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Abstract— For safe urban driving, one prerequisite is to keep  lane-departure warning systems using automotive-grage la
a car within a road-lane boundary. This requires human and  range scanners. Instead of multiple LIDARS, they used a
robotic drivers to recognize the boundary of a road-lane and single LIDAR with multiple horizontal planes: six for Ogawa

the location of the vehicle with respect to the boundary of . .
a road-lane that the vehicle happeﬁs to be driving in.yWe and Takagi [17] and four for Kibbel et al. [10]. Both methods

present a new computer vision system that analyzes a stream recognized lane-markings in a similar way: 1) handpicking
of perspective images to produce information about a vehiels ~ some of the scan points, 2) finding a list of parameters,,(e.g.
lateral movements, such as distances from a vehicle to a road curvature, lane-width, lateral offset, and yaw-angle)] &8

lane’s boundary and detection of lane-changing maneuvers. ; ; i ;
We improve existing work in this field and develop new (r:(lajpt))rii)sentlng the lane with a polynomial (e.g., quadratic or

algorithms to tackle more challenging cases, such as drivgnon

inter-city highways. Tests on real inter-city highways shaed . .
that our system provides stable and reliable performance in  However, such a high-end, expensive LIDAR may not

terms of computing lateral distances, while yielding reasoable ~ always be available. Instead of relying on such active range

performance in detecting lane-changing maneuvers. sensors, many researchers as an alternative, with an eye on
lower costs and installation flexibility, have studied theeu
|. INTRODUCTION of vision sensors. Researchers have actively studied read g

In city-driving scenarios, an essential component of safemetry understanding through lane-marking detection;esom
driving is keeping the vehicle in a road-lane boundary. Ifiésearch results have been successfully commercialized as
fact, such a capability is a prerequisite for various adeanc Well [3]. Some utilize inverse perspective mapping to remov
driver assistance systems (ADAS) [3], [5], [12] as well as foPerspective distortions [1], [16], others use in-vehickead
executing reliable autonomous driving [15], [20]. One way t SUch as steering angle, velocity, whether a wiper is turned
achieve this capability, for human drivers, is to desigretan on [3], [12]. Some have implemented Bayes filters, to make
departure warning systems. By analyzing steering commant¢ir lane-detection methods robust [9], [10], [16], [17].
from in-vehicle data and lane-markings through a forwardslowever, most of this research using a vision sensor focuses
looking camera, such a warning system can alert drivef) developing driver-assistance systems for manual dyjvin
when they unintentionally deviate from their paths. A selfWhere the outputs are not always expected to be produced
driving car, to be deployed on urban streets, should rehd human drivers can, if necessary, override the incorrect
capable of keeping itself in a road lane before executingutputs [1], [3], [5], [12], [16]. For a self-driving car, in
any other urban autonomous driving maneuvers, such &8ntrast, the information about a vehicle’s location wigh r
changing lanes and circumventing stalled or slow-movin§P€ct to a road-lane boundary should be available throughou
vehicles. navigation and in a bounded performance. Otherwise, when
ceiving longitudinal lane-markings. A successful detetyf ~Urban canyons), an autonomous vehicle might easily veer
such lane-markings leads to the extraction of other importafrom the centerline of a road-lane, resulting in unacceptab
information — the vehicle’s location with respect to theCONS€quences.
boundary of the road-lane. Such information about lateral
distances of the vehicle to the left and right boundaries 95

a rr?a;j-lanter]help Eé ?umal? drnéer an_lgha robotb<_j|_rt|verfkdegp 0 ages acquired from a monocular camera to extract infor-
Venicie in the road-lan€ boundary. The capability of diVin 4461 apout a vehicle’s lateral movements, metric offset

within designated lanes is critical for autonomous drivimg a5y rements from road-lane boundaries, and detection of

urban streets, where GPS signals are either degraded or t&fe-changing maneuvers. To this end, our algorithm first

be readily disrupted. A ; . ;

: . ._extracts longitudinal lane-markings from input perspecti

Some earlier work, using 3D LIDARs, demonstrated 'm_Tmages and, on inverse perspective images, analyzes their
@eometric relation. This step yields the local geometry of a
current roadway. The algorithms then solve a homography

multiple off-the-shelf laser range finders toward the gmbuny oy een a camera plane and a roadway plane to assign the
and measured the reflectivity values of road surfaces. Ih SUfyentified geometry with metric information

manner they analyzed the geometry of the current roadway
[6], [11], [15], [20]. Two of ADAS applications proposed The contributions of this paper include 1) a method of
analyzing the geometry of a current roadway, 2) a method

_Young-Woo Seo is with the Robotics Institute and RagunatRan  of computing metric information of points on the ground
jkumar is with Dept of Electrical Computer Engineering, @zgie lane. and 3) a new vision svstem for computing a vehicle’s
Mellon University, 5000 Forbes Ave, Pittsburgh, PA 1521&ung- P ' Y puting
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To produce a vehicle’s relative motions within a road-
ne, we develop a vision algorithm that analyzes persgecti

ular, four of the autonomous driving applications installe



(a) An example of lane-marking detection re- (b) The initial lane-marking detection results (c) This subfigure shows only a part of an

sults. Our lane-marking detector produces aare overlayed onto, after false positive re-inverse perspective image to enlarge the image
binary image about lane-markings and the de-moval, the input image. The blue rectangle sub-region where lane-marking blobs appear.
tected lane-markings are represented as a liglefines the image region that is transformed

of pixel groups (or blobs). Each of the red into an inverse perspective image.

boxes shows a bounding-box of a detected lane-

marking blob.
Fig. 1: Results of a lane-marking detection.
Il. UNDERSTANDING LATERAL MOTIONS OFA GROUND Instead of dealing directly with these challenging vari-
VEHICLE FROMA SINGLE IMAGE ations in lane-marking pixels’ appearances, we identify

hIane-marking image regions by implementing a simple fil-
Ol_er, which emphasizes the intensity contrast between lane-
éparking pixels and their neighboring pixels. Our lane-
;marking detection algorithm was inspired by the one devel-

Our goal in this work is to provide a ground vehicle wit
information about its lateral movements. We call the roa
lane, which our vehicle happens to be driving on, the ho
road-lane. The information provided includes the Vehﬂ:legped by Nieto and his colleagues [16].

lateral location in meters relative to the host road-lane Normal lonaitudinal pavement lane markinas on highwavs
boundary and occurrences of lane-changing maneuvers. Elro 9 P 9 ghway
-

acquire such information, our vision algorithms first dete €., inter-city and inter-state highways in the U.S ) drel2

longitudinal lane-markings on the images acquired frorr'1nches wide (16-30.48 centimeters) [.13]' Given this fa(_:t, e
a forward-looking camera, and classify their colors (e.g¢@" réadily compute the number of pixels used to depict lane-
yellow or white); then transform a perspective image into arr;narkmgs on each row of the input image. For example, for a

inverse perspective image to obtain the information abioait t tg'Vﬁgfgrﬁ'sc?g;pgtﬂedir:grfr;]rga;k'i?]?eﬁz(itel V\‘/’ﬁg?ﬁ; filgteor
geometric structure of the host roadway, such as the numb 9 9 y HEh

!/
of road-lanes in the current roadway and the index of th u,v)" by
host road-lane from the leftmost road-lane; and, finally, wd (u,v)’ = 2 x I(u,v) — {I(u — w;,v) + I (u + w;,v)}
compute metric measurements of the identified regions to — I(u—w;,v) — I(u+ wi,v)|

obtain information about the vehicle’s lateral motion. _ ) )

In what follows, we detail how we recognize lane-If /(u,v)" is greater than a predefined maximum value, we
markings from perspective images and compute the geomef§t it to that maximum value (e.g, 255).4fu,v)" is lesser
of a local roadway from inverse perspective images. We thdfan zero, we set it to 0. To produce a binary image of
explain how we compute 3-dimensional world coordinates dne-markings from this filter response, we do a threshgldin
2-dimensional image coordinates of the identified roadwaiat keeps only pixels of which values are greater than a

geometry so as to produce the information about the vekiclediven threshold. Figure 1a shows an example of lane-marking
lateral motion in meters. detection results. Even with many (readily discerniblédda

positive outputs, our lane-marking detection outputs afe s
A. Recognizing Lane-Markings for Understanding Local Geficient because their false negatives are quite small, mgani
ometry of Roadway that our detector picked up almost all true longitudinaktan

Road-markings define how drivable regions are used {garkings appearing in the image. We then represent the lane-

i . : S X , arking detection result as a list of pixel groups (or blobs)
guide vehicles' navigation. They are obviously |mportangnd analyze their geometric properties, such as heading and

cues to understanding the geometric structure of a roadway, : .

A gth, to filter out some non-lane-marking blobs. To furthe
mong these, the ones we want to detect are those t Ilter out false positives, we also compute the ratio of tha su

longitudinally depict boundaries of individual road-lanén fa blob's width to that of a true lane-marking to estima th

a forward-looking image of urban-streets, we can readil ; : : ;
with the naked eye, distinguish lane-markings. They haVékellhood that a Ianeg-:ma|rk|ng blob is |a true lane-marking.
v Uj1 — 'U/j,|uj|

distinguishing colors (white and yellow), relatively high

intensity than their neighboring pixels, and occupy approx V(bi) = S, —ut,

imately known locations. However, these salient features v Jlusl

are not always available for image processing; after all thehereb; is the ith lane-marking blobyu; 1 (uj, . ) is the
actual values of lane-marking pixels vary based on imaggh row’s first (last) column of théthe blob, andv? is the
acquisition conditions. corresponding information of the true lane-marking blob.




The color of a lane-marking plays an important roleside of a road, when a driver observes a yellow lane-marking
of determining its semantics. For example, in the U.S., an the left side, that lane-marking almost certainly inthsa
yellow (or white) longitudinal lane-marking separatedfica the left boundary of the road-lane. This also holds true when
flows in the opposite (same) direction [13]. To obtain suclone observes a (solid) white lane-marking on his left side
semantic information about a lane-marking, we classifyto the immediate left. Once we find one of lane-marking
using a Gaussian mixture color model, the color of a detectddlobs on the left, either white or yellow, we choose its right
lane-marking blob into one of three categories: yellow,tehi side counterpart based on the pre-defined maximum number
and other. In particular, the color class of a detected lanef road-lanes. The strength of each individual hypothesis i
marking blob is determined by computingg min.cc(u,—  also probabilistically evaluated as before. Figure 2 shows
pe)T (S + o)~y — ), Wherep, andy, are the mean the results of our algorithm on recognizing the structure of
and covariance of HSV (Hue-Saturation-Value) color of @ highway in Pittsburgh, PA USA. Although there are many
lane-marking blob ang. andX.. are a color model's mean false positive lane-marking blobs (depicted in green), the
and covariance. We reserve an “other” class for handling alppearances of which are legitimate, our algorithm was able
other colors of lane-marking blobs other than the two majao pick up the right combination of lane-markings for delin-
color classes: yellow and white. eating road-lane boundaries. For the internal representat

To obtain the information about the geometric structurve interpolate the centerline of two identified boundaretan
of the current roadway, we compute an inverse perspemarkings of the host road-lane and fit a quadratic function
tive image from a given perspective image. The inverst® estimate the curvature of the current roadway.
perspective mapping is an image warping technique that
is frequently used to remove the perspective effect from
the field of lane-marking detection [1], [5], [12], [16]. Ehi
mapping essentially defines two transformations of a point, fme!
X, from a perspective image to an inverse perspective image,
X = TivXPer, and vice versaX?Pe' = T, X",
Figure 1c shows a part of the inverse perspective image of
the perspective image shown in Figure 1b.

Before we analyze the geometry of the current roadway, SEEEEEEEE
we further filter out false-positive lane-marking blobsrfro -
inverse perspective images where two parallel lane-mgskin
are (nearly) parallel to each other. We removed lane-mgrkin
blobs from further consideration if their orientations wer
not aligned with the primary orientation. The primary ori-
entation of lane-marking blobs is that of the longest lane-
marking blob. This selection is based on the assumption
that the longest lane-marking blob is always aligned with ) .
the roadway’s driving direction, regardless of whether if19- 2: The road-lane boundaries detected by our algorithm
is truly a lane-marking. For the remaining lane-markingi® depicted by a series of blue stars.
blobs, we select any lane-marking blob pairs if their dis&an
is probab|l_|st|cally S|gr_1!f|cant. In other words, we assume, \1otric Information Computation
that the widths of legitimate road-lanes follow a Gaussian™ i ) ) )
distribution, P(w;) ~ N (u, ). We pick a lane-marking blob Usmg the method described in the previous section, we
and a neighboring lane-marking blob. And then we computé€cognized some of the detected lane-marking blobs as
the average distance betweeselected points from the lane- boundary lane-markings for the current roadway. This infor
marking blob pair and use that as the width between the pafpation enables us to understand 1) how many road-lanes are
We keep the pair for further consideration if the probagpilit in the current roadway and 2) the index of the current road-
of the approximated width is significant (e.g., withiar)L lane from the leftmost road-lane. In the example shown in
This process results in a list of lane-marking blobs, some &figure 2, we know that our vehicle is driving on the leftmost
which are in fact true longitudinal boundary lane-markings’0ad-lane of a two-lane (inter-city) highway. We now need
Our approach of Se|ecting a road-lane hypothesis is S|m||&? Compu_te the Iateral. distances of our vehicle from the left
to that of [9] in terms of probabilistic hypothesis genesati and the right boundaries of the host road-lane.
but different in that Kim [9] used a combination of RANSAC To this end, we define a homography between a roadway
and a particle filter to generate road-lane hypotheses. plane and an image plane to estimate 3-dimensional coor-

To finalize the search of road-lane boundary lanedinates of |r_1terest|ng pom'gs on the roadway plane. A 3D
markings, we use the lane-marking color classificationltesu World coordinate computation through such a homography
to handpick some of the selected lane-marking blob pairs. Horks well when the camera plane and the roadway plane
addition, we use two pieces of prior information: the mos@'® Perpendicular to one another. Occasionally, howeven, s

frequent number of road-lanes and the semantic meanif§ @ssumption falls apart because of the vehicle’s egoemoti
of lane-markings’ colors. In particular, from government-and uneven ground surface. To handle with such cases, we

published highway statistics [14], the majority of highway _ . .
. _ - We know which lane-marking blobs are located at the left afahicle
are four-lane, with two lanes each for traffic in each dr'Vmg)ecause we know the image coordinates of the point our caprajected

direction. In the U.S., where the vehicles drive on the rightn, in a perspective image.




estimate the angle between the camera plane and the grodine vanishing point obtained from the line pair is greater
plane using the vanishing point. than a pre-defined threshold (e.g., 5 degrees). We repeaat thi
In what follows, we first explain how we compute aprocedure until a vertical vanishing point is found and more
vanishing point along the horizon line and then details hothan one horizontal vanishing point is obtained. The harizo
we compute world coordinates of interesting points on thine is obtained by linking all of those horizontal vanistin
ground plane. points. Figure 3 shows one result of our vanishing point
1) Vanishing Point Detection for Estimating Pitch Angle:computation.
Knowledge of a vanishing point's location and the horizon 2) A Perspective Transformation between Camera Plane
line on a perspective image provides a great deal of usefahd Road Plane:This section details how we model the
information about road scene geometry. Among these, we goerspective transformation between an image planend
interested in estimating the angle between the camera plangoad planen. We assume that a world coordinate frame
and the ground plane. A vanishing point is an intersectioaligned with the camera center and the roadway plane is flat.
point of two parallel lines on a perspective image. In urbafigure 4 illustrates the perspective transformation wel uise
street scenes, one might obtain plenty of parallel linespairour study. The camera coordinate is oriented such that.the
pairs such as longitudinal lane-markings and building corexis is looking along a road’s driving direction, thg-axis is
tour lines. To obtain these contour lines and other lines, wieoking down orthogonal to the road plane, and theaxis
tried three methods: Kahn’s method [8], the probabilistied  is oriented perpendicular to the driving direction of thado
the standard Hough transform [18]. We found that the Kahn® addition, we model, based on our vehicle coordinates, the
method works best in terms of the number of resultingoordinate frame of the road plane such that fhg-axis
lines and their lengths. The Kahn's method basically usesf the road plane is aligned with the-axis of the camera
the principal eigen vector of a pixel group’s coordinates, t(or world) coordinate and th&x-axis of the road plane is
compute the orientation of a line fitting to that group. Fgur aligned with ther, axis of the camera (or world) coordinate.
3 shows one result of our line extraction, where each of the
extracted lines is depicted in a different color based on its
orientation.

o Xw=(X.Y, "
= (Y&, he, XH)T

Fig. 4: A perspective transformation between the camera
plane and the roadway plane.

In this setting, a point in the real-worl&Xy = (X,Y, Z),
_ o . _ can be represented &w = (Yg, he, Xr), Where h. is
Fig. 3: An example of vanishing point detection result. Thghe camera’s mounting height from the road plane. We use
red “x” in a green circle represents the computed vanishinge basic pinhole model [4] to define the perspective central
point along the horizon line. The yellow line represents thgrojection between a point in the worlX;;; and a point in
identified horizon line. a camera plan.cam = (Zeam, Yeam ). Note that a point in
an image plane is further mapped throught, = KXcqm,

Given a set of extracted lines, we use RANSAC to find thwhere K is a camera calibration matrix defining a camera’s
best estimation of a vanishing point. In particular, we firstntrinsic parameters [4].
set two priors for the horizontal and vertical line groups as <. —PX 1)
vp, =[0,0,1]" ,vp, =[0,1,0]" in the camera coordinate. cam = BAW
We then categorize each of the extracted lines into onghere P is the camera projection matrix that defines the
of these two groups based on the Euclidean distance gometric relationship between two points,,, and Xy .
horizontal and vertical priors. For each line pair randomlyrhe projection matrix, in particular, consists of a rotatio
selected from the horizontal and vertical line groups, wat fir matrix, Rsx3(¢,6,) and a translation matrixsx (h.),
compute the cross-product of two linesp,; = l; x I, t0 P = [R(¢, 0, 1)|t(h.)], whereg, #, v define roll, pitch, and
find an intersection point. We use this intersection point agaw angles. Assuming that roll and yaw angles are zero, the
a vanishing point candidate. We then claim the vanishingentral projection equation is detailed as
point candidate with the smallest outliers as the vanishing
point for that line group. A line pair is regarded as an _ _ Rixslts] Xw
outlier if the angle between a vanishing point candidate and = ““™ Bxaibaxt 1

4x1



RXw +t smaller (or which side is closer to the vehicle), and claim a
X _ R7%cqm — RTt = [RT| — R7tXcam lane-changing maneuver when the sign of the closest side is
changed. To go back to normal driving status, we observe

L R - (1) % 09 i i? these sequential values again and claim “normal” driving if
where &%= 0 fse 29 R we observe: — number of the same signs. It is important to

observe a series of similar values before triggering thee sta

where ¢f is cos and s is sinf. We solve Equation 1 change. If we only respond to a sign change, our algorithm

algebraically to obtain the coordinates of a point in thd reavould fail to distinguish zig-zaging from a lane-changing
world, (X, Yi). maneuver. Figure 6 presents a series of images as an example

) of lane-changing maneuver detection.

XR _ LeampP33 — P13 LeamP31 — P11 N
Yr 2x1 —YcamP33 T P33 —YecamP31 + P21 9%2

X

{ —Zcam (P32l + P34) + P12he + D14 } )

Yeam (p32hc + p34) - p22hc — P24 2%1

where (X, YR) is a point on the road plane in the world
coordinate. Once we obtain these coordinates, it is straigh
forward to compute metric measurement of a point on the
road plane. For exampl&  is the distance from the camera
center.

To precisely compute such a metric measurement, it is
necessary to obtain Euler angles, particularly the pitdien
the angle between the camera plane and the ground plane.
We approximate the pitch angle from a vanishing point
computation in the following way. Suppose that a vanishing
point at the horizon line is defined as [7]:

Fig. 5: An example result from our local roadway geometry

vpi (6.0, p) = | 3Y 509 —shsy — cosbey T analysis.
e chctp 7 clcyp

Suppose that the yaw and the roll angles are zero, the above 1. EXPERIMENTS

equation yields: e Socon, ws Drea 1o experimental set

PR pose estimation system. The accuracy of our pose estimator
is from approximately 0.1 to 0.3 meter. We drove the vehicle
If a road plane is flat and perpendicular to an image planene km along a curvy and hilly segment of road. Our manual
the vanishing point along the horizon line is exactly mappetheasurement recorded a true lane width of 3.6 meters, but
to the camera center, resulting in the pitch angle being.zersome regions of the testing path had different widths due to
From this fact, we can compute the pitch angle by analyzingad geometry (i.e., intersections) or designated U-tteas
the difference between thecoordinate of a vanishing point  Figure 7 shows results of metric computation for the
and that of the principal pointan=' (|P, — vp,|), where estimated local roadway geometry. Theaxis is time and
P, is they coordinate of the principal point. the y-axis is computed metric in meters. A (green) dashed
Figure 5 presents an example result from our local roadhorizontal line is depicted at 3.6 to indicate the true lane-
way geometry analysis. At the top left, we display informawidth. We intentionally drove the vehicle along the cernerl
tion about the geometric structure of the host roadway, sudi the testing roads until time step 400 and then, before
as the number of road-lanes, the index of the host road-lartaking a U-turn between 790 and 910, we drove the vehicle
and the host road-lane’s width in meters. In particular, oun a zig-zag fashion. While making a U-turn, our system
vehicle is driving on the first lane of a two-lane road in whichgenerated no outputs, which were correct. After the U-turn,
the width of the host road-lane is estimated to be 3.52 metense zig-zagged at a higher fluctuation. At the upper part
and the true road-width is 3.6 meters. Two (red) bars alomyf the Figure, the results of lane-width computation are
the left road-lane boundary indicate the estimated digtancshown, whereas at the lower part, the results of lateraébffs
from the camera center (in this case, 3.80 and 9.82 meterspmputation are shown, where the magenta circles (the cyan
Finally, the lateral distances of our vehicle from the leftda triangles) represent the left (right) lateral offsets.
right boundaries are computed as 1.028 and 0.577 meters. On average, the lane width estimation varied between
With this information, we can also detect whether ou8 and 4.5 meters with a variation of 0.342 meter. To
vehicle ever crosses a boundary of the host road-lane. d¢fearly differentiate measurement errors, a differentpsha
particular, we represent the estimated lateral distandes i depicted at the top of a lane-width estimate: A blue
our vehicle from the left with negative numbers and fronsquare for when the error is less than 0.2 meter, a cyan
the right with positive numbers. To detect a lane-detectiocircle for when it is between 0.2 and 0.3 meter, and a
maneuver, we first observe these numbers up fevious green circle for all remaining estimates. We could improve
time steps (or frames), determine which lateral offset ithe performance if we intentionally removed the lane-width

0 36] tings and results. We drove a robotic vehicle equipped with a

vpz<¢=o,e,w=o>=[



(a) frame=5. (b) frame=7. (c) frame=9. (d) frame=11. (e) frame=16. (f) frame=19.

[

0/}

(g) frame=5. (h) frame=7. (i) frame=9. () frame=11. (k) frame=16. () frame=19.

Fig. 6: An example of lane-changing maneuver detectiongbsaat the upper row show a series of perspective images
whereas the ones at the lower row present a correspondirg gfainverse-perspective images.

estimate, when its value is greater than 3.9 meters. Althougomputation from this data, but only looked at these man-
such a thresholding is valid, in terms of using a prioually identified maneuvers. For thie and [, which are the
information, we did not do this, to measure the accuracygarameters for the temporal window of observing the closest
as itis. lane-marking, we found 20 and 5 worked best. Our system

was able to detect 27 out of 33 lane-changing maneuvers,
50 resulting in a recall rate of (27/33 =) 0.81. Twice the system
incorrectly produced outputs, resulting in a precisiom ratt
(27/29 =) 0.93.

, IV. CONCLUSIONS ANDFUTURE WORK
.5

This paper has presented a computer vision system that
analyzes a stream of perspective images from a forward-
looking camera to acquire information about a ground vehi-
cle’s lateral movements. The outputs include the infororati
about the geometric structure of the host roadway such as
the number of road-lanes, the index of the host road-lane,
and the width of host road-lane in meters. These pieces of
information enabled us to determine the lateral distances
of our vehicle from the left and right boundaries of the
‘ g B g host road-lane in meters and whether our vehicle crossed

b BEL B °,. any road-lane boundaries. From the actual road-tests, we
° 000w BN e 1 1% found our system showed stable and reliable performance

Fig. 7: Results of metric computation for the local roag/n computing lateral distance and reasonable performance i

way geometry. In the upper part, the results of Iane—widtﬁetectlng lane-changing maneuvers.

computations are presented with different shapes based rf‘s fu_ture work, we V.VOUId like to Investigate Whethe_r a
the computation error whereas, in the lower part, the rxi'sulgayeS filter would help improve the current implementation,

of lateral offsets are presented in different colors (ma@en"\;h'r?g %nalyze;|Tr?ge tfrrar?ers mﬁwlldtfallyfl?horﬂerttorunéjv(\elr-
(cyan) for left (right) lateral offset). sia € geometric structure analysis of the nost roadway.

For the lane-markings’ color classification, we learnedierm
a batch mode, the color model from a set of manually labeled
While conducting this experiment, we had no meansolor samples and used the model for the classification. The
unfortunately, of measuring the true lateral offsets. Omg w learned model is biased to the sample data and may result,
we could possibly measure the performance of lateral offsathen the color distribution of testing data is significantly
computation is to look into the accuracy of the lane-widtldifferent, in unacceptable performance. To find a remedy to
computation. This is because the error of the lateral offséftis problem, we also would like to investigate whether an
computation is basically a sum of its own error and that adihcremental update of the color model would help improve
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the lane-width computation. the performance of the color classification.
To evaluate the performance of our system’s lane-changing
maneuver detection, we also recorded several hours ofsideo V. ACKNOWLEDGMENTS

on different dates that included highway and city drivings.
We manually identified 33 lane-changing maneuvers. We The author would like to thank Dr. Myung Hwangbo for
could also measure the performance of our system’s metiigs helps and fruitful discussions on 3D geometry.



(1]
(2]

(3]

(4]
(5]
(6]

(7]

(8]

El

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

[18]
(19]

[20]

REFERENCES

Mohamed Aly, Real time detection of lane markers in urbtmets, In
Proceedings of IEEE Intelligent Vehicles Symposipm 7-12, 2008.
Nicholas Apostoloff and Alexander Zelinsky, Vision imé out of ve-
hicles: integrated driver and road scene monitorifige International
Journal of Robotics ResearcB3(4-5): 513-538, 2004.

Itay Gat, Meny Benady, and Amnon Shashua, A monoculdoniad-
vance warning system for the automotive aftermarkeftoceedings
of SAE 2005 World Congress and Exhibiti@05.

Richard Hartley and Andrew Zissermaklultiple View Geometry in
Computer VisionCambridge University Press, 2003.

Aharon Bar Hillel, Dan Levi, and Guy Raz, Recent progréssoad
and lane detection: a surveylachine Vision and Application®012.
Albert S. Huang, David Moore, Matthew Antone, Edwin Qis@and
Seth Teller, Finding multiple lanes in urban road networlkthwision
and lidar,Journal of Autonomous Robot86(2-3): 103-122, 2009.
Myung Hwangbo, Vision-based navigation for a small fixeihg
airplane in urban environmentech Report CMU-RI-TR-12-1PhD
Thesis, The Robotics Institute, Carnegie Mellon Univgrs#012.

P. Kahn and L. Kitchen and E.M. Riseman, A fast line finder f
vision-guided robot navigatiotnEEE Transactions on Pattern Analysis
and Machine Intelligencel2(11): 1098-1102, 1990.

ZuWhan Kim, Robust lane detection and tracking in chajiag
scenarios,|EEE Transactions on Intelligent Transportation Systems
9(1): 16-26, 2008.

Jorg Kibbel, Winfried Justus, and Kay Furstenberg, e @stimation
and departure warning using multilayer laserscanndPrdceedings of
IEEE Conference on Intelligent Transportation Systepgs 777-781,
2005.

Jesse Levinson, Michael Montemerlo, and SebastiarurhMap-
based precision vehicle localization in urban environmei Pro-
ceedings of Robotics Science and Systet@67.

Joel C. McCall and Mohan M. Trivedi, Video-based lan¢ireation
and tracking for driver assistance: survey, system, andatian, [EEE
Transactions on Intelligent Transportation Syste(d): 20-37, 2006.
U.S. Department of Transportation, Federal Highwaymiustration,
Manual on uniform traffic control devices for streets andhvigys
http://mutcd.fhwa.dot.gov/, 2009 Edition.

u.s. Department of Transportation, Federal
Highway Administration, Highway Statistics
http://www.fhwa.dot.gov/policy/ohim/hs06/index.htra006.

Michael Montemerlo et al., Junior: the Stanford entry urban
challenge, Journal of Field Robotics: Special Issues on the 2007
DARPA Urban Challenge, Part [125(9): 569-597, 2008.

Marcos Nieto, Jon Arrospide Laborda, and Luis Salga@oad en-
vironment modeling using robust perspective analysis audirsive
Bayesian segmentatioMachine Vision and Application®2:927-945,
2011.

Takashi Ogawa and Kiyokazu Takagi, Lane recognitioingison-
vehicle lidar, InProceedings of IEEE Intelligent Vehicle Symposiums
(IV-06), pp. 540-545, 2006.

John C. RussThe Image Processing HandbQdBRC Press, 2011.
Sebastian Scherer, Lyle Chamberlain, and Sanjiv Sidgitonomous
landing at unprepared sites by a full-scale helicoptiErurnal of
Robotics and Autonomous Syste®8(12): 1545-1562, 2012.

Chris Urmson et al., Autonomous driving in urban enmireents: Boss
and the Urban Challengdournal of Field Robotics: Special Issues
on the 2007 DARPA Urban Challenge, Part25(8): 425-466, 2008.



