
Detection and Tracking of the Vanishing Point on a Horizon for
Automotive Applications

Young-Woo Seo and Ragunathan (Raj) Rajkumar

Abstract— In advanced driver assistance systems and au-
tonomous driving vehicles, many computer vision applications
rely on knowing the location of the vanishing point on a
horizon. The horizontal vanishing point’s location provides
important information about driving environments, such as the
instantaneous driving direction of roadway, sampling regions of
the drivable regions’ image features, and the search direction
of moving objects. To detect the vanishing point, many exist-
ing methods work frame-by-frame. Their outputs may look
desirable in that frame. Over a series of frames, however,
the detected locations are inconsistent, yielding unreliable
information about roadway structure. This paper presents a
novel algorithm that, using the extracted line segments, detects
vanishing points in urban scenes and tracks, using Extended
Kalman Filter, them over frames to smooth out the trajectory
of the horizontal vanishing point. The study demonstrates both
the practicality of the detection method and the effectiveness
of our tracking method, through experiments carried out using
hundreds of urban scene images.

I. INTRODUCTION

This paper presents a simple, but effective method for
detecting and tracking the vanishing point on a horizon
appearing in a stream of urban scene images. In urban
street scenes, such detecting and tracking would enable the
obtaining of geometric cues of 3-dimensional structures.
Given the image coordinates of the horizontal vanishing
point, one could obtain, in particular, the information about
the instantaneous driving direction of a roadway [3], [8],
[11], [13], [14], [16], [17], the information about the image
regions for sampling the features of the drivable image
regions [10], [12], the search direction of moving objects
[9], and computational metrology through homography [15].
Advanced driving assistance systems or self-driving cars
can exploit such information to detect neighboring moving
objects and decide where to drive. Such information about
roadway geometry can be obtained using active sensors (e.g.,
lidars with multi-horizontal planes or 3-dimensional lidar),
but, as an alternative, many researchers have studied the use
of vision sensors, due to lower costs and flexible usages [1],
[3], [9].

A great deal of excellent work has been done in de-
tecting vanishing points on perspective images of man-
made environments; their performances are demonstrated on
collections of images [2], [7], [18]. Most of these methods,
in voting on potential locations of vanishing points, use low-
level image features such as spatial filter responses (e.g.,
Garbor filters) [12], [8], [14], [20] and geometric primitives
(e.g., line segments) [7], [15], [17], [18]. To find an optimal
vote result, the methods use an iterative algorithm such as
Expectation and Maximization (EM).

Young-Woo Seo is with the Robotics Institute and Ragunathan (Raj)
Rajkumar is with Dept of Electrical Computer Engineering, Carnegie
Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, young-
woo.seo@ri.cmu.edu, raj@ece.cmu.edu

Fig. 1: Sample images show the necessity of a vanishing
point tracking for real-world, automotive applications. The
red circle represents the vanishing points detected from the
input images and the green circle represents the vanishing
points tracked over frames. The yellow line represents the
estimated horizon line. The existing, frame-by-frame vanish-
ing point detection methods would fail when (a) the extracted
image features overfit and (b) relevant image features are not
present at the input images.

However, these frame-by-frame vanishing point detection
methods may be impractical for real-time, automotive appli-
cations primarily because 1) they require intensive compu-
tation per frame and 2) they expect a presence of low-level
image features. In particular, it may take longer than a second
simply to apply spatial filters to large parts of or the entire
input image. Meanwhile, a vehicle drives a number of meters
with no information about road geometry. Furthermore, these
frame-by-frame methods would fail to detect the vanishing
point appearing on over- and under-exposed images. Such
images are acquired when a host-vehicle is emerging from
tunnels or overpasses. Figure 1 (b) shows a sample image
acquired when our vehicle emerges from a tunnel. When this
happens, these methods would fail to continuously provide
information about the vanishing point’s location. Because of
such a practical issue, some researchers developed Bayes
filters to track the vanishing point’s trajectory [12], [17].
In addition to the two aforementioned concerns, we have
one of our own. In an earlier work [15], we demonstrated
the ability to acquire, using a monocular camera sensor,
the information of a vehicle’s lateral locations as well as
metrological information of the ground plane. To correctly
compute metric information such as lateral distances of a
vehicle to both boundaries of the host road-lane, it is critical
to accurately estimate the angle between the road plane
and the camera plane. To do this, we detect the vanishing
point on the horizon to estimate the angle (i.e., pitch)
between two planes. But, because, image features relevant to
detecting the vanishing point are missing in certain frames,
our vanishing point detection fails to correctly locate the
vanishing point, resulting in incorrect angle measurements
and distance computations.

Fig. 2: (a) A prior for the line classification. (b) An example
of line detection and classification. The red (blue) lines are
categorized into the vertical (horizontal) line group. The
yellow, dashed rectangle represents a ROI for line extraction.

To address these practical concerns, we have developed a
novel method of detecting and tracking the vanishing point
on the horizon. In what follows, Section II-A details how
we extract line segments from an input image and how we
detect, using extracted line segments, the vanishing point
on the horizon. Section II-B describes our implementation
of Extended Kalman Filter (EKF) for tracking the detected
vanishing point. Section III explains experiments conducted
to demonstrate the effectiveness of the proposed algorithms
and discusses the findings. Finally Section IV lays out our
conclusions and future work.

The contributions of this paper include 1) a method, based
on line segments, for fast detection of vanishing points, 2) a
novel vanishing point tracking algorithm based on a Bayes
filter, and 3) empirical validations of the proposed work.

II. A BAYES FILTER FOR TRACKING A VANISHING POINT
ON THE HORIZON

This section details our approach to the problem of detect-
ing and tracking a vanishing point on a horizon appearing
on perspective images of urban streets. A vanishing point
on a perspective image is the intersection point of two
parallel lines. In urban street scenes, as long as the image
is under normal exposure, one can obtain plenty of parallel
line segment pairs, pairs such as longitudinal lane-markings
and building contour lines. Section II-A describes how we
extract line segments and, with them, detect vanishing points.
The image coordinates of the vanishing points detected from
individual frames may be temporally inconsistent because
line segments relevant to and important for vanishing point
detection may not have been extracted. To smooth out
the location of vanishing points over time, we develop an
extended Kalman filter to track vanishing points. Section II-
B details the procedure and measurement model of our EKF
implementation.

A. Vanishing Point Detection
Our algorithm detects, by using line segments, vanishing

points appearing on a perspective image. In an urban scene
image, one can extract numerous line segments from urban
structures, like man-made structures (e.g., buildings, bridges,
overpasses, etc.) and traffic devices (e.g., Jersey barriers,
lane-markings, curbs, etc.) To obtain these line segments,
we tried three line-extraction methods: Kahn’s [6], [7], the
probabilistic and the standard Hough transform [4]. We found
Kahn’s method to work best in terms of the number of
resulting line segments and their geometric properties, such

as lengths or representation fidelity to the patterns of low-
level features. To implement Kahn’s method, we first obtain
Canny edges and run the connected component-grouping
algorithm to produce a list of pixel blobs. For each pixel
blob, we compute the eigenvalues and eigenvectors of the
pixel coordinates’ dispersion matrix. The eigenvector, e1,
associated with the largest eigenvalue is used to represent the
orientation of a line segment and its length, lj = (θj , ρj) =
(atan2(e1,2, e1,1), x̄ cos θ+ȳ sin θ), where x̄ = 1

nΣkxk, ȳ =
1
nΣkyk. The two parameters, θj and ρj , are used to determine
two end points, p1

j =
[
x1j , y

1
j

]
and p2

j =
[
x2j , y

2
j

]
, of the line

segment lj . Figure 2 (b) shows an example of line detection
result.

Given a set of the extracted lines, L = {lj}j=1,...,|L|,
we first categorize them into one of two groups: vertical
LV or horizontal LH , L = LV ∪ LH . We do this to use
only a relevant subset of the extracted lines for detecting
a particular (vertical or horizontal) vanishing point. For
example, if vertical lines are used to find a horizontal
vanishing point, the coordinates of the resulting vanishing
point would be far from optimal. To set the criteria for this
line categorization, we define two planes: h = [0, 0, 1]

T for
a horizontal plane and v = [0, 1, 0]

T for a vertical plane in
the camera coordinate. We do this because we assume that
the horizontal (or vertical) vanishing points lie at a horizontal
(or vertical) plane at the front of our vehicle. Figure 2 (a)
illustrates our assumption about these priors. We transform,
the coordinates of the extracted line segments’ two points
into those of the camera coordinates, pcam = K−1pim,
where pcam is a point in the camera coordinates, K is
the camera calibration matrix of intrinsic parameters, and
pim is a point in the image coordinates. We then compute
the distance of a line segment, lj = [aj , bj , cj]

T ,1 to the
horizontal, h, and the vertical plane, v. We assign a line to
either of two line groups based on the following:

LV ← lj , if lTj · v ≤ lTj · h, (1)
LH ← lj , Otherwise

where lTj ·v =
[aj ,bj ,cj]

T [0,1,0]√
a2
j
+b2

j
+c2

j

. Figure 2 (b) shows an exam-

ple of line classification result; vertical lines are depicted in
red, horizontal lines in blue. Such line categorization results
help us use a subgroup of the extracted lines relevant to
computing the vertical or horizontal vanishing point. Our
approach of using line segments to detect vanishing point
is similar to some found in earlier work [7], [17], [18]. All
uses line segments (or edges) to detect vanishing points. Our
distinguishes itself in terms of line classification. Suttorp and
Bucher’s method relied on a heuristic, to cluster lines into
left or right sets for vanishing point detection [17]; Tardif
[18] used a J-linkage algorithm to group edges into the same
clusters. In contrast, our method distinguishes horizontal line
segments from vertical ones by computing the similarity
of line segments to the priors about the ideal locations of
vanishing points.

Given two sets of line groups (vertical and horizontal),
we run RANSAC [4] to find the best estimation of a
vanishing point. For each line pair randomly selected from

1Using two end-points of a line segment, we can represent a line segment
in an implicit line equation, where, aj = y1j − y2j , bj = x2

j − x1
j , c =

x1
jy

2
j − x2

jy
1
j .

Fig. 3: Some examples of vanishing point detection results. For most of testing images, our vanishing point detection
worked well as good as the tracking method. But it often failed to correctly identify the location of the horizontal vanishing
point. For the last two images, our detection method found the locally optimal vanishing points (red circles) based on the
lines extracted from those images. By contrast, our tracking method were able to find the globally optimal locations (green
circles) of the vanishing points.

the horizontal and vertical line groups, we first compute
the cross-product of two lines, vpij = li × lj , to find an
intersection point. The intersection point found thus is used
as a vanishing point candidate. We then claim the vanishing
point candidate with the smallest number of outliers as the
vanishing point for that line group. A line pair is regarded as
an outlier if the angle between a vanishing point candidate
and the vanishing point obtained from the line pair is greater
than a pre-defined threshold (e.g., 5 degrees). We repeat this
procedure until a vertical vanishing point is found and more
than one horizontal vanishing point is obtained. Figure 3
shows sample results of vanishing point detection.

B. Vanishing Point Tracking

The previous section detailed how we detect vanishing
points using line segments extracted from urban structures.
Such frame-by-frame detection may result in, however, in-
consistent locations of the same vanishing point over frames.
This is because some image features (i.e., line segments)
relevant to detecting vanishing points on the previous frame
may not be available in the current frame. When this
happens, any frame-by-frame, vanishing point detection al-
gorithm, including ours, fails to find an optimal location
of the horizontal vanishing point. This results in incorrect
information about roadway geometry [15].

To address such potential inconsistency, we develop a
tracker to smooth out the trajectory of the vanishing point of
interest. Our idea for tracking the vanishing point is to use
some of the extracted line segments as measurements, thus
enabling us to trace the trajectory of the vanishing point.
To implement our idea, we developed an Extended Kalman
Filter (EKF). Algorithm 1 describes the procedure of our
vanishing point tracking method.

For our EKF model, we define the state as, xk = [xk, yk]
T ,

where xk and yk is the k step’s camera coordinates of the
vanishing point on the horizon. We initialize the state, x and
its covariance matrix, P as:

x0 = [IMwidth/2/fx, IMheight/2/fy]
T
,

Algorithm 1 EKF for tracking the vanishing point.
Input: IM, an input image and L, a set of line segments

extracted from the input image, {lj}j=1,...,|L| ∈ L
Output: x̂k = [xk, yk]

T , an estimate of the image coordi-
nates of the vanishing point on the horizon

1: Detect a vanishing point, vph = Detect(IM, L)
2: Run EKF iff vphx ≤ IMwidth and vphy ≤ IMheight.

Otherwise exit.
3: EKF: Prediction
4: x̂−k = f(x̂k−1) + wk−1
5: Pk = Fk−1Pk−1F

T
k−1 + Qk−1

6: EKF: State Estimation
7: for all lj ∈ L do
8: ỹj = zj − h(x̂−k)
9: Sj = HjPjH

T
j + Rj

10: Kj = PjH
T
j S
−1
j

11: Update the state estimate if ỹj ≤ τ
12: x̂k = x̂−k + Kj ỹj
13: Pj = (I2 −KjHj)Pj
14: end for

P0 =


(
xim

fx

)2
0

0
(
yim
fy

)2


where xim and yim are our initial guesses about the uncer-
tainty of the state in pixels, along the x- and y-axises, and
fx and fy are focal lengths of the vision sensor we use. The
initial values need to be scaled by focal lengths because the
state is represented in the normalized camera coordinates.

Given an input image, our algorithm predicts the location
of the vanishing points, x̂−k = I2x̂k−1 + wk−1, where I2 is
2×2 identity matrix and wk−1 is a 2×1 vector of process
model’s noise, normally distributed, wk ∼ N(0,Q).2 While
doing so, we neither define a motion model (i.e., f(x̂k))

2The x̂ represents an estimate and the superscript, x̂−, indicates that it
is a predicted value.

nor incorporate any information about ego-motion. We set
the process noise as a constant, Q2×2 = diag(σ2

Q), where
σ = xim

fx
.

For the measurement update, we first change the repre-
sentation of an extracted line segment, lj , as a pair of image
coordinates of its mid-point and orientation, lj = [mj , θj]

T ,
where mj = [mj,x,mj,y]T , θj ∈

[
−π2 ,

π
2

]
. Note that the line

segments we use as measurements for EKF are the same
ones used for detecting the vanishing point. Our approach
is similar to Suttorp and Bucher’s method [17], but both
employ different measurement models. We then compute the
residual, ỹj , the difference between our expectation on an
observation, h(x̂−k) and an actual observation, zj = θj .

We presume that if a selected line segment, lj , is aligning
with the vanishing point of interest, x̂k = [xk, yk]

T , the
angle between the vanishing point and the orientation of
the line should be zero (or very close to zero). Figure 5
illustrates the underlying idea of our measurement model
that investigates the geometric relation between an extracted
line and a vanishing point of interest. Based on this idea, we
design a model of what we expect to observe, our observation
model, as

h(xk) = tan−1
(
yk −mj,y

xk −mj,x

)
(2)

To linearize this non-linear observation model, we take the
first-order, partial derivative of h(xk), with respect to the
state, xk, to derive the Jacobian of the measurement model,
H.

∂h(xk)

∂x
=

[
−(yk −mj,y)

d2
,

(xx −mj,x)

d2

]
= H (3)

where d2 =
√

(xk −mj,x)2 + (yk −mj,y)2. We set the
measurement noise, vk ∼ N(0,R) and R1×1 = σ2

R, where
σ = 0.1 radian. We then compute the innovation Sj and the
Kalman gain Kj for the measurement update.

Before actually updating the state using these measure-
ments, we treat individual line segments differently based
on their lengths. This is because the shorter the length the
higher the chance of the line being a noise measurement.3
To implement this idea, we compute a weight of the line
based on its length and heading difference, to update the
measurement noise.

R = Rmax +

(
Rmin −Rmax
lmax − lmin

)
|lj | (4)

where Rmax (e.g., 10 degrees) and Rmin (e.g., 1 degree)
define the maximum and the minimum of heading difference
in degree, and lmax (e.g., 500) and lmin (e.g., 20) define the
maximum and minimum of observable line lengths in pixels,
|lj | is the length of the line. This equation ensures that we
treats the longer line more importantly when updating the
state and we only use lines of which heading differences are
smaller than the threshold, τ .

In summary, the task of our EKF is to analyze the extracted
line segments to estimate the location of the vanishing point
on the horizon. Figure 4 shows some example results that one

3Recall that we extract line segments from Canny’s edge image where
short edges may originate from artificial patterns, not from actual objects’
contours.

can see the difference of the locations between the detected
and the tracked vanishing points.4

Fig. 5: The line measurement model. The red circle repre-
sents the vanishing point, x̂k, tracked until kth step. θj is
the orientation of the jth line, lj , and β is the orientation
between the line’s mid-point and the vanishing point. The
orientation difference is the residual of our EKF model.

We use the tracked vanishing point to compute the (pitch)
angle between the camera plane and the ground plane. The
underlying assumption is that, if the road plane is flat and
perpendicular to an image plane, the vanishing point along
the horizon line is exactly mapped to the camera center.
Based on this assumption, we derive the location of the
vanishing point on the horizon line as [5]:

vp∗h(φ, θ, ψ) =

[
cφsψ − sφsθcψ

cθcψ
,
−sφsψ − cφsθcψ

cθcψ

]T
(5)

where φ, θ, ψ are yaw, pitch, and roll angle of the camera
plane with respect to the ground plane and c and s for cos
and sin. Since we are interested in estimating the pitch angle,
let us suppose that there is no vertical tilt and rolling (i.e., the
yaw and the roll angles are zero). Then the above equation
yields:

vp∗h(φ = 0, θ, ψ = 0) =

[
0

cθ
,−sθ

cθ

]
(6)

Because we assume that there is neither yaw nor roll, we
can compute the pitch angle by computing the difference
between the y-coordinate of the vanishing point and that of
the principal point of the camera as

θ = tan−1 (|py − vpy|) (7)

where py is the y coordinate of the principal point. Figure 6
shows our setup to verify the accuracy of our pitch angle
estimation. Because no precise angle measurement exists
between the two planes, we instead measure the distances
between the camera and markers on the ground to evaluate
the accuracy of the pitch angle computation. We found that
the distance measurements have, on average, a sub-meter
accuracy (i.e., less than 30cm).

III. EXPERIMENTS

To evaluate the performance of our vanishing point detec-
tion and tracking algorithm, we drove our robotic car [19]
on a route of inter-city highways, to collect some image data

4Some of the vanishing point tracking videos are available from, http:
//www.cs.cmu.edu/˜youngwoo/research.html

Fig. 4: A comparison of vanishing point locations by the frame-by-frame detection and by the EKF tracking.

Fig. 6: A setup for verifying the accuracy of our world-
coordinate computation model. The intersection point of the
two red lines represents the camera center and the intersec-
tion point of the two green lines represents a vanishing point
computed from the two blue lines appearing on the ground.

and the vehicle’s motion data. Our vehicle is equipped with
a military-grade IMU which, in root-mean-square sense, the
error of pitch angle estimation is 0.02 with GPS signals
(with RTK corrections) or 0.06 degree with GPS outage,
when driving more than one kilometer or for longer than
one minute. The vision sensor installed on our vehicle is
PointGrey’s Flea3 Gigabit camera, which can acquire an
image frame of 2,448×2,048, maximum resolution at 8Hz.
While driving the route, we ran the proposed algorithms as
well as the data (i.e., image and vehicle states) collector. We
implemented the proposed methods in C++ and OpenCV that
runs about 20Hz. The data collector automatically syncs the
high-rate, ego-motion data (i.e., 100Hz) with the low-rate,
image data (i.e., 8Hz). To estimate the camera’s intrinsic
parameters, we used a publicly, available toolbox for camera
calibration5 and define a rectangle for the line extraction
ROI, x1 = 0, x2 = Iwidth−1, y1 = 1300 and y2 = 1800.
For the line segment weighting, we empirically found that

5http://www.vision.caltech.edu/bouguetj/calib_
doc/

Fig. 7: A comparison of the estimated pitch angles by an
IMU and by the proposed method.

Rmax = 10, Rmin = 1, lmax = 500, and lmin = 20 worked
best.

We evaluated quantitatively and qualitatively the perfor-
mance of the presented vanishing point tracking method.

For the quantitative evaluation, we analyzed the accuracy
of the pitch angles estimated from the vanishing point
tracking. Figure 7 shows the comparison of the pitch an-
gles measured by the IMU and estimated by a monocular
vision sensor. Although the pitch angles estimated from our
algorithm have some periods underestimate (or overestimate)
the true pitch angles, the two graphs have, at a macro-level,
similar shapes where the blue curve follows the ups-and-
downs of the red curve. The mean-square error is 2.0847
degrees.

For the qualitative evaluation, we examined how useful the
output of the tracked vanishing point is in approximating the
driving direction of a road way. Figure 8 shows some exam-
ple results that, within a certain range, the driving directions
of roads can be linearly (or instantaneously) approximated
by linking the locations of the tracking vanishing point to
the center of the image bottom (i.e., the image coordinates
our camera is projected on).

IV. CONCLUSIONS AND FUTURE WORK

This paper has presented novel methods of detecting van-
ishing points and of tracking a vanishing point on the hori-
zon. To detect vanishing points, we extracted line segments
and applied RANSAC to the locally optimal vanishing point

Fig. 8: This figure shows the idea of using the results of vanishing point tracking to approximate the driving direction of
a roadway. We used such approximated driving directions to remove false-positive lane-marking detections [16]. The green
blobs are the final outputs of lane-marking detection and the red blobs are the false-positive lane-marking detections that
are removed from the final results. Refer to [16] for more detail.

from a given input image. Occasionally, however, our method
failed to detect the vanishing point because relevant image
features were unavailable. Our previous computer vision
application for autonomous driving required metric compu-
tation to accurately measure the vehicle’s lateral position. To
obtain this measurement, we need an accurate measurement
of the angle between the camera and the ground planes. To
compute this angle, we used the detected vanishing point.
Thus, when the vanishing point location was inaccurately
estimated, it led to an imprecise measurement of the vehicle’s
lateral motions. To tackle such inconsistent positions of the
vanishing point over frames, we developed an EKF and
addressed this jumpy trajectory of the vanishing point.

As future work, we would like to determine the limits
of our algorithms and so continue testing it against various
driving environments. In addition, we would like to study
the relation of ego-vehicle’s motion between in the world
coordinates and image coordinates and develop a motion
model to enhance the performance of our tracking method.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Myung Hwangbo for
the fruitful discussion on 3D geometry and to the members
of GM-CMU Autonomous Driving Collaborative Research
Lab for their efforts and dedications.

REFERENCES

[1] Nicholas Apostoloff and Alexander Zelinsky, Vision in and out of ve-
hicles: integrated driver and road scene monitoring, The International
Journal of Robotics Research, 23(4-5): 513-538, 2004.

[2] James M. Coughlan and A.L. Yuille, Manhattan world: compass
direction from a single image by bayesian inference, In Proceedings
of IEEE International Conference on Computer Vision (ICCV-99), pp.
941-947, 1999.

[3] Ernst D. Dickmanns, Dynamic Vision for Perception and Control of
Motion, Springer, 2007.

[4] David A. Forsyth and Jean Ponce, Computer Vision: A Modern
Approach, Prentice Hall, 2002.

[5] Myung Hwangbo, Vision-based navigation for a small fixed-wing
airplane in urban environment, Tech Report CMU-RI-TR-12-11, PhD
Thesis, The Robotics Institute, Carnegie Mellon University, 2012.

[6] P. Kahn and L. Kitchen and E.M. Riseman, A fast line finder for
vision-guided robot navigation, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(11): 1098-1102, 1990.

[7] Jana Kosecka and Wei Zhang, Video compass, In Proceedings of
European Conference on Computer Vision (ECCV-02), pp. 476-490,
2002.

[8] Hui Kong, Jean-Yves Audibert, and Jean Ponce, Vanishing point
detection for road detection, In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR-09), pp. 96-103,
2009.

[9] Joel C. McCall and Mohan M. Trivedi, Video-based lane estimation
and tracking for driver assistance: survey, system, and evaluation, IEEE
Transactions on Intelligent Transportation Systems, 7(1): 20-37, 2006.

[10] Ondrej Miksik, Petr Petyovsky, Ludek Zalud and Pavel Jura, Robust
detection of shady and highlighted roads for monocular camera based
navigation of UGV, In Proceedings of IEEE International Conference
on Intelligent Robots and Systems (IROS-11), pp. 64-71, 2011.

[11] Ondrej Miksik, Rapid vanishing point estimation for general road de-
tection, In Proceedings of IEEE International Conference on Robotics
and Automation (ICRA-12), pp. 4844-4849, 2012.

[12] Peyman Moghadam and Jun Feng Dong, Road direction detection
based on vanishing-point tracking, In Proceedings of IEEE Interna-
tional Conference on Intelligent Robots and Systems (IROS-12), pp.
1553-1560, 2012.

[13] Marcos Nieto, Jon Arrospide Laborda, and Luis Salgado, Road en-
vironment modeling using robust perspective analysis and recursive
Bayesian segmentation, Machine Vision and Applications, 22:927-945,
2011.

[14] Christopher Rasmussen, Grouping dominant orientations for ill-
structured road following, In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR-04), pp. 470-477,
2004.

[15] Young-Woo Seo and Raj Rajkumar, Use of a monocular camera to
analyze a ground vehicle’s lateral movements for reliable autonomous
city driving, In Proceedings of IEEE IROS Workshop on Planning,
Perception and Navigation for Intelligent Vehicles (PPNIV-2013), pp.
197-203, 2013.

[16] Young-Woo Seo and Raj Rajkumar, Utilizing instantaneous driving
direction for enhancing lane-marking detection, In Proceedings of the
IEEE Intelligent Vehicles Symposium (IV-2014), pp. 170-175, 2014.

[17] Thorsten Suttorp and Thomas Bucher, Robust vanishing point es-
timation for driver assistance, In Proceedings of IEEE Intelligent
Transportation Systems Conference (ITSC-06), pp. 1550-1555, 2006.

[18] Jean-Philippe Tardif, Non-iterative approach for fast and accurate
vanishing point detection, In Proceedings of IEEE International Con-
ference on Computer Vision (ICCV-09), pp. 1250-1257, 2009.

[19] Junqing Wei, Jarrod Snider, Junsung Kim, John Dolan, Raj Rajkumar,
and Bakhtiar Litkouhi, Towards a viable autonomous driving research
platform, In Proceedings of IEEE Intelligent Vehicles Symposium (IV-
13), pp. 763-770, 2013.

[20] Qi Wu, Wende Zhang, and B.V.K Vijaya Kumar, Example-based clear
path detection assisted by vanishing point estimation, In Proceedings
of IEEE International Conference on Robotics and Automation (ICRA-
11), pp. 1615-1620, 2011.

