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Abstract— For safe urban driving, one prerequisite is to keep
a car within a road-lane boundary. This requires human and
robotic drivers to recognize the boundary of a road-lane and
the location of the vehicle with respect to the boundary of
a road-lane that the vehicle happens to be driving in. We
present a new computer vision system that analyzes a stream
of perspective images to produce information about a vehicle’s
lateral movements, such as distances from a vehicle to a road-
lane’s boundary and detection of lane-changing maneuvers.
We improve existing work in this field and develop new
algorithms to tackle more challenging cases, such as driving on
inter-city highways. Tests on real inter-city highways showed
that our system provides stable and reliable performance in
terms of computing lateral distances, while yielding reasonable
performance in detecting lane-changing maneuvers.

I. I NTRODUCTION

In city-driving scenarios, an essential component of safe
driving is keeping the vehicle in a road-lane boundary. In
fact, such a capability is a prerequisite for various advanced
driver assistance systems (ADAS) [3], [5], [12] as well as for
executing reliable autonomous driving [15], [20]. One way to
achieve this capability, for human drivers, is to design lane-
departure warning systems. By analyzing steering commands
from in-vehicle data and lane-markings through a forward-
looking camera, such a warning system can alert drivers
when they unintentionally deviate from their paths. A self-
driving car, to be deployed on urban streets, should be
capable of keeping itself in a road lane before executing
any other urban autonomous driving maneuvers, such as
changing lanes and circumventing stalled or slow-moving
vehicles.

The task of staying within a road-lane begins with per-
ceiving longitudinal lane-markings. A successful detection of
such lane-markings leads to the extraction of other important
information – the vehicle’s location with respect to the
boundary of the road-lane. Such information about lateral
distances of the vehicle to the left and right boundaries of
a road-lane help a human driver and a robot driver keep the
vehicle in the road-lane boundary. The capability of driving
within designated lanes is critical for autonomous drivingon
urban streets, where GPS signals are either degraded or can
be readily disrupted.

Some earlier work, using 3D LIDARs, demonstrated im-
pressive results in understanding road geometry. In partic-
ular, four of the autonomous driving applications installed
multiple off-the-shelf laser range finders toward the ground
and measured the reflectivity values of road surfaces. In such
manner they analyzed the geometry of the current roadway
[6], [11], [15], [20]. Two of ADAS applications proposed
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lane-departure warning systems using automotive-grade laser
range scanners. Instead of multiple LIDARs, they used a
single LIDAR with multiple horizontal planes: six for Ogawa
and Takagi [17] and four for Kibbel et al. [10]. Both methods
recognized lane-markings in a similar way: 1) handpicking
some of the scan points, 2) finding a list of parameters, (e.g.,
curvature, lane-width, lateral offset, and yaw-angle), and 3)
representing the lane with a polynomial (e.g., quadratic or
cubic).

However, such a high-end, expensive LIDAR may not
always be available. Instead of relying on such active range
sensors, many researchers as an alternative, with an eye on
lower costs and installation flexibility, have studied the use
of vision sensors. Researchers have actively studied road ge-
ometry understanding through lane-marking detection; some
research results have been successfully commercialized as
well [3]. Some utilize inverse perspective mapping to remove
perspective distortions [1], [16], others use in-vehicle data,
such as steering angle, velocity, whether a wiper is turned
on [3], [12]. Some have implemented Bayes filters, to make
their lane-detection methods robust [9], [10], [16], [17].
However, most of this research using a vision sensor focuses
on developing driver-assistance systems for manual driving,
where the outputs are not always expected to be produced
and human drivers can, if necessary, override the incorrect
outputs [1], [3], [5], [12], [16]. For a self-driving car, in
contrast, the information about a vehicle’s location with re-
spect to a road-lane boundary should be available throughout
navigation and in a bounded performance. Otherwise, when
driving on regions with unreliable GPS signal reception (e.g.,
urban canyons), an autonomous vehicle might easily veer
from the centerline of a road-lane, resulting in unacceptable
consequences.

To produce a vehicle’s relative motions within a road-
lane, we develop a vision algorithm that analyzes perspective
images acquired from a monocular camera to extract infor-
mation about a vehicle’s lateral movements, metric offset
measurements from road-lane boundaries, and detection of
lane-changing maneuvers. To this end, our algorithm first
extracts longitudinal lane-markings from input perspective
images and, on inverse perspective images, analyzes their
geometric relation. This step yields the local geometry of a
current roadway. The algorithms then solve a homography
between a camera plane and a roadway plane to assign the
identified geometry with metric information.

The contributions of this paper include 1) a method of
analyzing the geometry of a current roadway, 2) a method
of computing metric information of points on the ground
plane, and 3) a new vision system for computing a vehicle’s
lateral movements.



(a) An example of lane-marking detection re-
sults. Our lane-marking detector produces a
binary image about lane-markings and the de-
tected lane-markings are represented as a list
of pixel groups (or blobs). Each of the red
boxes shows a bounding-box of a detected lane-
marking blob.

(b) The initial lane-marking detection results
are overlayed onto, after false positive re-
moval, the input image. The blue rectangle
defines the image region that is transformed
into an inverse perspective image.

(c) This subfigure shows only a part of an
inverse perspective image to enlarge the image
sub-region where lane-marking blobs appear.

Fig. 1: Results of a lane-marking detection.

II. U NDERSTANDING LATERAL MOTIONS OFA GROUND
VEHICLE FROM A SINGLE IMAGE

Our goal in this work is to provide a ground vehicle with
information about its lateral movements. We call the road-
lane, which our vehicle happens to be driving on, the host
road-lane. The information provided includes the vehicle’s
lateral location in meters relative to the host road-lane’s
boundary and occurrences of lane-changing maneuvers. To
acquire such information, our vision algorithms first detect
longitudinal lane-markings on the images acquired from
a forward-looking camera, and classify their colors (e.g.,
yellow or white); then transform a perspective image into an
inverse perspective image to obtain the information about the
geometric structure of the host roadway, such as the number
of road-lanes in the current roadway and the index of the
host road-lane from the leftmost road-lane; and, finally, we
compute metric measurements of the identified regions to
obtain information about the vehicle’s lateral motion.

In what follows, we detail how we recognize lane-
markings from perspective images and compute the geometry
of a local roadway from inverse perspective images. We then
explain how we compute 3-dimensional world coordinates of
2-dimensional image coordinates of the identified roadway
geometry so as to produce the information about the vehicle’s
lateral motion in meters.

A. Recognizing Lane-Markings for Understanding Local Ge-
ometry of Roadway

Road-markings define how drivable regions are used to
guide vehicles’ navigation. They are obviously important
cues to understanding the geometric structure of a roadway.
Among these, the ones we want to detect are those that
longitudinally depict boundaries of individual road-lanes. In
a forward-looking image of urban-streets, we can readily,
with the naked eye, distinguish lane-markings. They have
distinguishing colors (white and yellow), relatively higher
intensity than their neighboring pixels, and occupy approx-
imately known locations. However, these salient features
are not always available for image processing; after all the
actual values of lane-marking pixels vary based on image
acquisition conditions.

Instead of dealing directly with these challenging vari-
ations in lane-marking pixels’ appearances, we identify
lane-marking image regions by implementing a simple fil-
ter, which emphasizes the intensity contrast between lane-
marking pixels and their neighboring pixels. Our lane-
marking detection algorithm was inspired by the one devel-
oped by Nieto and his colleagues [16].

Normal longitudinal pavement lane markings on highways
(i.e., inter-city and inter-state highways in the U.S.) are4∼12
inches wide (10∼30.48 centimeters) [13]. Given this fact, we
can readily compute the number of pixels used to depict lane-
markings on each row of the input image. For example, for a
given pre-computed lane-marking pixel width,wi, our filter
transforms the original image intensity value,I(u, v), into
I(u, v)′ by

I(u, v)′ = 2× I(u, v)− {I(u− wi, v) + I(u+ wi, v)}

− |I(u− wi, v)− I(u+ wi, v)|

If I(u, v)′ is greater than a predefined maximum value, we
set it to that maximum value (e.g, 255). IfI(u, v)′ is lesser
than zero, we set it to 0. To produce a binary image of
lane-markings from this filter response, we do a thresholding
that keeps only pixels of which values are greater than a
given threshold. Figure 1a shows an example of lane-marking
detection results. Even with many (readily discernible) false
positive outputs, our lane-marking detection outputs are suf-
ficient because their false negatives are quite small, meaning
that our detector picked up almost all true longitudinal lane-
markings appearing in the image. We then represent the lane-
marking detection result as a list of pixel groups (or blobs)
and analyze their geometric properties, such as heading and
length, to filter out some non-lane-marking blobs. To further
filter out false positives, we also compute the ratio of the sum
of a blob’s width to that of a true lane-marking to estimate the
likelihood that a lane-marking blob is a true lane-marking.

γ(bi) =

∑

vj
|uj,1 − uj,|uj ||

∑

v∗

j

|u∗j,1 − u∗
j,|uj |

|

where bi is the ith lane-marking blob,uj,1 (uj,|uj |) is the
jth row’s first (last) column of theithe blob, andv∗j is the
corresponding information of the true lane-marking blob.



The color of a lane-marking plays an important role
of determining its semantics. For example, in the U.S., a
yellow (or white) longitudinal lane-marking separates traffic
flows in the opposite (same) direction [13]. To obtain such
semantic information about a lane-marking, we classify,
using a Gaussian mixture color model, the color of a detected
lane-marking blob into one of three categories: yellow, white,
and other. In particular, the color class of a detected lane-
marking blob is determined by computing,argminc∈C(µb−
µc)

T (Σb +Σc)
−1(µb − µc), whereµb andΣb are the mean

and covariance of HSV (Hue-Saturation-Value) color of a
lane-marking blob andµc andΣc are a color model’s mean
and covariance. We reserve an “other” class for handling all
other colors of lane-marking blobs other than the two major
color classes: yellow and white.

To obtain the information about the geometric structure
of the current roadway, we compute an inverse perspec-
tive image from a given perspective image. The inverse
perspective mapping is an image warping technique that
is frequently used to remove the perspective effect from
the field of lane-marking detection [1], [5], [12], [16]. This
mapping essentially defines two transformations of a point,
X, from a perspective image to an inverse perspective image,
Xinv = Tinv

perX
per , and vice versa,Xper = T

per
invX

inv.
Figure 1c shows a part of the inverse perspective image of
the perspective image shown in Figure 1b.

Before we analyze the geometry of the current roadway,
we further filter out false-positive lane-marking blobs from
inverse perspective images where two parallel lane-markings
are (nearly) parallel to each other. We removed lane-marking
blobs from further consideration if their orientations were
not aligned with the primary orientation. The primary ori-
entation of lane-marking blobs is that of the longest lane-
marking blob. This selection is based on the assumption
that the longest lane-marking blob is always aligned with
the roadway’s driving direction, regardless of whether it
is truly a lane-marking. For the remaining lane-marking
blobs, we select any lane-marking blob pairs if their distance
is probabilistically significant. In other words, we assume
that the widths of legitimate road-lanes follow a Gaussian
distribution,P (wi) ∼ N(µ, σ). We pick a lane-marking blob
and a neighboring lane-marking blob. And then we compute
the average distance betweenk selected points from the lane-
marking blob pair and use that as the width between the pair.
We keep the pair for further consideration if the probability
of the approximated width is significant (e.g., within 1σ).
This process results in a list of lane-marking blobs, some of
which are in fact true longitudinal boundary lane-markings.
Our approach of selecting a road-lane hypothesis is similar
to that of [9] in terms of probabilistic hypothesis generation,
but different in that Kim [9] used a combination of RANSAC
and a particle filter to generate road-lane hypotheses.

To finalize the search of road-lane boundary lane-
markings, we use the lane-marking color classification results
to handpick some of the selected lane-marking blob pairs. In
addition, we use two pieces of prior information: the most
frequent number of road-lanes and the semantic meaning
of lane-markings’ colors. In particular, from government-
published highway statistics [14], the majority of highways
are four-lane, with two lanes each for traffic in each driving
direction. In the U.S., where the vehicles drive on the right

side of a road, when a driver observes a yellow lane-marking
on the left side, that lane-marking almost certainly indicates
the left boundary of the road-lane. This also holds true when
one observes a (solid) white lane-marking on his left side
to the immediate left.1 Once we find one of lane-marking
blobs on the left, either white or yellow, we choose its right-
side counterpart based on the pre-defined maximum number
of road-lanes. The strength of each individual hypothesis is
also probabilistically evaluated as before. Figure 2 shows
the results of our algorithm on recognizing the structure of
a highway in Pittsburgh, PA USA. Although there are many
false positive lane-marking blobs (depicted in green), the
appearances of which are legitimate, our algorithm was able
to pick up the right combination of lane-markings for delin-
eating road-lane boundaries. For the internal representation,
we interpolate the centerline of two identified boundary lane-
markings of the host road-lane and fit a quadratic function
to estimate the curvature of the current roadway.

Fig. 2: The road-lane boundaries detected by our algorithm
are depicted by a series of blue stars.

B. Metric Information Computation

Using the method described in the previous section, we
recognized some of the detected lane-marking blobs as
boundary lane-markings for the current roadway. This infor-
mation enables us to understand 1) how many road-lanes are
in the current roadway and 2) the index of the current road-
lane from the leftmost road-lane. In the example shown in
Figure 2, we know that our vehicle is driving on the leftmost
road-lane of a two-lane (inter-city) highway. We now need
to compute the lateral distances of our vehicle from the left
and the right boundaries of the host road-lane.

To this end, we define a homography between a roadway
plane and an image plane to estimate 3-dimensional coor-
dinates of interesting points on the roadway plane. A 3D
world coordinate computation through such a homography
works well when the camera plane and the roadway plane
are perpendicular to one another. Occasionally, however, such
an assumption falls apart because of the vehicle’s ego-motion
and uneven ground surface. To handle with such cases, we

1We know which lane-marking blobs are located at the left of our vehicle
because we know the image coordinates of the point our camerais projected
on, in a perspective image.



estimate the angle between the camera plane and the ground
plane using the vanishing point.

In what follows, we first explain how we compute a
vanishing point along the horizon line and then details how
we compute world coordinates of interesting points on the
ground plane.

1) Vanishing Point Detection for Estimating Pitch Angle:
Knowledge of a vanishing point’s location and the horizon
line on a perspective image provides a great deal of useful
information about road scene geometry. Among these, we are
interested in estimating the angle between the camera plane
and the ground plane. A vanishing point is an intersection
point of two parallel lines on a perspective image. In urban
street scenes, one might obtain plenty of parallel line pairs,
pairs such as longitudinal lane-markings and building con-
tour lines. To obtain these contour lines and other lines, we
tried three methods: Kahn’s method [8], the probabilistic,and
the standard Hough transform [18]. We found that the Kahn’s
method works best in terms of the number of resulting
lines and their lengths. The Kahn’s method basically uses
the principal eigen vector of a pixel group’s coordinates, to
compute the orientation of a line fitting to that group. Figure
3 shows one result of our line extraction, where each of the
extracted lines is depicted in a different color based on its
orientation.

Fig. 3: An example of vanishing point detection result. The
red “x” in a green circle represents the computed vanishing
point along the horizon line. The yellow line represents the
identified horizon line.

Given a set of extracted lines, we use RANSAC to find the
best estimation of a vanishing point. In particular, we first
set two priors for the horizontal and vertical line groups as
vph = [0, 0, 1]

T
,vpv = [0, 1, 0]

T in the camera coordinate.
We then categorize each of the extracted lines into one
of these two groups based on the Euclidean distance to
horizontal and vertical priors. For each line pair randomly
selected from the horizontal and vertical line groups, we first
compute the cross-product of two lines,vpij = li × lj , to
find an intersection point. We use this intersection point as
a vanishing point candidate. We then claim the vanishing
point candidate with the smallest outliers as the vanishing
point for that line group. A line pair is regarded as an
outlier if the angle between a vanishing point candidate and

the vanishing point obtained from the line pair is greater
than a pre-defined threshold (e.g., 5 degrees). We repeat this
procedure until a vertical vanishing point is found and more
than one horizontal vanishing point is obtained. The horizon
line is obtained by linking all of those horizontal vanishing
points. Figure 3 shows one result of our vanishing point
computation.

2) A Perspective Transformation between Camera Plane
and Road Plane:This section details how we model the
perspective transformation between an image plane,π, and
a road plane,n. We assume that a world coordinate frame
aligned with the camera center and the roadway plane is flat.
Figure 4 illustrates the perspective transformation we used in
our study. The camera coordinate is oriented such that thezc-
axis is looking along a road’s driving direction, theyc-axis is
looking down orthogonal to the road plane, and thexc-axis
is oriented perpendicular to the driving direction of the road.
In addition, we model, based on our vehicle coordinates, the
coordinate frame of the road plane such that theXR-axis
of the road plane is aligned with thezc-axis of the camera
(or world) coordinate and theYR-axis of the road plane is
aligned with thexc axis of the camera (or world) coordinate.

Fig. 4: A perspective transformation between the camera
plane and the roadway plane.

In this setting, a point in the real-world,XW = (X,Y, Z),
can be represented asXW = (YR, hc, XR), where hc is
the camera’s mounting height from the road plane. We use
the basic pinhole model [4] to define the perspective central
projection between a point in the world,XW and a point in
a camera plane,xcam = (xcam, ycam). Note that a point in
an image plane is further mapped throughtxim = Kxcam,
whereK is a camera calibration matrix defining a camera’s
intrinsic parameters [4].

xcam = PXW (1)

whereP is the camera projection matrix that defines the
geometric relationship between two points,xcam andXW .
The projection matrix, in particular, consists of a rotation
matrix, R3×3(φ, θ, ψ) and a translation matrixt3×1(hc),
P = [R(φ, θ, ψ)|t(hc)], whereφ, θ, ψ define roll, pitch, and
yaw angles. Assuming that roll and yaw angles are zero, the
central projection equation is detailed as

xcam = [R3×3|t3×1]

[

XW

1

]

4×1



= RXW + t

XW = RTxcam −RT t = [RT | −RT t]xcam

where R =





1 0 0
0 cθ sθ
0 −sθ cθ



 , t =





0
hc
0





where cθ is cos θ and sθ is sin θ. We solve Equation 1
algebraically to obtain the coordinates of a point in the real
world, (XR, YR).
[

XR

YR

]

2×1

=

[

xcamp33 − p13 xcamp31 − p11
−ycamp33 + p33 −ycamp31 + p21

]−1

2×2

×

[

−xcam(p32hc + p34) + p12hc + p14
ycam(p32hc + p34)− p22hc − p24

]

2×1

(2)

where (XR, YR) is a point on the road plane in the world
coordinate. Once we obtain these coordinates, it is straight-
forward to compute metric measurement of a point on the
road plane. For example,XR is the distance from the camera
center.

To precisely compute such a metric measurement, it is
necessary to obtain Euler angles, particularly the pitch angle,
the angle between the camera plane and the ground plane.
We approximate the pitch angle from a vanishing point
computation in the following way. Suppose that a vanishing
point at the horizon line is defined as [7]:

vp∗
h(φ, θ, ψ) =

[

cφsψ − sφsθcψ

cθcψ
,
−sφsψ − cφsθcψ

cθcψ

]T

Suppose that the yaw and the roll angles are zero, the above
equation yields:

vp∗
h(φ = 0, θ, ψ = 0) =

[

0

cθ
,−

sθ

cθ

]

If a road plane is flat and perpendicular to an image plane,
the vanishing point along the horizon line is exactly mapped
to the camera center, resulting in the pitch angle being zero.
From this fact, we can compute the pitch angle by analyzing
the difference between they coordinate of a vanishing point
and that of the principal point,tan−1 (|Py − vpy|), where
Py is they coordinate of the principal point.

Figure 5 presents an example result from our local road-
way geometry analysis. At the top left, we display informa-
tion about the geometric structure of the host roadway, such
as the number of road-lanes, the index of the host road-lane,
and the host road-lane’s width in meters. In particular, our
vehicle is driving on the first lane of a two-lane road in which
the width of the host road-lane is estimated to be 3.52 meters
and the true road-width is 3.6 meters. Two (red) bars along
the left road-lane boundary indicate the estimated distances
from the camera center (in this case, 3.80 and 9.82 meters).
Finally, the lateral distances of our vehicle from the left and
right boundaries are computed as 1.028 and 0.577 meters.

With this information, we can also detect whether our
vehicle ever crosses a boundary of the host road-lane. In
particular, we represent the estimated lateral distances of
our vehicle from the left with negative numbers and from
the right with positive numbers. To detect a lane-detection
maneuver, we first observe these numbers up tok previous
time steps (or frames), determine which lateral offset is

smaller (or which side is closer to the vehicle), and claim a
lane-changing maneuver when the sign of the closest side is
changed. To go back to normal driving status, we observe
these sequential values again and claim “normal” driving if
we observek− l number of the same signs. It is important to
observe a series of similar values before triggering the state
change. If we only respond to a sign change, our algorithm
would fail to distinguish zig-zaging from a lane-changing
maneuver. Figure 6 presents a series of images as an example
of lane-changing maneuver detection.

Fig. 5: An example result from our local roadway geometry
analysis.

III. E XPERIMENTS

In this section, we present our detailed experimental set-
tings and results. We drove a robotic vehicle equipped with a
pose estimation system. The accuracy of our pose estimator
is from approximately 0.1 to 0.3 meter. We drove the vehicle
one km along a curvy and hilly segment of road. Our manual
measurement recorded a true lane width of 3.6 meters, but
some regions of the testing path had different widths due to
road geometry (i.e., intersections) or designated U-turn areas.

Figure 7 shows results of metric computation for the
estimated local roadway geometry. Thex-axis is time and
the y-axis is computed metric in meters. A (green) dashed
horizontal line is depicted at 3.6 to indicate the true lane-
width. We intentionally drove the vehicle along the centerline
of the testing roads until time step 400 and then, before
taking a U-turn between 790 and 910, we drove the vehicle
in a zig-zag fashion. While making a U-turn, our system
generated no outputs, which were correct. After the U-turn,
we zig-zagged at a higher fluctuation. At the upper part
of the Figure, the results of lane-width computation are
shown, whereas at the lower part, the results of lateral offset
computation are shown, where the magenta circles (the cyan
triangles) represent the left (right) lateral offsets.

On average, the lane width estimation varied between
3 and 4.5 meters with a variation of 0.342 meter. To
clearly differentiate measurement errors, a different shape
is depicted at the top of a lane-width estimate: A blue
square for when the error is less than 0.2 meter, a cyan
circle for when it is between 0.2 and 0.3 meter, and a
green circle for all remaining estimates. We could improve
the performance if we intentionally removed the lane-width



(a) frame=5. (b) frame=7. (c) frame=9. (d) frame=11. (e) frame=16. (f) frame=19.

(g) frame=5. (h) frame=7. (i) frame=9. (j) frame=11. (k) frame=16. (l) frame=19.

Fig. 6: An example of lane-changing maneuver detection. Images at the upper row show a series of perspective images
whereas the ones at the lower row present a corresponding pairs of inverse-perspective images.

estimate, when its value is greater than 3.9 meters. Although
such a thresholding is valid, in terms of using a prior
information, we did not do this, to measure the accuracy
as it is.
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Fig. 7: Results of metric computation for the local road-
way geometry. In the upper part, the results of lane-width
computations are presented with different shapes based on
the computation error whereas, in the lower part, the results
of lateral offsets are presented in different colors (magenta
(cyan) for left (right) lateral offset).

While conducting this experiment, we had no means,
unfortunately, of measuring the true lateral offsets. One way
we could possibly measure the performance of lateral offset
computation is to look into the accuracy of the lane-width
computation. This is because the error of the lateral offset
computation is basically a sum of its own error and that of
the lane-width computation.

To evaluate the performance of our system’s lane-changing
maneuver detection, we also recorded several hours of videos
on different dates that included highway and city drivings.
We manually identified 33 lane-changing maneuvers. We
could also measure the performance of our system’s metric

computation from this data, but only looked at these man-
ually identified maneuvers. For thek and l, which are the
parameters for the temporal window of observing the closest
lane-marking, we found 20 and 5 worked best. Our system
was able to detect 27 out of 33 lane-changing maneuvers,
resulting in a recall rate of (27/33 =) 0.81. Twice the system
incorrectly produced outputs, resulting in a precision rate of
(27/29 =) 0.93.

IV. CONCLUSIONS ANDFUTURE WORK

This paper has presented a computer vision system that
analyzes a stream of perspective images from a forward-
looking camera to acquire information about a ground vehi-
cle’s lateral movements. The outputs include the information
about the geometric structure of the host roadway such as
the number of road-lanes, the index of the host road-lane,
and the width of host road-lane in meters. These pieces of
information enabled us to determine the lateral distances
of our vehicle from the left and right boundaries of the
host road-lane in meters and whether our vehicle crossed
any road-lane boundaries. From the actual road-tests, we
found our system showed stable and reliable performance
in computing lateral distance and reasonable performance in
detecting lane-changing maneuvers.

As future work, we would like to investigate whether a
Bayes filter would help improve the current implementation,
which analyzes image frames individually in order to under-
stand the geometric structure analysis of the host roadway.
For the lane-markings’ color classification, we learned, under
a batch mode, the color model from a set of manually labeled
color samples and used the model for the classification. The
learned model is biased to the sample data and may result,
when the color distribution of testing data is significantly
different, in unacceptable performance. To find a remedy to
this problem, we also would like to investigate whether an
incremental update of the color model would help improve
the performance of the color classification.
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