the new language. The
structure of the convolution and max-pooling layers have been described in Section 2.2.

3.3.2 Sparse Feature Extraction with Maxout Networks
Sparse feature learning is an active research topic in the machine learning field. On the complex
speech signal, sparse features (e.g., sparse coding) [42, 82, 83] tend to give better classification
accuracy compared with the raw, non-sparse features. Within the LUFE framework, we propose
to achieve sparse feature extraction by taking advantage of the deep maxout networks (DMNs)
[57]. Maxout networks [22] are originally presented as an alternative to DNNs for object recog-
nition. In [57], a first attempt is made to apply maxout networks to acoustic modeling. The
application of maxout networks (and their variants) to acoustic modeling is then further extended
in [100].

Figure 3.2 depicts the i-th layer in a maxout network. The hidden units are divided into
non-overlapping groups. We denote the number of unit groups as U and the group size (how
many units each group contains) as g. Given the input feature vector xt, the maxout function is
imposed to generate this layer’s activation yi

t=[yi
t(1), yi

t(2), ..., yi
t(U)] is a U -dimensional vector.

By following the notations in Section 2.1, we compute the maxout-layer outputs as:

yi
t(u) = max

j
(ai

t(j)) (u− 1)× g + 1 ≤ j ≤ u× g (3.1)

We can see that the maxout function in fact applies a max-pooling operation on the pre-activation
hidden outputs ai

t. The maximum value within each group is taken as the output from the i-th
layer. A DMN can be constructed by connecting multiple maxout layers consecutively.

In this thesis, we employ DMNs as sparse feature extractors. Sparse representations can be
generated from any of the maxout layers via a non-maximum masking operation, as exemplified
by Figure 3.2. Specifically, given an input frame, all the units within each group have their
individual outputs, instead of being pooled together into one output. However, only the maximum
value in this group is retained. All the other non-maximum values are rounded to 0. It is worth
noting that non-maximum masking only happens during the feature extraction stage. The training
stage always applies max-pooling.

In order to measure feature sparsity quantitatively, we compute population sparsity [63] for
each feature type. If the t-th frame has the feature vector ft, then population sparsity

pSparsity = ‖ ft
‖ft‖2

‖1 (3.2)
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Figure 3.2: An example for (a) maxout layer and (b) non-maximum masking.

measures how sparse the features are on this example. In our experiments, we report the averaged
value of this metric over the entire new-language training set. Unless otherwise stated, population
sparsity is shortened as pSparsity throughout this thesis. A lower pSparsity means higher sparsity
of the features.

So far, we have examined CNNs and DMNs separately as LUFEs. A natural extension is to
combine DMNs and CNNs together, which enables LUFEs to generate both sparse and invariant
feature representations. The resulting LUFE is structured in the similar way as the CNN-based
LUFE. The only difference is that the fully-connected layers in CNNs are replaced with maxout
layers. In Section 3.3.3, we experimentally show that this combined feature extractor ends up to
be the best LUFE studied in this work.

3.3.3 Experiments
Experimental Setup

Our experiments follow the setup in [57], using the multilingual corpus collected under the
IARPA BABEL research program [9, 10, 53]. We aim at improving ASR on the Tagalog (TG,
IARPA-babel106-v0.2f) limited language pack (LimitedLP). This is a low-resource condition
because only 10 hours of telephone conversational speech are available for system building.
Moreover, the data collection covers a variety of acoustic conditions, speaking styles and di-
alects. A large portion of the audio data are either non-speech events (e.g., breath, laughter and
cough) or non-lexical speech (e.g., hesitation and fragment). All these factors make acoustic
modeling under this condition a very difficult task. Therefore, we get higher WERs [19, 20, 57]
than on other benchmark datasets such as Switchboard.

On the target language Tagalog LimitedLP, WERs are reported on a testing set of 2 hours of
speech. The training and testing sets have no over-lapping speakers. During decoding, we use
a trigram language model built from training transcriptions. The source languages, on which
LUFEs are trained, include the LimitedLP sets of Cantonese (CN, IARPA-babel101-v0.4c),
Turkish (TU, IARPA-babel105b-v0.4) and Pashto (PS, IARPA-babel104b-v0.4aY). LimitedLP
sets of the four languages have statistics summarized in Table 3.1.

On each language, we build the GMM models with the same recipe. An initial maximum
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Table 3.1: Statistics of the BABEL multilingual datasets.

Target Source
TG CN TU PS

#training speakers 132 120 121 121
training (hours) 10.7 17.8 9.8 9.8
dictionary size 8k 7k 12k 8k

#classes 1920 1867 1854 1985

Table 3.2: WER(%) of monolingual DNN and CNN on the target language.

Models WER%
Monolingual DNN 70.8
Monolingual CNN 68.2

likelihood model is first trained using 39-dimensional PLPs (plus deltas and double deltas) with
per-speaker mean normalization. Then 9 frames are spliced together and projected down to 40
dimensions with linear discriminant analysis (LDA). Then, SAT is performed based on fMLLR.
The number of triphone states for each language is shown in the last row of Table 3.1. Training
of the DNN and CNN models is performed with the PDNN framework [54].

Inputs of DNNs and CNNs include 11 consecutive frames of 30-dimensional log-scale filter-
banks with per-speaker mean and variance normalization. The DNN model has 5 hidden layers
and 1024 units at each layer. DNN parameters are initialized with stacked denoising autoen-
coders (SDAs) [88] using masking noise and the denoising factor of 0.2. Each layer in the DNN
corresponds to a denoising autoencoder (DA) which minimizes the difference between the recon-
struction of corrupted input and the clean version of it. Pre-training of each layer has the learning
rate of 0.01 and runs for 10 epochs. During network fine-tuning, we start from a learning rate of
0.08 which keeps unchanged for 15 epochs. Then the learning rate is halved at each epoch until
the cross-validation accuracy on a held-out set stops to improve.

The structure of the convolution layers in CNN-based LUFEs follows our description in Sec-
tion 2.2 and Figure 2.3. We adopt one-dimensional convolution only along the frequency axis.
The size of the filter vectors (rji in Equation (2.7)) is constantly set to 5. We use a pooling size of
2, meaning that the pooling layer shrinks convolution outputs by half. After tuning the CNN ar-
chitecture, we observe that the best setting has two convolution stages and three fully-connected
layers. The first and second convolution layers contain 100 and 200 feature maps respectively.
Each of the fully-connected hidden layers contains 1024 units. Continuing to augment the con-
volution and fully-connected layers brings no further gains. Table 3.2 shows the performance of
the monolingual DNN and CNN models on the target language. The CNN achieves 2.6% abso-
lute WER improvement over the DNN model, which verifies the advantage of CNNs for acoustic
modeling.
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Table 3.3: WER(%) of various LUFEs on the target language.

LUFE Models WER% pSparsity
DNN-LUFE 69.6 21.3

Method in [32] 70.1 21.3
CNN-LUFE 67.1 20.4
DMN-LUFE 67.5 17.7

CNN-DMN-LUFE 65.9 16.6

Results of DNN-based, CNN-based and DMN-based LUFEs

LUFEs are trained over the three source languages. For DNNs and DMNs, we take their hidden
layers together as the LUFE. For CNNs, we take the two convolution layers (together with their
corresponding max-pooling layers) and the lowest fully-connected layer as the LUFE. On the
target language Tagalog LimitedLP, a DNN-based hybrid model is built on the feature represen-
tations from the LUFE. For fair comparison, the identical DNN topology, i.e., 4 hidden layers
each with 1024 units, is used for hybrid model over different feature extractors. Table 3.3 shows
the results of the hybrid models when various LUFEs are applied. We can see from Table 3.2
that cross-language models based on LUFEs give consistently better results than the monolin-
gual DNN. On the same setup, we also show the WER obtained by the method described in [32],
where a single softmax layer is fine-tuned atop of the LUFE on the target language. We observe
that our framework, which trains a complete DNN model on the target language, performs bet-
ter than this method. Compared with the DNN-based LUFE, the CNN-based LUFE gives 2.5%
absolute improvement, whereas the improvement obtained by the DMN-based LUFE is 2.1%
absolute.

As with [57], during training of DMNs, the dropout technique [30] is applied in order to
prevent overfitting. We impose dropout on each hidden layer by following the implementation
described in [55]. The drop factor, which governs the binomial distribution for hidden activation
masking, is constantly set to 0.2. For DMNs, we have 512 maxout units and the group size of
2. This configuration keeps the number of units at each hidden layer approximately to be 1024.
Table 3.3 compares different LUFEs on pSparsity and target-language WERs. We can see that
the DMN-based LUFE results in better WERs on the target language than the DNN-based LUFE.
Also, the application of DMNs generates features with lower pSparsity, indicating that we are
indeed extracting more sparse features from the DMN architecture.

Results of Combining CNNs and DMNs

Finally, we examine the effectiveness of combining CNNs and DMNs for better feature extrac-
tion. The structure of the convolution layers remains the same. We replace the sigmoid fully-
connected layers with maxout layers. During multilingual training, the convolution layers and
maxout layers use the starting learning rates of 0.08 and 0.1 respectively. Features are generated
from the lowest maxout layer on top of the convolution layers. We can see from Table 3.3 that
compared with the CNN-based LUFE, the CNN+DMN based LUFE generates sparse features,
as well as reduction of target-language WER. This combined LUFE obtains 3.7% absolute WER
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improvement (65.9% vs 69.6%) over the baseline DNN-based LUFE.

3.4 Distributed Training
Ideally, LUFEs are trained over multiple languages with adequate speech data. However, SGD-
based optimization is sequential and hard to be parallelized. This makes LUFE learning an
expensive task, even with the powerful GPU cards. In this section, we aim at speeding up LUFE
training with multiple GPUs, and a parallelization scheme is presented to accomplish this.

3.4.1 DistModel: Distribution by Models
Our DistModel strategy is developed based on the model averaging idea. Model averaging has
been exploited for distributed learning problems, for both convex and non-convex models [52,
100]. We port this idea to distributed training of LUFEs on GPUs. The implementation is
straightforward. Training data of each language is partitioned evenly across all the GPU threads.
In Figure 3.3, we show an example which includes 3 source languages. Each of the languages
contains 90 hours of training data. When distributing training to 3 GPUs, we assign to each
GPU 90 hours of data which consist of 30 hours from each source language. Different GPUs
have no overlapping on their data. Then, each GPU trains a LUFE as described in Section 3.2.
After a specified number of mini-batches, the instances of LUFEs from the individual GPUs are
averaged into a unified model. We refer to the number of mini-batches between two consecutive
averaging operations as averaging interval. Note that both the language independent (shared
hidden layers) and the language specific (softmax layer) parameters are averaged. The averaged
parameters are sent back to each GPU as the new starting model for the subsequent training.

DistModel is inherently time synchronous in that the parallel threads have to wait for each
other to perform model averaging. This tends to cause delay, especially when the frequency of
model averaging is high or certain computing nodes run slowly. Compared with the more popular
asynchronous methods [13, 27], time synchronous methods generally achieve worse acceleration.
However, we discover that on this particular LUFE learning task, DistModel is robust to large
averaging interval up to 2000 mini-batches. This is partly because multi-task learning performed
by each GPU acts as strong regularization for LUFE training. This prevents the multilingual
DNN models from getting stuck into local optima. As a result, the averaged LUFE still provides
unbiased feature representations, even after SGD has processed many mini-batches of training
examples on each GPU. Because of this, delay resulting from model averaging ends up to be a
tiny fraction of the entire training time.

3.4.2 Experiments
As with Section 3.3.3, the effectiveness of the DistModel strategy is evaluated with the BA-
BEL corpus. The source languages include the FullLP sets of Cantonese (IARPA-babel101-
v0.4c), Turkish (IARPA-babel105b-v0.4) and Pashto (IARPA-babel104b-v0.4aY). Each source
language consists of approximately 80 hours of transcribed speech. Our target language is the
LimitedLP condition of Tagalog which has 10 hours of data. GMM and DNN models are built
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Figure 3.3: The DistModel distributed learning strategy for LUFEs.

using the same recipes as described in Section 3.3.3. On the target language, the monolingual
DNN hybrid model has a WER of 65.8% on the 2-hour testing set. Note that the WER ob-
tained by our DNN baseline differs from the WER of the DNN baseline in Section 3.3.3. This
is because we are using a different testing set and the officially-released scoring setup. With
the DNN-based LUFE, we are able to reduce the WER down to 59.6% if the LUFE is trained
on a single GPU. That is, cross-language acoustic modeling with LUFEs brings 9.4% relative
improvement (59.6% vs. 65.8%).

We evaluate DistModel over 3 GPUs. A key variable in the DistModel scheme is the averag-
ing interval. Table 3.4 shows speed-up of LUFE training and WERs of the target language when
DistModel adopts various values for averaging interval. Speed-up is measured by the ratio of
the training time taken using a single GPU to the time using 3 GPUs. As expected, with larger
averaging interval, we obtain monotonically better speed-up because of less model averagings.
The change of WER displays more fluctuation, especially for averaging interval less than 2000.
When averaging interval equals 2000, LUFE learning with 3 GPUs is 2.6× faster than using a
single GPU. At the same time, the trained LUFE achieves a WER of 59.7% on the target lan-
guage. This corresponds to 0.1% absolute degradation which can be considered negligible given
the baseline 59.6%. Continuing to increase averaging interval gives further speed-up but signifi-
cantly worse WERs. Thus, setting averaging interval to 2000 is a good balance between training
efficiency and recognition performance. A contrast experiment is to train the LUFE with a single
GPU and only one third of the data. In this case, we can get perfectly 3× speed-up. However,
the WER on the target language goes up to 62.2%.

To investigate DistModel more closely, we apply DistModel to the Tagalog FullLP set for
the normal monolingual DNN training. The resulting DNN model is used directly as hybrid
models, rather than for feature extraction. Table 3.5 shows speed-up of DNN training and the
resulting WERs with averaging interval varying from 300 to 3000. In this scenario, DistModel
achieves similar speed-up as for multilingual DNN training. However, WER degradation caused
by parallelization becomes more significant compared with Table 3.4. This reveals that our
proposed DistModel strategy is particularly suited for the task of LUFE learning.
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Table 3.4: Impact of averaging interval on WERs and training speed-up.

Averaging Interval WER% Training Speed-up
300 59.4 1.32
600 60.0 1.89

1000 59.8 2.25
1500 60.5 2.49
2000 59.7 2.66
3000 60.6 2.84

Epoch 61.2 2.9

Table 3.5: DistModel applied to monolingual Tagalog FullLP DNN training.

Method WER% Training Speed-up
Single GPU (baseline) 49.3 —–

DistModel - 300 50.1 1.5
DistModel - 600 50.5 1.9

DistModel - 1000 50.5 2.2
DistModel - 2000 50.3 2.5
DistModel - 3000 50.8 2.7

3.5 Proposed Work

Our future work for this chapter mainly focuses on more complete and conclusive experiments.
Here are two aspects we will work on for the next step.
• Consistent Experimental Setup. Our experiments in this chapter have relied on inconsis-

tent setups. For example, in Section 3.3, the source languages are the LimitedLP (10-hour)
sets of three languages. In comparison, Section 3.4 uses the FullLP (around 80-hour) sets
of the same languages as the source languages. Also, even with the same target language
(Tagalog LimitedLP), we have used different scoring setups which make our numbers in
the two sections incomparable. Our future work will unify these setups, and present re-
sults/analysis on a consistent basis.

• Complete Evaluation. In this chapter, our experiments have taken the LimitedLP set of
Tagalog as the target language. In our future work, we will evaluate our cross-language
DNN framework by taking the FullLP set as the target language. This will give us insight
on how our framework performs under various levels of data availability on the target
language.

3.6 Summary

In this chapter, we have proposed a framework to perform cross-language DNN acoustic model-
ing with LUFEs. This framework is further extended from two aspects. First, we have attempted
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to improve the quality of the LUFEs by applying CNNs and DMNs as the building block for
LUFEs. These two architectures have the advantage of generating invariant and sparse feature
representations respectively. Combining these two architectures gives us the best LUFE signi-
fied by the lowest WER on the target language. Second, we have proposed a distributed learning
strategy DistModel to speed up training of LUFEs. DistModel accelerates LUFE learning sig-
nificantly, while causing negligible WER loss on the target language. Our next step focuses on
converging to a unified experimental setup for more complete and conclusive experiments.
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Chapter 4

Speaker Adaptive Training of DNN Models
using I-vectors

As discussed in Section 1.1, both GMMs and DNNs suffer from the mismatch between acoustic
models and testing speakers. An effective procedure to alleviate the effect of speaker mismatch
is speaker adaptation. For GMM models, speaker adaptation is generally performed by estimat-
ing the linear MLLR/fMLLR transforms specific to testing speakers [18, 43, 58]. Recently, a
large amount of work has been dedicated to speaker adaptation of DNNs [48, 86, 93]. Another
technique closely related with speaker adaptation is SAT [5, 6]. SAT performs adaptation on the
training set and projects all the data into a speaker-adaptive space. In this new feature space, pa-
rameters of the acoustic models are further estimated. Acoustic models trained this way become
independent of specific training speakers and thus generalize better to unseen testing data.

In this thesis, we propose a novel framework to carry out feature-space SAT for DNNs.
Building of SAT-DNN models starts from an initial SI-DNN model that has been trained over
the entire training set. Then, our framework uses i-vectors extracted at the speaker level as a
compact representation of each speaker’s acoustic characteristics. An adaptation neural network
is learned to convert i-vectors to speaker-specific linear feature shifts. Adding the shifts to the
original DNN input vectors (e.g., MFCCs) produces a speaker-normalized feature space. The
parameters of the SI-DNN are updated in this new feature space, and this finally gives us the
SAT-DNN model. This thesis explores the optimal configuration of SAT-DNNs for LVCSR
tasks. Apart from hybrid models, we demonstrate the extension of our SAT framework to CNNs
and BNF generation. Furthmore, we study the combination of SAT and speaker adaptation for
DNNs. During decoding, model-space adaptation is applied on top of SAT-DNN models for
further improved recognition results. Our work described in this chapter has been published in
[56, 62]

4.1 Related Work

This section reviews previous work that is related to our work. These previous work is divided
into two aspects: speaker adaptation of DNNs and extraction of i-vectors.
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4.1.1 Speaker Adaptation and SAT of DNNs

Speaker adaptation acts as an effective procedure to reduce mismatch between training and test-
ing conditions. Previous work has proposed a number of techniques for speaker adaptation of
DNN models. These methods can be categorized into 3 classes. The first class augments the
SI-DNN model with additional SD layers, and the parameters of these layers are learned on the
target speakers. In [45, 78], a layer is inserted between the input features and the first hidden
layer. This additional layer plays the similar role to feature-space maximum likelihood linear re-
gression (fMLLR) transforms as estimated in GMMs. Alternatively, the SD layer can be inserted
after the last hidden layer [45]. Yao et al. [93] demonstrate that transforming the outputs of the
final hidden layer is equivalent to adapting the parameters of the softmax layer. After carrying
out singular value decomposition (SVD) over DNN weight matrices, Xue et al. [91] perform
adaptation by learning SD matrices that are inserted between the decomposed weight matrices.
In the recently proposed learning hidden unit contributions (LHUC) approach [86], a SD vec-
tor is attached to every hidden layer of the SI-DNN and learned on a particular testing speaker.
These SD vectors are applied to the SI-DNN hidden outputs with element-wise multiplication,
regulating the contributions of hidden units.

The second class of adaptation methods trains (and decodes) DNNs over SA features. For
example, features transformed with vocal tract length normalization (VTLN) and fMLLR have
been applied successfully as DNN features, showing notable advantage over non-adaptive fea-
tures [69, 78]. Another way of normalizing speaker variability is to augment the input features
with additional speaker-specific information. Speaker i-vectors [14, 15] have been explored for
this purpose. For example, Saon et al. [76] append i-vectors to the original features at each
speech frame. The effectiveness of incorporating i-vectors is further verified in [26, 80]. I-vector
based adaptation is further developed in [38, 47] where separate vectors are used to represent
finer-grained acoustic factors such as speakers, environments and noise. In [1, 2], the speaker
representation (referred to as speaker codes) is learned on each speaker through network fine-
tuning, instead of being extracted prior to DNN training.

The third class adapts the parameters of the SI-DNN model directly, without changing the
architecture of the SI-DNN. For instance, [49] examines how the performance of DNN adaptation
is affected by updating different parts (the input layer, the output layer, or the entire network) of
the SI-DNN. Updating the entire DNN may suffer from overfitting, especially when the amount
of adaptation data is limited. To address this issue, Yu et al. [97] propose to regularize speaker
adaptation with the Kullback-Liebler (KL) divergence between the output distributions from
the SI and the adapted DNNs. This regularizer prevents the parameters of the adapted DNN
from deviating too much from the SI-DNN. Price et al. [68] add a softmax layer with context-
independent (CI) states on top of the softmax layer with CD states. This helps alleviate the
problem of rare CD classes having no or few examples on the adaptation data. In [81], instead of
model parameters, the shape of the activation function used in the SI-DNN is adjusted to match
the testing conditions.

In comparison to speaker adaptation, past work has made fewer attempts on SAT of DNNs.
Training DNNs with SA features [35, 69, 78] or additional speaker-specific information [26, 76,
80] can be treated as a form of SAT. In [92], Xue et al. append speaker codes [1, 2] to the
hidden and output layers of the DNN model. SAT is achieved by jointly learning the speaker-
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specific speaker codes and the SI-DNN. In [64], speaker availability is normalized by allocating
certain layers of the DNN as the SD layers that are learned on a speaker-specific basis. Over
different speakers, the other layers are adaptively trained by picking the SD layer corresponding
to the current speaker. Although showing promising results, the application of these proposals is
constrained to specific feature types or model structures. For example, the approach in [92] is not
applicable to CNNs because it is infeasible to append speaker codes to the hidden convolution
layers. Also, in these methods, adaptation of the resulting SAT models generally needs multiple
decoding passes, which undermines the decoding efficiency. This motivates us to propose a more
general solution for SAT of DNNs. The framework we present in this chapter can be applied to
different feature types and model structures. Furthermore, due to the incorporation of speaker
i-vectors, speaker adaptation of the SAT models becomes both efficient and robust.

4.1.2 I-Vector Extraction

Recently, the application of the i-vector paradigm has resulted in significant advancement in the
speaker verification community [14, 15]. The i-vector approach differs from the earlier JFA [40]
in that it has a single variability subspace to model different types of variability emerging from
the speech signal. We assume to have a GMM model, referred to as universal background model
(UBM), which consists of K Gaussian components. The t-th frame ot from the s-th speech
segment is formulated to be generated from the UBM model as follows:

ot ∼
K∑
k=1

rt(k)N(µk + Tkws,Σk) (4.1)

where µk and Σk are the mean vector and covariance matrix of the k-th Gaussian, the total
variability matrices Tk span a subspace for the shifts by which the UBM means are adapted
to particular segments, rt(k) represents the posterior probability of the k-th Gaussian given the
speech frame. The latent vector ws follows a standard normal distribution and describes the
coordinates of the mean shift in the total variability subspace. The maximum a posterior (MAP)
point estimate of the vector ws, called an i-vector, represents salient information about all types
of variability in the speech segment. The readers can refer to [14, 15] for more details.

Given a collection of speech segments, the UBM model can be trained using the standard
maximum likelihood estimation (MLE). To build the i-vector model, sufficient statistics are ac-
cumulated on each speech frame based on the posteriors with respect to the UBM. These statistics
are used to learn the total variability matrices and extract the i-vectors. After the i-vectors are
obtained, a scoring model, e.g., probabilistic linear discriminant analysis (PLDA), can be applied
to the i-vectors for speaker recognition/verification. When extracted at the speaker (rather than
segment) level, i-vectors provide a low-dimensional representation of the acoustic characteris-
tics of individual speakers. Previous work [26, 37, 76, 80] has applied i-vectors successfully to
speaker adaptation of both GMM and DNN acoustic models. In this thesis, we leverage i-vectors
to perform adaptive training of DNNs. It is worth noting that although called SAT, adaptive
training performed in this work also pertains to acoustic conditions because i-vectors encapsu-
late information regarding speakers and conditions (noise, channel, etc).
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4.2 Speaker Adaptive Training of DNNs
This section introduces our SAT-DNN framework. We first present the overall architecture and
then give details about the two training steps: training the adaptation network and updating the
DNN parameters. Finally, we elaborate on how to decode the SAT-DNN models.

4.2.1 Architecture of SAT-DNNs
For GMM-based acoustic modeling, speaker-specific fMLLR transforms are estimated on the
training speakers if SAT is performed in the feature-space. The GMM parameters are then up-
dated in the fMLLR-transformed feature space. We port this idea to DNN models, and the whole
SAT-DNN architecture is shown in Figure 4.1. Suppose that an i-vector has been extracted for
each speaker as described in Section 4.1.2 where the segment now contains all the frames from
the speaker. As with SAT of GMMs, SAT of DNNs starts from a SI-DNN model (on the right
of Figure 4.1) that has been well trained over the entire training set. Two steps are then taken to
build the SAT-DNN model. First, with the SI-DNN fixed, a smaller adaptation neural network
(on the left of Figure 4.1) is learned to take i-vectors as inputs and generate speaker-specific lin-
ear shifts to the original DNN feature vectors. In Figure 4.1, the t-th input vector ot comes from
speaker s whose i-vector is denoted as is. The layers of the adaptation network are indexed by
-I, -(I-1), ..., -2, -1, where I is the total number of hidden layers in the adaptation network. The
values attached to the adaptation network can be computed as:

ai
s = Wixi

s + bi yi
s = φ(ai

s) − I ≤ i ≤ −1 (4.2)

where φ is the activation function of each layer in the adaptation network, xi
s is the inputs to the

i-th layer and can be represented as:

xi
s =

{
is i = −I
yi−1
s −I < i ≤ −1 (4.3)

After the adaptation network is trained, the speaker-specific output vector y−1
s is added to each

of the original feature vector ot from speaker s:

zt = ot ⊕ y−1
s (4.4)

where ⊕ represents element-wise addition. This gives us a new feature space which is expected
to be more speaker normalized.

The second step involves updating the parameters of the DNN model in the new feature
space. We keep the adaptation network unchanged, and the SI-DNN is fine-tuned by taking zt as
the new feature vector at each frame t. This finally generates the SAT-DNN model that is more
independent of specific speakers. Note that during this updating step, the DNN parameters use
the original SI-DNN as the initial values, instead of being learned from scratch.

The formulation of the adaptation network outputs as linear feature shifts imposes two con-
straints. First, the output layer of the adaptation network has to use the identity activation func-
tion φ(x) = x by which we are not restricting the direction and value range of the feature shifts.
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Figure 4.1: Architecture of the SAT-DNN model.

Second, the number of units at the output layer (i.e., the dimension of y−1
s ) has to equal the di-

mension of the original feature vector ot. Both training of the adaptation network and updating
of the DNN model can be realized with the standard error back-propagation. We will give more
details in the following two subsections.

4.2.2 Training of the Adaptation Networks

The adaptation network is learned in a supervised manner, with errors back-propagated from
the SI-DNN. The objective function remains to be Equation ??, i.e., the negative cross-entropy
computed with the outputs from the DNN softmax layer and the ground-truth labels. However,
the inputs of the DNN are now the new input features zt, instead of the original feature ot. Our
goal is to optimize this objective with respect to the parameters of the adaptation network. The
derivatives of the objective function with respect to the new feature vector zt can be written as:

∂L
∂zt

= WT
1 ε

1
t (4.5)

where ε1t represents the error vector back-propagated to the first hidden layer of the DNN, W1

is the weight matrix connecting the input features and the first hidden layer of the DNN. At the
output layer of the adaptation network, we have y−1

s = a−1
s because of the identity activation

function. This output layer has the error vector:

ε−1
s =

∂L
∂a−1

s

=
∂L
∂y−1

s

=
∂L
∂zt

(4.6)

which is further back-propagated into the adaptation network. The parameters of the adaptation
network are updated with gradients derived from the error vectors. We can see that these gradi-
ents depend not only on the speaker i-vectors but also on the DNN input features ot. Therefore,
the training data of the adaptation network consist of the combination of i-vectors and their corre-
sponding speech frames. The number of training examples equals the number of speech frames,
rather than the number of speakers. Although we also get the gradients of the DNN parameters,
the DNN parameters are not updated.
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4.2.3 Updating of the DNN Model
After the adaptation network is trained, updating of the DNN model is straightforward to ac-
complish. Parameters of the DNN are initialized with parameters of the SI-DNN model and
fine-tuned with the negative cross-entropy objective. The only difference is that the inputs of the
DNN are now the speaker-normalized features zt. Parameters of the adaptation network are kept
fixed during this step. When fine-tuning terminates, we get the final SAT-DNN model.

From its training process, we can see that our SAT-DNN approach poses a general framework.
It does not depend on specific choices of the original DNN input features. Although called SI-
DNN, the initial DNN model can be trained on either SI features (e.g., filterbanks, MFCCs, etc)
or speaker-adapted features (e.g., fMLLRs, filterbanks with VTLN, etc). Moreover, in addition
to DNNs, the approach can be applied naturally to other types of deep learning models such as
CNNs [3, 4, 72, 73, 84] and RNNs [23, 51, 74, 75]. In our experiments, we will demonstrate the
extension of SAT-DNN to various model and feature types.

4.2.4 Decoding of SAT-DNN
Decoding of SAT models generally requires speaker adaptation on the testing data. For SAT-
DNN models, speaker adaptation simply involves extracting the i-vector for each testing speaker
and feeding the i-vector into the adaptation network. This produces the linear feature shift spe-
cific to this speaker. Adding the feature shift to the original feature vectors generates a speaker-
adapted feature space, in which the SAT-DNN model is decoded. We summarize the major steps
for training and decoding of SAT-DNN models as follows:

Training
1. Train the SI-DNN acoustic model over all the training data.

2. Re-align the training data with the SI-DNN model. The alignment align-dnn serves as new
targets.

3. Extract the i-vector is for each training speaker.

4. Fix the parameters of the SI-DNN. Learn the adaptation network with the input features
ot, i-vectors is and the supervision align-dnn.

5. Fix the parameters of the adaptation network. Update the parameters of the DNN model
with the new features zt and the supervision align-dnn.

Decoding
1. Extract the i-vector of each testing speaker.

2. Feed the i-vector to the adaptation network. Produce the speaker-specific feature shifts.

3. Decode the SAT-DNN model in the speaker-adapted feature space zt.

As reviewed in Section 4.1.1, most of the existing speaker adaptation methods require mul-
tiple passes of decoding for unsupervised adaptation. The first-pass decoding generates initial
hypotheses from which we derive the frame-level supervision. In comparison, because i-vector
extraction uses only the speech data, adaptation of SAT-DNN models requires one single pass of

30



decoding. Furthermore, with no fine-tuning on the adaptation data, adaptation of SAT-DNNs is
insensitive to hypotheses errors. This is especially an advantage when the first-pass hypotheses
have high WERs. Therefore, using SAT-DNN model, we can achieve both efficient and robust
unsupervised adaptation.

4.3 Experiments
The proposed approach is evaluated on a LVCSR task of transcribing TED talks. We show our
experimental setup that is followed by results and analysis.

4.3.1 Experimental Setup
Dataset

Our experiments use the benchmark TEDLIUM dataset [70] which was released to advance ASR
on TED talks. This publicly available dataset contains 774 TED talks that amount to 118 hours
of speech data. We take this dataset as our training set and each TED talk is treated as a speaker.
Decoding is done on the dev2010 and tst2010 test sets defined by the ASR track of the previous
IWSLT evaluation campaigns. The ASR task of IWSLT aims at recognition of TED talks which
acts as a critical component in the end-to-end speech translation systems. For comprehensive
evaluation, we merge the two sets into a single test set which contains 19 TED talks, i.e., 4 hours
of speech.

GMM Models

We first train the initial MLE model using 39-dimensional MFCC+4+44. Then 7 frames
of MFCCs are spliced together and projected down to 40 dimensions with LDA. A MLLT is
applied on the LDA features and generates the LDA+MLLT model. Discriminative training with
the boosted maximum mutual information (BMMI) objective [65] is finally performed on top of
the LDA+MLLT system. The GMM model has 3980 clustered triphone states and an average of
20 Gaussian components per state.

DNN Baseline

We build the DNN model using our PDNN implementation [54]. The class label on each speech
frame is generated by the GMM model through forced alignment. We use a DNN with 6 hidden
layers, each of which has 1024 units and the logistic sigmoid activation function. The last soft-
max layer has 3980 units corresponding to the states. The inputs are 11 neighboring frames of
40-dimensional log-scale filterbank coefficients with per-speaker mean and variance normaliza-
tion. The DNN parameters are initialized with the SdAs.

For fine-tuning, we optimize the cross-entropy objective using the exponentially decaying
newbob learning rate schedule. Specifically, the learning rate starts from a big value 0.08 and
remains unchanged until the increase of the frame accuracy on a cross-validation set between
two consecutive epochs falls below 0.2%. Then the learning rate is decayed by a factor of 0.5 at
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Table 4.1: WERs(%) of the SI-DNN and SAT-DNN models.

Model Alignment WER(%) Rel. Imp. (%)
BMMI GMM —– 24.1 —–

SI-DNN from GMM 20.0 —–
SAT-DNN from GMM 18.1 9.5
SAT-DNN from DNN 17.7 11.5

each of the subsequent epochs. The whole learning process terminates when the frame accuracy
fails to improve by 0.2% between two successive epochs. We use the mini-batch size of 256
for SGD, and a momentum of 0.5 for gradient smoothing. During decoding, the original Kaldi
tedlium recipe relies on a generic CMU language model. In our setup, we train a lightweight
trigram language model using 180k sentences of TED talk transcripts. This in-domain language
model is pruned aggressively for decoding efficiency.

SAT-DNN Baseline

The DNN model which has been trained serves as the SI-DNN for constructing the SAT-DNN
model. The adaptation network contains 3 hidden layers each of which has 512 units and uses the
logistic sigmoid activation function. The output layer has 440 (the dimension of the filterbank
features) units and uses the identify activation function. Parameters of the adaptation network
are randomly initialized. Training of the adaptation network and updating of the DNN follow the
same fine-tuning setting as training of the SI-DNN.

I-vector extraction is conducted with Kaldi’s in-built i-vector functionality. The i-vector ex-
tractor takes 19-dimensional MFCCs and log-energy as the features. Computing deltas and ac-
celerations finally gives a 60-dimensional feature vector on each frame. Both the UBM model
and the total variability matrices are trained on the entire training set. For each training and
testing speaker, we extract a 100-dimensional i-vector which has been found to give the optimal
recognition performance in our previous studies [60, 62].

4.3.2 Basic Results
Table 4.1 compares the WERs of the SI-DNN and SAT-DNN models on the test set. The last
column shows the relative improvement of SAT-DNNs over SI-DNN. The SI-DNN model gets
a WER of 20.0% which is significantly better than the discriminatively trained GMM model.
When training the SAT-DNN model, we can employ the frame-level alignment generated from
the GMM model, i.e., the same alignment as used by the SI-DNN training. In this case, Table
4.1 shows that the SAT-DNN has a WER of 18.1%, that is 9.5% relative improvement over the
SI-DNN. Alternatively, we can re-align the training data with the SI-DNN and use the newly-
generated alignment during SAT-DNN training (both learning of the adaptation network and
updating of the DNN). This re-alignment step improves the WER of the SAT-DNN further to
17.7%. Also, we observe that SAT-DNN training with the new DNN-generated alignment con-
verges faster than with the old GMM-generated alignment. Thus, unless otherwise stated, train-
ing of the SAT-DNN models always uses the new alignment in the rest of our experiments.
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Table 4.2: WERs(%) of SAT-DNN models with i-vectors from MFCC and BNF feature respec-
tively.

Model Features for I-vectors WER(%) Rel. Imp. (%)
SAT-DNN MFCCs 17.7 11.5
SAT-DNN BNFs 17.3 13.5

4.3.3 Bridging I-vector Extraction with DNN Training
I-vector extraction in Section 4.1.2 aims to optimize the objective of speaker modeling. The
UBM model and the total variability matrices are trained with MLE. In contrast, DNN and SAT-
DNN models try to distinguish phonetic classes and are trained in a discriminative manner. The
separate training of these two parts with respect to different objectives may hurt the performance
of the SAT-DNN models. Past work [44] has studied approaches to leveraging DNN models in
i-vector extraction. In [44], the UBM used in i-vector extraction is replaced with a DNN that has
been trained for acoustic modeling. In this case, the probabilities rt(k) are posteriors of states
outputted by the DNN, instead of posteriors of the Gaussians from the UBM. This manner of
incorporating DNNs into i-vector extraction results in significant improvement on a benchmark
speaker recognition task [44].

In this subsection, we bridge i-vector extraction with DNN training from the front-end per-
spective. Prior to building the i-vector extractor, we learn a DNN model that is designed for
BNF generation. Instead of MFCCs, outputs from the bottleneck layer of such a BNF-DNN are
taken as the features for training the i-vector extractor (including the UBM and total variabil-
ity matrices). Only changing the front-end enables us to take advantage of the existing i-vector
extraction pipeline, without making major modifications. The incorporation of the DNN-based
features adds phonetic discrimination ability to the extracted i-vectors, which potentially benefits
the following SAT-DNN training.

Following our DBNF architecture [19, 20], the BNF-DNN has 6 hidden layers in which
the 5th layer is a bottleneck layer. To be consistent with MFCCs, the bottleneck layer has 60
nodes whereas each of the other hidden layers has 1024 nodes. Inputs to the BNF-DNN are
11 neighboring frames of 40-dimensional filterbank features. In Table 4.2, we show the results
of SAT-DNNs using i-vectors extracted from MFCCs and BNFs respectively. The last column
shows the relative improvement of SAT-DNNs over the SI-DNN baseline. Within the SAT-DNN
framework, BNF-based i-vectors result in slight improvement (0.4% absolute) over MFCC-based
i-vectors. Applying the BNF-based i-vectors brings the WER of the SAT-DNN model down to
17.3% that is 13.5% relative improvement compared with the SI-DNN baseline.

4.3.4 Application to fMLLR Features
So far, we have looked at the filterbank features as the DNN inputs. This subsection examines
how the SAT-DNN model works when the DNN inputs are speaker-adapted fMLLR features.
We perform SAT over the LDA+MLLT GMM model, which produces the SAT-GMM model
and fMLLR transforms of the training speakers. DNN inputs include 11 neighboring frames of
40-dimensional fMLLR features. Training of the DNN with fMLLRs follows the same protocol
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Table 4.3: WERs(%) of the DNN and SAT-DNN when the inptus are fMLLR features.

Model WER(%) Rel. Imp. (%)
DNN (baseline) 18.9 —–

SAT-DNN 17.4 7.9

as training of the DNN with filterbanks, using alignment generated by the SAT-GMM model.
During SAT-DNN training, the frame-level class labels come from re-alignment with the new
fMLLR-based DNN model, and the i-vectors from the BNF features. Table 4.3 shows the per-
formance of the resulting SAT-DNN models. The last column shows the relative improvement
of SAT-DNNs over the DNN baseline. Compared with the DNN model, the SAT-DNN obtains
1.5% absolute improvement (17.4% vs 18.9%) in terms of WER, which is equivalent to 7.9% rel-
atively. Because speaker availability has been partly modeled by fMLLR transforms, the gains
achieved by SAT-DNN here are less significant than the gains on filterbank features.

4.4 Extension to BNFs and CNNs

In Section 4.2, we argue that our SAT approach is a general framework. To demonstrate this, we
empirically study two natural extensions of SAT-DNNs. All the experiments are based on the
same setup as in the previous section.

4.4.1 Extension to BNFs

We have studied the application of SAT-DNNs as hybrid models. In tandem systems, DNNs can
also be used as discriminative feature extractors. A widely employed manner is to place a bottle-
neck layer in the DNN architecture. Outputs from the bottleneck layer are taken as new features
on top of which GMM models are further built. In this work, we turn to the DBNF [19, 20]
approach for bottleneck feature extraction. DBNF is characterized by the asymmetric arrange-
ment of the layers and multiple hidden layers before the bottleneck layer. The DBNF network
has 6 hidden layers in which the 5th hidden layer is a bottleneck layer. This bottleneck layer
has 42 units, whereas each of the other hidden layers has 1024 nodes. The parameters of the 4
prior-to-bottleneck layers are initialized with SdA pre-training [88]. Inputs to the DBNF network
are 11 neighbouring frames of 40-dimensional filterbank features. After this network is trained,
we build a LDA+MLLT GMM model following the standard Kaldi pipeline [67]. Specifically,
at each frame, the 42-dimensional bottleneck features are further normalized with mean subtrac-
tion. Then, 7 consecutive BNF frames are spliced and then projected to 40 dimensions using
LDA. On top of the LDA+MLLT model, 4 iterations of discriminative training is performed with
the BMMI objective [65].

Applying SAT to bottleneck feature extraction is straightforward. We simply replace the
DNN model in Figure 4.1 with the DBNF network. When training is finished, we obtain the
features zt with the adaptation network and i-vectors. Speaker-adapted bottleneck features are
generated by feeding zt to the SAT-DBNF network. Table 4.4 compares the performance of the
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Table 4.4: WERs(%) of BMMI GMM models when the features are MFCCs, DBNF and SAT-
DBNF.

Front-end WER(%) Rel. Imp. (%)
MFCCs 24.1 —–
DBNF 17.7 —–

SAT-DBNF 16.2 8.5

Table 4.5: Configurations (filter and pooling size) of the two convolution layers in our CNN
architecture.

#1 conv layer #2 conv layer
frequency time frequency time

Filter 9 9 4 3
Pooling 3 1 1 1

final BMMI GMM models when the bottleneck features are extracted from the DBNF and SAT-
DBNF networks respectively. The last column shows the relative improvement of SAT-DBNF
over the standard DBNF. We observe that the GMM model with bottleneck features largely out-
performs (17.7% vs 24.1%) the GMM model with MFCCs. Extracting bottleneck features from
SAT-DBNF further reduces the WER to 16.2%, i.e., 32.8% and 8.5% relative improvement over
the MFCC and the standard DBNF front-end respectively. This demonstrates the effectiveness
of the SAT technique in improving the quality of bottleneck features.

4.4.2 Extension to CNNs
Section 4.2 claims the applicability of our SAT technique to CNNs, and we experimentally con-
firm this in this subsection. Our CNN architecture follows [84], consisting of 2 convolution and 4
fully-connected layers. We apply 2-dimensional convolution over both time and frequency. The
CNN inputs are 40-dimensional filterbank features with their 4 and 44 features, with a tem-
poral context of 11 frames. The configuration of the CNN layers is shown in Table 4.5. The first
convolution layer filters the inputs using 256x3 kernels each of which has the size of 9x9. This is
followed by a max-pooling layer only along the frequency axis, with the pooling size of 3. The
second convolution layer takes as inputs the outputs from the pooling layer and filters them with
256x256 kernels with the size of 4x3. All the convolution operations are overlapping with the
stride of 1 whereas the pooling is always non-overlapping. Outputs from the convolution layers
are 256 feature maps, each of which has the size of 8x1. We then place 4 fully-connected hidden
layers and finally the softmax layer on top of the convolution layers. Both the convolution and
the fully-connected layers use the logistic sigmoid activation function. Detailed configurations
of the convolution layers are listed in Table 4.5.

As with SAT-DNNs, training of the SAT-CNN model starts from a well-trained SI-CNN
model. The i-vectors are extracted with bottleneck features as described in Section 4.3.3. We
learn the adaptation network that has the output dimension of 3x11x40. The features shifts are
added to the original features and the CNN model is updated in the new feature space. Table
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Table 4.6: WERs(%) of the SI-CNN and SAT-CNN models.

Model WER(%) Rel. Imp. (%)
SI-CNN (baseline) 18.1 —–

SAT-CNN 16.8 7.2

4.6 presents the performance of the SI-CNN and SAT-CNN models, with the last column show-
ing the relative improvement of the SAT-CNN over the SI-CNN. We can see that our SI-CNN
model outperforms both the SI-DNN model with filterbanks and the DNN model with fMLLRs,
revealing that the SI-CNN poses a strong baseline. In comparison with this strong baseline, the
SAT-CNN model truly gives a better WER 16.8%. The 7.2% relative improvement achieved by
SAT-CNN over SI-CNN is less than the improvement achieved by SAT-DNN over SI-DNN. This
is partly because CNNs normalize speech features more effectively than DNNs, which decreases
the efficacy of the application of SAT.

4.5 SAT and Speaker Adaptation
In this section, we focus on the comparisons and combinations of SAT and speaker adaptation
for DNN models. The performance of SAT is firstly compared against two competitive speaker
adaptation methods. Then, we show that model-space adaptation can further improve the recog-
nition accuracy of SAT-DNNs.

4.5.1 Comparing SAT and Speaker Adaptation
Past work [76] closely related with this chapter performs speaker adaptation of DNNs by incor-
porating i-vectors. Specifically, at each frame t, the original DNN input vector ot is concatenated
with the corresponding speaker i-vector is. The combined feature vector [ot, is] is treated as the
new DNN inputs, in both training and testing. For convenience of formulation, this method is
referred to as DNN+I-vector. Recently a model-space adaptation method, Learning Hidden Unit
Contributions (LHUC), was proposed in [86]. In this method, the SI-DNN model is adapted to
a specific speaker s with a SD parameter vector ris at each hidden layer. The outputs of the i-th
hidden layer in the SD model now become:

yi
t = ψ(ris)� σ(Wixi

t + bi) (4.7)

where � represents element-wise multiplication, ψ is a function to constrain the range of the
parameter vector and is set to ψ(x) = 2/(1 + exp(−x)) in [86]. During adaptation, only the
SD parameters [ris, 1 ≤ i < I] are estimated on the adaptation data with error back-propagation,
whereas the SI-DNN parameters remain unchanged.

Our implementation of these two methods follows [76] and [86]. For DNN+I-vector, a 100-
dimensional i-vector is extracted for each training or testing speaker. All the other settings are
consistent with the settings of the SI-DNN model in Section 4.3. For LHUC, the elements of
ris are initialized uniformly to 0. A first pass of decoding with the SI-DNN is done to get the
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Table 4.7: Performance comparisons between SAT-DNN and speaker adaptation methods.

Model/Adaptation Methods WER(%) Rel. Imp. (%)
SI-DNN (baseline) 20.0 —–

SAT-DNN 17.3 13.5
DNN+I-vector[76] 19.5 2.5
DNN+LHUC[86] 18.3 8.5

Table 4.8: A summary of the performance of SAT-DNNs using i-vectors extracted from MFCCs
and BNFs respectively.

Model WER(%) Rel. Impr.(%)
SI-DNN 20.0 —

I-vectors from MFCCs
SAT-DNN 17.7 11.5
+LHUC 16.7 16.5

I-vectors from BNFs
SAT-DNN 17.3 13.5
+LHUC 16.5 17.5

frame-level supervision. Training of the SD parameters goes through 3 epochs with the constant
learning rate of 0.8. Table 4.7 shows the results of the DNN models adapted with these two meth-
ods. The last column shows the relative improvement over the SI-DNN baseline. We observe that
compared with the un-adapted SI-DNN, DNN+I-vector brings 2.5% relative improvement and
DNN+LHUC gives 8.5%. However, both methods are outperformed by the SAT-DNN model,
which justifies the necessity of conducting complete SAT for DNN models.

4.5.2 Combining SAT and Model-space Adaptation
The adaptation of the SAT-DNN model is in fact feature-space adaptation because it normalizes
the DNN inputs. After getting the speaker-adapted features ( zt in Equation (8)), the SAT-DNN
model can be further adapted in this new feature space, using any of the model-space adaptation
methods. We turn to LHUC for model-space adaptation. Table 4.8 provides a summary of the
complete results of the SI-DNN and SAT-DNN models when the input features are filterbanks.
In this table, ”+LHUC” means that the LHUC-based adaptation is applied over SAT-DNNs. The
last column shows the relative improvement over the SI-DNN. Applying LHUC on top of SAT-
DNN produces nice gains in terms of WERs. Combining SAT-DNN and LHUC together finally
gives us a WER of 16.5% on the test set, which is 17.5% relative improvement compared with
the SI-DNN model.

4.6 Proposed Work
For this chapter, we plan to work on the following two aspects for the next step.
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• Evaluations on larger datasets. A major competitor of our SAT approach is the DNN+I-
vector [76] speaker adaptation method based on i-vectors. In [76], the authors use the
Switchboard dataset (300 hours) and report over 10% relative improvement achieved by
DNN+I-vector. In comparison, our experiments, which use a smaller dataset (118 hours),
report only 2.5% relative improvement from DNN+I-vector. Therefore, we plan to test
the SAT-DNN approach on the complete Switchboard dataset. This enables us to compare
SAT-DNN and DNN+I-vector more completely. Moreover, we can analyze how SAT-DNN
performs with respect to different levels of data availability.

• Acceleration of SAT-DNN training. Although showing promising improvement, appli-
cation of SAT-DNNs increases the training cost dramatically. This is because building of
SAT-DNNs is an additional step that has to be based on the training of SI-DNN models.
Therefore, it is worthwhile to study how to accelerate the training of SAT-DNN models.
Our focus will be on designing data selection strategies for the SAT-DNN training. This is
because the adaptation network models mapping from the i-vectors to the feature shifts. As
a result, during training of the adaptation network, the number of distinct i-vectors plays a
more important role than the number of speech frames. Moreover, because of taking the
SI-DNN model for initialization, updating of the DNN supposedly needs less data com-
pared with training from scratch. In our future work, we will explore acceleration (data
selection) strategies which give us good speed-up while minimizing WER loss.

4.7 Summary
In this chapter, we have proposed a framework to perform SAT for DNN acoustic models. The
SAT approach relies on i-vectors and the adaptation neural network to realize feature normal-
ization. This work explores the application of SAT-DNNs to LVCSR tasks. We determine the
optimal configurations (e.g., features for i-vector extraction) for building of SAT-DNN models.
The SAT approach is proved to be a general method in that it can be extended easily to different
feature and model types. Furthermore, we study the comparisons and combinations of SAT and
speaker adaptation in the context of DNNs. A data reduction strategy, frame skipping, is also
employed to accelerate the training process of SAT-DNNs. Our experiments show that compared
with the DNN baseline, our SAT-DNN model achieves 13.5% relative improvement in terms of
WER. This improvement is enlarged to 17.5% when the LHUC-based model adaptation is fur-
ther applied atop of SAT-DNNs. For our future work, we propose to evaluate our SAT-DNN
approach on the larger Switchboard dataset and study better strategies to accelerate training of
SAT-DNN models.

38



Chapter 5

Robust Speech Recognition with
Distance-Aware and Video-Aware DNNs

5.1 Background and Motivation

Robustness requires ASR systems to perform reasonably well on noisy, farfield speech and un-
der unseen environment. Robustness has been a long-standing problem for acoustic modeling
[46]. In recent years, DNN models have dramatically advanced the recognition accuracy on
clean, close-talking speech. However, robustness still remains to be a challenge for DNNs. It is
revealed in [33] that as with GMMs, the performance of DNNs drops significantly as the SNR
decreases. Various attempts [47, 51, 79, 90] have been made to build noise-robust DNN models.
For example, [79] proposes different methods, including multi-condition training and dropout
training, to improve DNN models under low SNRs. In [51, 90], RNNs are employed for this
purpose, either as a noise-reduction autoencoder or as the hybrid model directly.

Apart from noise, another critical type of variability is the distance between speakers and the
microphones. Performance gap exists when we port ASR systems from close-talking to distant
speech [87]. A number of techniques have been presented for improved DNN models on farfield
speech. Although showing nice gains, these methods have the limitation that they only deal with
constantly distant speech. That is, the speaker-microphone distance keeps unchanged during the
course of recording. However, in many real-world scenarios, this distance is quite dynamic. For
instance, on amateur videos, it is common to see that the speaker walks around when talking to
a farfield microphone. In this case, the distance between the speaker and the microphone varies
a lot, not only within the same video but also within the same utterance. In this thesis, we solve
this problem by proposing the distance-aware DNN (DA-DNN) models. DA-DNNs capture the
speaker-microphone distance information dynamically at the frame level.

Another line of work has focused on improving robustness of acoustic models with audio-
visual ASR. The process of speech perception is bi-modal in nature. This has motivated re-
searchers to combine audio and visual features in acoustic modeling [16, 24]. Previous work
has generally adopted visual features extracted from the speaker’s mouth region, including lip
contours and mouth shapes. Although available in highly constrained videos, these features are
not always obtainable from open-domain videos (e.g., YouTube videos). For example, in a large
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portion of the YouTube videos, the speakers do not appear in the video frames at all. Another
limitation of the traditional audio-visual ASR is that the alignment between the speech and video
frames is required. Since the speech and video streams have different sampling rates, aligning
them may introduce inaccurate visual features into acoustic modeling. In this thesis, we explore
open-domain audio-visual ASR by employing video/segment-level visual features. These visual
feature can be readily obtained from real-world videos by models trained on external datasets.

5.2 Distance-Aware DNNs
Building of DA-DNNs starts with the modeling of speaker-microphone distance at the frame
level. We perform the extraction of the distance information with an additional distance-discriminative
DNN (DD-DNN). A DD-DNN is effectively a DNN with a narrow bottleneck layer in it. The
DD-DNN is trained on a dataset where the distance type (close-talking, distant, etc.) of each
speech file is known. Training of the DD-DNN is to classify each speech frame to the dis-
tance types, instead of CD phonetic states. After the training is finished, the outputs from the
bottleneck layer of the DD-DNN is inherently discriminative with respect to distance types of
speech frames. Then, this DD-DNN can be transferred to our target dataset. The feature vec-
tor corresponding to each speech frame is fed into the DD-DNN. Outputs from the DD-DNN’s
bottleneck layer are treated as speaker-microphone distance descriptors, and are appended to the
original DNN input features. By doing this, the DNN model on the target domain captures the
distance information dynamically at the frame level.

In our experiments, the DD-DNN is trained on the ICSI meeting corpus [36]. In this corpus,
each meeting session has been recorded with microphones laid out at different distances from
the speakers. However, the total number of channels is not constant across different meeting
sessions. Moreover, not enough details regarding the channels are provided in the corpus that
enables us to align channels across meetings. For instance, the channels marked with ”#1” in
two different meetings are not necessarily referring to the same microphone. Therefore, instead
of purely distance types, the combinations of speakers and distance types are taken as the labels,
which totally gives us 2311 classes. Our DD-DNN has 5 hidden layers in which the fourth layer
is the bottleneck layer with 100 units. Each of the other hidden layers has 1024 units.

Our target domain is a video transcribing task. We download a collection of around 4k
English videos from online archives such as Youku.com, Tudou.com, YouTube.com and Cre-
ativeCommons.org [98]. These videos are intended for expertise sharing on specific tasks (e.g.,
oil change and sandwich making), and have an average duration of 90 seconds. For each video,
the manual transcriptions have been provided by the uploading user. We take several steps to
convert the collected data into an applicable ASR training corpus. These steps include cleaning
and normalizing transcripts, down-sampling the audio track, adding new words into the dictio-
nary, etc. Time markers for each utterance are obtained via forced alignment with the raw closed
captions and our existing broadcast news recognizer. This finally gives us 94 hours of speech
data, out of which 90 hours are selected for training and 4 hours for testing.

On this video-transcribing corpus, we build the GMM and normal DNN models by following
the similar procedures as described in Section 4.3. For GMMs, we build the SI model with the
LDA+MLLT front-end. The SAT model is constructed which has 3891 triphone states. The DNN
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Table 5.1: Performance of DNN and DA-DNN for video transcribing.

Models WER(%)
DNN (baseline) 23.4

DA-DNN 22.1

model has 6 hidden layers each of which has 1024 units. Inputs of the DNN model consists of 11
neighbouring frames of log-scale filterbanks. The labels for fine-tuning the DNN are generated
from the SAT model. To rule out the impact of pre-training on our performance comparisons,
the parameters of the DNN model are randomly initialized. Table 5.1 shows the performance of
the DNN and DA-DNN on the 4-hour testing set. Compared with the baseline DNN, we can see
that the DA-DNN model achieves 1.3% absolute WER improvement, that is, 5.6% relatively.

5.3 Video-Aware DNNs
In addition to the audio stream, the video stream provides additional indication about the acoustic
environment. For instance, images from the videos indicate the scenes in which the speech
data have been recorded. Moreover, actions (running, lifting, walking, etc.) performed by the
speakers correlate to speaking rates and styles. This thesis investigates the incorporation of
different types of visual features into DNN acoustic models. Unlike previous work on audio-
visual ASR [16, 24], we study video/segment-level visual features that can be obtained from
real-world videos.

We firstly study speaker attributes that can be deduced automatically from video frames. In
the instructional video dataset we have constructed, we observe that the (principal) speaker tends
to appear at the beginning for a brief introduction. Based on this observation, we extract only
the frame at the position which is immediately after the first utterance starts. Then, this image,
which is assumed to show the speaker, is submitted to the Face++ API (www.faceplusplus.com)
that returns 3 attributes: age, gender, and race. The value of age is continuous, while gender and
race have categorical values. We categorize the age value into 6 bins: <20, 20-30, 30-40, 40-50,
50-60, >60. These bins are represented by a 6-dimensional vector. Each of the 6 elements is a
binary variable indicating whether the speakers age falls into the corresponding bin. The gender
classification result is converted into a 2-dimensional vector whose binary elements denote male
and female respectively. Similarly, a 3-dimensional vector is employed to represent the 3 possible
values of race: White, Black and Asian. The final attribute vector is assembled by concatenating
these three sub-vectors. For example, the attribute vector for a 58-year-old, male and white
speaker is [0 0 0 0 1 0 | 1 0 | 1 0 0]. For some videos, no speaker attributes can be generated due
to image resolution, illumination condition or timing of the speakers show-ups. In this case, we
set the elements in each of the sub-vectors uniformly, e.g., [0.5, 0.5] for gender and [0.33 0.33
0.33] for race.

The second type of visual features is the actions performed by the speaker. To obtain the
action information, in our corpus, we extract the video segments each of which corresponds to
a speech utterance. Then, each of the video segments is fed to an action recognition system.
This system has been trained with the UCF101 dataset [85]. UCF101 consists of realistic action
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Figure 5.1: Incorporation of speaker attributes into DNN.

Table 5.2: Performance of DNN and DA-DNN for video transcribing.

Models Additional Features WER(%)
DNN (baseline) — 23.4

VA-DNN speaker attributes 22.8
VA-DNN speaker actions 22.9

videos collected from YouTube, having 101 action categories. After performing action recogni-
tion, on each video segment, we get a 101-dimensional vector containing the probabilities over
the 101 action classes. This vector is taken as additional information at the utterance level, and is
appended to each of the original feature vectors from this utterance. Table 5.2 presents the perfor-
mance of video-aware DNN (VA-DNN) models when the speaker attributes and speaker actions
are the additional information. From Table 5.2, we can see that incorporating both types of visual
features results in consistent improvement, although the improvement is not as significant as that
of incorporating the distance information.

5.4 Proposed Work
The work described in this chapter is still ongoing. We plan to extend our work from the follow-
ing aspects.

5.4.1 Better Extraction of Distance Information
The effectiveness of our DA-DNN models is largely determined by the extraction of distance
information, that is, the quality of the DD-DNN model. Currently, this distance information is
generated with a DNN model that has a bottleneck layer. For better extraction of the distance
information, we propose to investigate the more advanced CNNs and LSTM-RNNs architectures.
• We plan to study the utility of CNNs in the extraction of the distance descriptors. CNNs

have shown superior performance than DNNs for acoustic modeling. Compared with
DNNs, CNNs have the special advantage of normalizing local variation along the fre-
quency dimension. In highly challenging acoustic conditions, the quality of the distance
descriptors might be undermined by spectral variations such as noise and reverberation.
Applying the CNN enables us to extract distance descriptors that are robust to variability
from spectral distortion.
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• Both DNNs and CNNs can only model the limited temporal dependency within the fixed-
size context window. However, the variation of the speaker-microphone distance inher-
ently displays complex temporal dynamics. The LSTM-RNNs architecture overcomes
some weaknesses of the conventional RNNs, and is particularly suitable for modeling
long-range temporal dependency. We propose to apply LSTM-RNNs as our distance-
information extractor. By considering the long-term contextual history, such an extractor
potentially generates more accurate distance descriptors.

5.4.2 Investigation of other Video Features

Exploiting speaker attributes and actions gives us flexibility to conduct audio-visual ASR on
open-domain videos. In our proposed work, we plan to expand the types of visual features that
are used in our vidoe-aware DNN models.
• Our preliminary work in Section 5.3 uses the UCF101 dataset for speaker actions. In

addition to UCF101, larger-scale action datasets [39] have been collected and released
in recent years. In our proposed work, we will study the effectiveness of these additional
action datasets in the incorporation of speaker action information. Action classifiers trained
on these datasets potentially generate action information that has wider coverage over real-
world speaker actions. Moreover, such a study gives us the insight regarding how the
choice of the external action datasets impacts the performance of video-aware DNNs.

• The application of speaker attributes and actions still imposes limitations on audio-visual
ASR. For example, the underlying assumption for incorporating these two types of features
is that the speaker shows up in the video. However, it is not always such a case in real-
world videos. To further relax the constraints, we will explore the incorporation of feature
representations extracted directly from the images. Specifically, we take the raw images as
the inputs and a deep CNN model as the feature extractor. This CNN model is trained on
some external image classification (object recognition) datasets such as ImageNet. Outputs
from some higher layers of the CNN will be treated as the additional features. In our
proposed work, we plan to study the integration of these ”wild” image features into the
DNN acoustic models.

5.4.3 Effective Fusion of Information

In Section 5.3, we have employed the feature-concatenation for incorporation of various addi-
tional features. However, both the distance and the video descriptors are high-level features,
whereas the DNN inputs are normally low-level, raw acoustic features (e.g., filterbanks). More-
over, these distance/video descriptors may have different value ranges than the acoustic features.
Therefore, the simple concatenation at the front-end may not be an optimal manner for informa-
tion fusion. In our proposed work, we will investigate more effective strategies for information
fusion. In particular, two possible solutions will be studied.
• The first solution is motivated by our SAT-DNN framework presented in Chapter 4. For

the case of distance-aware acoustic modeling, we can naturally achieve distance adaptive
training (DAT) with the technique from Chapter 4. Specifically, we replace the speaker
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Figure 5.2: A DNN architecture for fusing features from different sources.

i-vectors with the distance descriptors. As with in SAT-DNNs, building of DAT-DNNs
learns the adaptation network to derive the distance-normalized feature space. The feature
shifts generated by the adaptation network are on the frame level rather than on the speaker
level. Finally, parameters of the initial DNN are updated in the normalized space. This
adaptively trained DNN becomes independent of specific distance conditions, and thus
generalizes better to unseen distance variability. The same technique also applies to video-
aware DNNs. The additional visual features are used to replace or enrich the i-vectors
representations.

• The second solution is a DNN architecture that has multiple towers at the bottom layers, as
depicted in Figure 5.2. At each speech frame, the low-layer towers take individual feature
types such as the original acoustic feature, the speaker attributes, the speaker actions, etc.
The outputs from these towers are concatenated at a certain higher layer. The non-linear
transformations in each tower help reduce the incompatibility across the different feature
types. Additinally, this architecture is flexible in that it does not depend on the type of the
model that has been built on the original speech features. It can be applied both to DNNs
and also to CNNs. When applied to CNNs, the tower that models the original acoustic
features will contain convolution layers. In comparison, the simple feature-concatenation
method is not applicable to CNNs.
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Chapter 6

Time Line

6.1 To-do List

6.1.1 Chapter 3
• Task 1. Unify the experimental setups for LUFE learning and present results/analysis on

a consistent basis.
• Task 2. Evaluate our cross-language DNN framework by taking the FullLP set as the target

language.

6.1.2 Chapter 4
• Task 1. Test the SAT-DNN approach on the complete Switchboard dataset; analyze how

SAT-DNN performs with respect to different levels of data availability.
• Task 2. Explore better acceleration (data selection) strategies which speed up training of

SAT-DNN models and at the same time minimize WER loss.

6.1.3 Chapter 5
• Task 1. Investigate the application of CNNs and LSTM RNNs to extracting distance in-

formation for distance-aware DNNs.
• Task 2. For video-aware DNNs, explore the utility of other types of visual features in

assisting acoustic modeling. For example, we plan to incorporate features that are extracted
by CNNs from the raw images.

• Task 3. Study more powerful models/DNN architectures which can effectively integrate
context information from different sources.
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Table 6.1: Proposed Time Line.

Tasks Time
Chapter 3 Task 1 and 2 05/2015
Chapter 4 Task 1 and 2 06/2015 to 07/2015

Chapter 5 Task 1 08/2015 to 09/2015
Chapter 5 Task 2 10/2015 to 11/2015
Chapter 5 Task 3 11/2015 to 02/2016
Thesis Writing 02/2016 to 04/2016
Thesis Defense 04/2016
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