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Abstract
Power laws arise through many natural processes.
Zipf showed that the frequencies of words, as they
appear in Shakespeare’sHamlet, follow a power
law distribution. Mandelbrot explained this effect
as a result of an underlying information-theoretic
optimization problem. Miller invoked doubt by
showing that a very simple mechanism could also
explain the presence of power laws: A monkey typ-
ing words with uniformly and independently se-
lected letters would also produce word frequencies
following a power law. In consequence, several
other researchers proposed and investigated rank-
frequency distributions of randomly generated text.
In this paper, we first present a literature overview
over this exciting topic. We then propose a class
of Hidden Markov Models (HMMs) which gener-
alizes the models previously investigated, generat-
ing power law, log-normal and other behavior. We
extend a result of Conrad and Mitzenmacher for
computing the power law exponent of zero order
Markov processes to a setting which captures ran-
dom walks ind-regular graphs. In an extensive em-
pirical evaluation, we investigate convergence of
rank frequency distributions for randomly gener-
ated text to those of natural language corpora, for
increasing orders of Markov Processes and HMMs
with an increasing number of hidden states. Our
analysis uses four real-world corpora: the Reuters
corpus, Shakespeare’s Hamlet, Goethe’s Faust and
source code of the Linux kernel.

1 Introduction

Zipf’s law is a mathematical model of the relationship be-
tween the frequency and frequency-rank of words in natural
language text. Estoup[4] and Zipf [15] independently ob-
served this relationship after manually counting the frequency
of each word in a large amount of text. They discovered
that the frequencyfi of the ith ranked word (in terms of fre-
quency) is roughly given by the formulafi = ci−α, for some
parameterα > 0 and normalizing constantc, which is now
know as Zipf’s law, or power law with exponentα.

Apart from word frequencies, power laws have been found
to accurately model a wide range of real-world phenomena,
including the distribution of incomes1 [12], city sizes[16]
and the structure of the internet[5]. There is no a priori rea-
son why these phenomena should exhibit power law behavior.
Hence, in an effort to obtain a deeper understanding of these
phenomena, there is a significant amount of literature devoted
to finding an explanation of Zipf’s law along the lines of the
Central Limit Theorem for the normal distribution. In this
paper, we review and generalize some of this literature, con-
centrating on the aforementioned rank-frequency distribution
of words.

1.1 Literature overview

The first explanation of Zipf’s law was offered by Zipf him-
self [16]. He argued that authors want to minimize the length
of text required to communicate an idea, even if this intro-
duces ambiguities. On the other hand, readers want to mini-
mize the effort required to understand (disambiguate) the text.
Zipf claimed that this trade-off, called theprinciple of least
effort, leads to Zipf’s law. Although his arguments were not
mathematically rigorous, recent empirical evidence[6] sup-
ports Zipf’s hypothesis.

Zipf’s explanation was superseded by Mandelbrot[8], who
used information theory to formally derive a process gener-
ating Zipf’s law. Mandelbrot regarded language design as
an optimization problem, in which the aim is to maximize
the average amount of information communicated per aver-
age word cost. Suppose theith most probable wordwi oc-
curs with probabilitypi. Then the information which words

1Actually, Pareto studied the distribution of incomes before
Zipf’s law was discovered. See[1] for details.



communicate is given by the entropy of the generating pro-
cess, namely−

∑
i pi lg pi. Generally, we want more fre-

quent words to have a smaller cost (length), since they are
used more often. Mandelbrot solved the optimization prob-
lem by encoding each wordwi by the integeri, which has
costlogn i, wheren is the size of the alphabet.

Mandelbrot’s result suggests that the evolution of the En-
glish language is influenced by an underlying optimization
process. Although this appears to be a compelling explana-
tion, a subsequent paper by Mandelbrot[9] hinted that his
own optimization process had a much simpler explanation.
In this paper, Mandelbrot describes a Markov model for gen-
erating random text by way of a thought experiment, in which
a monkey randomly types on a keyboard withn letters (the al-
phabet) and one space bar, where each key is pressed indepen-
dently with probability inferred by the above optimal encod-
ing. Mandelbrot proved that the random text generated by the
monkey is asymptotically distributed according to Zipf’s law.
Miller [10] considered a special case of Mandelbrot’s experi-
ment in which the monkey hits the keysuniformly at random.
Although there is no underlying optimization in this exper-
iment, the limiting behavior is still Zipf’s law. The reason
for this is purely statistical - the number of words of length
l, which isnl, increases exponentially inl, while the prob-

ability that such a word occurs, which is
(
1− 1

n+1

)l
1

n+1 ,

decreases exponentially inl. A simple calculation shows that
it is the trade-off between these two properties that leads to
Zipf’s law. Miller concluded that Zipf’s law can be derived
“without appeal to least effort, least cost, maximal informa-
tion, or any branch of the calculus of variations”.

Perline[13] considered the monkey-at-a-typewriter exper-
iment with fixed word sizel and an arbitrary probability dis-
tribution over the letters. This model leads to a log-normal
distribution in the following way. Letpi be the probability
that the monkey types theith letter of the alphabet, and let
Xj = pi if this is the jth letter of the current word. Then
Y = X1X2 . . . Xl gives the probability that the monkey types
a randomly chosenl-letter word. Since theXi’s are i.i.d and
lnY =

∑
lnXi, lnY converges to the normal distribution

by the Central Limit Theorem, and soY converges to the
log-normal distribution. Perline also extended this argument
to hold for words up to some fixed sizel.

Although this result holds for any fixedl, Mitzenmacher
[11] notes that this sequence of log-normal distributions need
not converge to a log-normal distribution. In fact, under weak
assumptions on the probability distribution of letters, this se-
quence converges to the Zipf’s law[3].

Markov processes for generating random text have been
considered before, e.g. by Mandelbrot[9] as mentioned
above, and by[7] who considered the case of a particular
two-parameter family of Markov processes. In[14], Shan-
non hypothesized that text generated by Markov processes
of increasing order estimated from natural language would
increasingly resemble natural language text. To the best of
our knowledge, nobody derived results about rank-frequency
distributions for random text generated by arbitrary Markov
models. Furthermore, no class of models able to describe the
process of generating random text both with bounded and un-

bounded word lengths has been proposed so far.

1.2 Organization and Contributions
In the remainder of this paper, we present a particular class
of Hidden Markov Models as a generalization of the mod-
els described above. We show that these models can generate
power laws, log-normal distributions and other behavior. Fur-
thermore, we show how to explicitly compute the power law
exponent for a specific class of Markov processes which cap-
tures the case of random walks ind-regular graphs.

In an extensive empirical evaluation, we investigate con-
vergence of rank frequency distributions for randomly gen-
erated text by Markov processes of increasing order to those
of natural language corpora, aiming at verifying Shannon’s
theory. We also investigate similar convergence effects for
HMMs estimated from natural language text, where the num-
ber of hidden states is gradually increased. Intuitively, with
HMMs we have much finer control over the number of param-
eters involved in the estimation, and hence we would expect
a slower and more detailed picture about the convergence of
the rank-frequency distributions. The reason for this is that
the number of parameters grows exponential in the order of
the Markov process, whereas they only grow polynomially in
the number of hidden states of the HMM.

Motivated by the hypothesis that languages consist of a
repertoire of structural words as well as an ever growing
collection of content words, along with the assumption that
structural words have short length, we analyze mixtures of
processes. In these mixtures, one component generates text
of bounded length, and the other component generates text
of unbounded length. We show that the rank frequency dis-
tributions of these mixtures correspond more closely to the
observed natural rank-frequency distributions. Our analysis
uses four real-world corpora: the Reuters corpus of news ar-
ticles, Shakespeare’sHamlet, Goethe’sFaust and C source
code of the Linux kernel.

2 A more general model
In this section we propose a more general framework for
Miller’s [10], Perline’s [13] and Mitzenmacher’s[11; 3]
thought experiments. We will consider what happens if the
key strokes are generated by a Hidden Markov Model. A pair
of sequences of random variables(Xt)t∈N over a finite set of
statesS and(Ot)t∈N over a finite alphabetA and joint prob-
ability Pr is called a Hidden Markov Model (HMM) if

Pr(Xt+1 = xt+1|Xt = xt) =
Pr(Xt+1 = xt+1|X1 = x1, . . . , Xt = xt)

and theOt are conditionally independent of all other vari-
ables givenXt for all t ≥ 1. We will assume stationarity,
i.e. Pr(Xt+1 = y|Xt = x) = P (x, y) for all x, y ∈ S
andPr(Ot = o|Xt = x) = Q(x, o) for all x ∈ S, o ∈ A
and t > 0. The HMM is fully specified by the transition
matrix P , the emission matrixQ and an initial distribution
ν over S. A sample fromPr is called a trajectory of the
HMM. Let us associate a special element⊥ of both S and
A with the blank character separating words, and define this
state to be absorbing, i.e.P (⊥,⊥) = 1. We furthermore



require thatPr(inft Xt = ⊥ < ∞) = 1, Q(s,⊥) = 0 for
s 6= ⊥ andQ(⊥,⊥) = 1, i.e. trajectories will almost surely
reach the absorbing state, and from there only emit the char-
acter⊥. For any trajectory, we call the sequence of emissions
o1, . . . , ot up to and not including the first occurrence of⊥
a word (note that this might include the empty word). This
definition ensures that there is a one-to-one correspondence
between trajectories of the HMM and words.

Consider how the examples in the literature fall into this
framework. Letµ be a distribution onA \ {⊥}, andp > 0.
The corresponding HMM will have two states,S = {1,⊥}
and we can associate with it the transition matrix

P =
(

1− p p
0 1

)
In the state1, the emission probabilities will beQ(1, a) =
µ(a) for a ∈ A \ {⊥}, andQ(⊥,⊥) = 1. If we let the initial
distribution beνµ = ((1 − p), p), then the distribution over
the words generated by this HMM is exactly the distribution
of words generated by Miller’s experiment (ifµ is uniform)
or Mitzenmacher’s generalization.

Of course this model captures the case where the under-
lying process is specified by a Markov chain as considered
in [9; 7]. In this case we setS = A and each states emits
symbols with probability 1. Such a chain can easily be trans-
formed such that it has exactly one absorbing⊥ state.

More interestingly, the concept of HMMs allows us to for-
malize Perline’s model[13], where letters are chosen i.i.d. at
random, but only words of a fixed lengthl or of length up to
l are considered. We can formulate this process as an HMM
very similarly to the i.i.d. case, but instead of a single1 state,
we will have states1, . . . , l. For the case of words with length
exactly l, statet + 1 follows statet with probability 1 for
1 ≤ t ≤ l − 1, and statel is deterministically followed by⊥.
We furthermore require that no states 6= ⊥ may emit the⊥
symbol. For the case of words up to lengthl, we simply add
an edge from states1, . . . , l − 1 to⊥ with probabilityp > 0.

2.1 When do we get power laws?

We want to identify properties under which the word fre-
quency distribution of a given HMM follows a power law.
In [3], Conrad and Mitzenmacher prove that in the i.i.d. case,
power laws arise. In[7], Kanter and Kessler show that this
is also the case for a very specific Markov chain controlled
by two parameters. For the case of fixed word lengths, log-
normal behavior arises[13].

It is tempting to try to generalize Conrad’s and Mitzen-
macher’s proof to the case of Markov chains. The follow-
ing observation indicates that this might be possible. In[11],
Mitzenmacher presents a simple proof that for a two letter al-
phabet and unequal probabilitiesq andq2, the word frequency
distributions follow a power law. Here we present a similar
proof, but for the case of a more complex Markov chain.

Let A = S = {1, 2,⊥},

P =

 q q2 1− q − q2

q2 q 1− q − q2

0 0 1

 ,

whereq > 0, 1 − q − q2 > 0 and letQ deterministically
emit the current state. Furthermore chooseν = (1, 0, 0).
Then every wordw generated by the process has probabil-
ity qk(1 − q − q2) for somek ≥ 0. Using the terminology
from Mitzenmacher’s proof, we callk the pseudo-rank ofw.
There is one word of pseudo-rank 0 (“a”), one of pseudo-rank
1 (“aa”), two words of pseudo-rank 2 (“ab” and “aaa”) and a
simple induction yields that there areFk+1 words of pseudo-
rankk whereFk is thek-th Fibonacci number (whereF0 = 0
andF1 = 1). This can be seen from the fact that the words
with pseudo-rankk are generated from the words of pseudo-
rankk−1 by appending the last character twice and from the
words of pseudo-rankk − 2 by appending the last character
flipped. Using the identity

∑k
i=1 Fi = Fk+2 − 1 it follows

that whenFk+2 − 1 < j ≤ Fk+3 − 1, the j-th frequent
word has pseudo-rankk. SinceFk = Φk/

√
5 + o(1) where

Φ = (1 +
√

5)/2 is the golden ratio, for the frequencyfj it
follows that

qlogΦ(
√

5(j+1))−2(1−q−q2) < fj ≤ qlogΦ(
√

5(j+1))−3(1−q−q2)

where we can directly read off bounds for the power law ex-
ponent.

The above observation leads to the following generaliza-
tion of Conrad and Mitzenmacher’s Theorem:

Proposition 1 (based on Theorem III-A from [3]). Let
µ1 = (p1, . . . , pn−1, p⊥) be a distribution overA, where
the n-th element is associated with the blank⊥. Further-
more, for1 < j < n let µj = (pπj(1), . . . , pπj(n−1), p⊥)
whereπj is a permutation of the integers1, . . . , n − 1, and
let µn = (0, . . . , 0, 1). Then the rank frequencies of the tra-
jectories of the Markov process defined by

P =

 µ1

...
µn

 ,

with start distributionµ0 = ej (thej-th unit vector) for any
1 ≤ j < n follow a power law distribution with explicitly
computable power law exponent.

Proof. In [3], Conrad and Mitzenmacher prove the following
statement. LetA be a multiset of positive integersa1 > · · · >
an, each with multiplicityw1, . . . , wn, and enumerate the ele-
ments asσ1, . . . , σN whereN =

∑
i wi. For each realν ≥ 0,

let cν be the number of distinctN -tuples(m1, . . . ,mN ) of
nonnegative integers, such that

∑
i miσi ≤ ν. Let D be

the least common multiple of the denominators of the ratios
ai/a1 which are assumed to be rational, and letr = D/a1.
Furthermore letf(x) =

∑
i wix

ai andx0 be the unique pos-
itive solution off(x) = 1. Define

A′ =
1

r(1− x
1/r
0 )x0f ′(x0)

.

Then it holds that∑
ν≤t

cν ∼ A′ · (1/x0)brtc/r.



The proof of this Theorem by Conrad and Mitzenmacher is
very involved, and involves techniques from complex analy-
sis. They also extend this result to the case of irrational ratios,
by passing to appropriate limits. After stating this general
theorem, they specialize it to the case wherecν counts the
number of words with probabilitypν

1(1 −
∑

i wipi), where
each letter is struck independently of the previous letters. In
this case, theai are simply defined by1 = a1 > · · · > an

whereaj = log pj

log p1
.

To prove the generalization for permutated Markov pro-
cesses, we only have to observe, thatcν counts also the num-
ber of words with probabilitypν

1(1 −
∑

i wipi), where each
letter is generated according to this more general process.
This can be seen by considering that word probabilities of
words of lengthn + 1 are constructed by multiplying word
probabilities of words of lengthn by some entry of thej-th
row of the transition matrixP , wherej is the respectiven-th
letter. As the base case, the unique word with length 0 (the
empty word) always has probability1 −

∑
i wipi. Hence,

the assumption of independent key presses is not necessary;
the fact that word probabilities are constructed by the same
factors as in the independent case is sufficient.

Note that this extension applies to the interesting special
case of random walks ind-regular graphs, where the random
walk ends with a probabilityp which is the same for every
node in the graph. It remains true for the directed case, where
each node has exactlyd outgoing edges, and each node dis-
tributes probabilitiesp1, . . . , pd over all outgoing edges.

One might wonder whether all Markov models lead to
power law behavior. Consider the following counterexample
of a Markov Chain for which the distribution neither follows
a power law nor a log-normal distribution. LetA,S,Q, ν be
defined as above and

P =

 q q2 0
0 q q2

0 0 1

 ,

whereq+q2 = 1. All wordsw generated by this process have
probabilitiesqk · q3 for k ≥ 1. We again callk the pseudo-
rank ofw. In this case, a simple induction yields that there are
exactlyk words of pseudo-rankk. Hence whenk(k−1)/2 <
j ≤ k(k + 1)/2, thej-th frequent word has pseudo-rankk.
We find

q(1+
√

4j−1)/2+3 < fj ≤ q(1+
√

4j+1)/2+3

and hence we do not get power law behavior. In this case, the
number of words with pseudo-rankk grows only polynomi-
ally in k.

3 Experiments
In this section we provide extensive evidence that rank fre-
quency distributions from a variety of natural and artificial
text corpora follow power law behavior.

Initially, in Section 3.1, we introduce the four natural text
corpora used in our analysis. In Section 3.2 we reproduce
the asymptotic results about randomly typing monkeys dis-
cussed in[10] empirically on finite data. We will then, in

Section 3.3, investigate rank frequency behavior for several
first order Markov models. In Section 3.4, we will discuss the
convergence of the rank-frequency distributions for Markov
models of increasing order. These investigations will be par-
alleled in Section 3.5 for the case of Hidden Markov Models
with an increasing number of hidden states. Section 3.6 pro-
poses a mixture model of two first order Markov processes,
one generating words of bounded length, and one generating
words of arbitrary length, and shows that this mixture model
achieves rank frequency behavior very close to the true natu-
ral distribution. Finally, in Section 3.7, we compare the dif-
ferent proposed models.

The overall goal of our analysis was to verify the asymp-
totic results discussed in the literature empirically on finite
data and to investigate rank-frequency distributions for sce-
narios that are difficult to analyze theoretically. These sce-
narios are meant to fill a gap between the crudest model of
natural language—the memoryless “monkey” case—and the
behavior of actual natural language in order to investigate the
validity of Zipf’s law for higher-order but yet artificial models
of natural language.

3.1 Zipf’s law across different corpora
We performed experiments with Zipf’s original corpus—
Shakespeare’sHamlet—, Goethe’sFaust, a corpus of Reuters
news articles from August 20-22, 1996, and part of the
Linux kernel (version 2.6.11.7, all C files inkernel ,
kernel/irq , kernel/power , fs/ext3 , fs/afs ,
init and lib directories). For all our analyses, we con-
verted the text to lower case and removed all characters apart
from the letters A through Z and the space character. Fig-
ure 3.1 gives the rank-frequency distributions of the corpora.
Barring the ten most frequent words, all three purely natural-
language corpora follow a nice Zipf distribution, Reuters
yielding the straightest curve. The curve of the Linux ker-
nel, on the other hand, seems to follow a log-normal distribu-
tion. Consisting mainly of C-language and partly of natural-
language comments, the vocabulary size (and thus maximum
word-length) is severely restricted. Thus a more log-normal
behavior of the rank-frequency distribution is expected.
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Figure 1: Comparison of corpora.
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Figure 2: Rank-frequency curves of several zero- and first-order Markov models.

3.2 Uniform letter probabilities
The first experiment concerns Miller’s scenario of a monkey
typing letters with uniform probabilities. Figure 2(a) shows
the rank-frequency distribution resulting from generated data
for the original two-letter case as well as for all 26 letters of
the alphabet.2 For comparison, the graph also contains the
rank-frequency distribution ofHamlet—and a line with slope
−1. One can see that the graph shows a step-behavior as op-
posed to the much smoother Zipf curve. This is due to the fact
the number of words of a given length—which, in the uni-
form case, directly determines their expected frequencies—
increases exponentially in the word length, as indicated in
Section 1. When the number of words in the corpus grows
large, words of greater length are expected to occur in the cor-
pus, and thus the number of steps in the graph increases, so
that on a bigger scale the graph looks more and more linear.
In the two-letter case words of greater length are produced
earlier; thus, more steps can be seen in the corresponding
graph than in the 26-letter case, whose only distinguishable
step is the one from rank 1 to rank 27 representing the 26
words of length one. Also, the slope in the two-letter case is
steeper than the slope in the 26-letter case, as predicted by the
theory.

3.3 First order Markov processes
One might wonder whether the power-law behavior of the
rank-frequency curve is valid for more sophisticated but yet
artificial language models. We studied the case of a first-
order Markov process underlying the generation of letters.
The model has 27 states for the letters of the alphabet and
the space key. As previously, generation of the space key is
interpreted as the end of a word.

2Here and in Figure 2(b), two (nearly identical) graphs are shown
for each distribution from generated data, reflecting the small vari-
ance in results from different runs.

The first model explored is only a slight generalization: a
monkey typing on anergonomickeyboard, separated into two
halves. We assume the monkey uses its left hand to type on
the left keyboard half, and its right hand for the other half,
thereby alternating letter-by-letter between its hands. The
space key is assumed to be reachable by both hands and each
letter is again equally likely. Note that this model is an HMM
in the spirit of Section 2, having two states for each keyboard
half with emission probabilities for the respective symbols
and one absorbing space key state. It also can be viewed as
a first-order Markov model with transition probability1/14
of a letter in one half of the keyboard transitioning to a letter
in the other half (or space), and probability zero for all other
transitions. Figure 2(b) shows the resulting rank-frequency
distribution, strikingly similar to the above 26-letter case of
Miller’s monkey.

In the next experiments, the transition matrix governing the
transition probabilities from a given state to the next one was
assigned (i) randomly from an elementwise uniform distribu-
tion with subsequent normalization and (ii) as the maximum-
likelihood estimate from theHamletcorpus. Figure 3 shows
the rank-frequency curves from the generated data and from
the original data. Unsurprisingly, the data generated accord-
ing to the maximum likelihood estimate fromHamletyields
a curve much closer to the original rank-frequency curve as
compared to data from random transition matrices. Striking,
however, is the similarity of the rank-frequency curves from
the different random transition matrices. The irregular transi-
tion matrix estimated from actual natural language leads to a
good approximation of a line with slope−1, whereas the truly
random transition matrices yield a curve that is more similar
to the zero-order uniform case of the memoryless Miller mon-
key, with the difference that the large step from rank 1 to rank
27 is much smoother in the random first-order Markov model
case.

The question arises whether different initial-state distribu-
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tions can lead to fundamentally different types of generated
corpora for a given transition matrix. The answer is no: As
long as there is a non-zero probability path from each state
to the space state, the initial distribution will only have influ-
ence on the first word in the corpus. After that word has been
generated, we are always in the space state, which caused the
end of the first word, and thus from now on the initial distri-
bution is irrelevant. In our experiments, the initial state for the
first-order Markov model was chosen to be the space state.

3.4 Convergence of Markov processes with
increasing order

In his groundbreaking paper[14] on information theory,
Shannon hypothesized that text generated by Markov mod-
els of increasing order estimated from natural language text
should increasingly resemble the underlying natural lan-
guage. For reasons of data-sparseness, it has been impos-
sible to estimate a sufficiently close Markov model to ver-
ify this claim. A weaker claim is that there is a sequence
of Markov models of increasing order whose rank-frequency
distribution converges to the rank-frequency distribution of
natural language. We verified this claim empirically on the
Reuters corpus by estimating higher-order Markov models
(HOMMs) from the data. Table 1 lists the most frequent
words in the original data set and in artificial corpora gener-
ated by first-, third-, and sixth-order Markov models. While
the first-order model still gives clear precedence to one- and
two-letter words as in the case of Miller’s uniform zero-order
model, the top-50 words generated by the third-order model
are already a nearly-perfect permutation of the original top-
50 words. The sixth-order model yields words at ranks 1-50
with even nearly identical positions as in the Reuters data.

Figure 4(a) displays the rank-frequency distributions of the
Reuters corpus and corpora generated from Markov Models
of orders 1 to 6. Clearly, the graphs become increasingly
close to the true distribution and are nearly indistinguishable
from it for orders 5 and 6. In order to quantify the conver-
gence behavior, we computed theL2 distance between the
true and the artificial curve for each Markov model (Figure
5(a)). The distance is monotonically decreasing with increas-
ing Markov order and appears to converge to zero asymptoti-
cally.

Overfitting issues and corpus homogeneity In the above
experiments, we tested models estimated from a corpus
against the very same corpus. This is objectionable since the
convergence results might be due to overfitting. Figure 3.4
shows the rank-frequency graphs of two different sections of
the Reuters corpus (the section used in the experiment above
and a held-out section) together with the rank-frequencies of
data generated from two first-order Markov models trained
from these sections. The Reuters corpus is strikingly ho-
mogeneous in terms of rank-frequencies. The graphs for the
training and the held-out section are nearly indistinguishable.
Therefore, testing against the held-out section in the above
experiments would have resulted in approximately the same
results. As one would expect, the corpus homogeneity also
leads to strongly similar rank-frequency behavior of the cor-
responding trained first-order Markov models.
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Figure 6: Corpus homogeneity.

3.5 Convergence of Hidden Markov Models with
increasing number of hidden states

Analogously to our analysis in Section 3.4, we analyzed how
the rank frequency distributions changes if increasingly com-
plex Hidden Markov Models are estimated from the same cor-
pus of natural language text. For this experiment, we consid-
ered the first 10000 words of the Reuters corpus. For each
number of hidden statesk, we generated random initial val-
ues for the transition matrixP ∈ Rk×k, the observation ma-
trix Q ∈ Rk×27 and the initial distributionν ∈ R27 as spec-
ified in Section 2. The parameters were chosen uniformly at
random from the interval(0, 1) and then normalized to prob-
ability distributions. These matrices were then used as ini-
tial values for the Baum-Welch parameter learning algorithm
for Hidden Markov Models[2]. Since this expectation maxi-
mization method is only guaranteed to find local maxima, we
used several random restarts. For each experiment, we per-
formed 100 iterations, which provided a tolerance of approx-
imately 0.1% of the absolute log-likelihood. We then used
the learned models to generate artificial corpora of 1.5 mil-
lion words each from which we estimated the rank-frequency
distributions. Figure 7(a) shows the log-likelihoods with stan-
dard error bars for an increasing number of hidden states, and
Figure 7(b) shows the corresponding Akaike Information Cri-
terion (AIC) score. This common model selection criterion,
along with computational restrictions, led us to only consider
HMMs up to size of 200 hidden states.

Figure 8 shows an example of a learned Hidden Markov
Model with ten hidden states. Only edges and emissions with
probabilities greater than 10 percent are drawn. It is interest-
ing to see that there are two states which clearly account for
most of the vowels. Furthermore, the transitions are illumi-
nating: There is one state emitting ‘ct’ which leads with high
probability to a state emitting ‘hr’, apparently accounting for
the common consonant combinations of ‘ch’ and ‘tr’. There
is a state which likely emits spaces and the letter ‘s’, with
a self-loop. This intuitively makes sense, since many words
start and end with the letter ‘s’.

Figure 4(b) presents the rank-frequency curves for 1, 25,
75 and 200 states, along with the original data. Although the
convergence is not as drastic as for the higher order Markov
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Table 1: Most frequent words for different models, based on initial 10K words of Reuters data set.
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Figure 5: Convergence inL2 distance.

processes, it can be seen that the curve for 200 hidden states
much more closely approximates the true distribution than the
curves for fewer states. The curve for one state (the i.i.d.
case) favors the very short words (i.e. the one-letter words).
The curve for 75 states approximates the true distribution bet-
ter than the curve for 25 states for the high-frequency words
(rank 1-20) and than provides comparable performance for
the lesser ranked words.

We again computed theL2 distance between the true rank-
frequencies and the rank-frequencies for artificial text for dif-
ferent numbers of states. The results are presented in Fig-
ure 5(b). This figure also provides the standard error bars
for up to 100 states – the last two experiments could not be
repeated due to high computation time. The graph shows a
monotonically decreasingL2 distance, with the only excep-
tion that the i.i.d. case matches the true distribution more
closely than even the 10 state Hidden Markov Model. We be-
lieve that this issue – and also the high variability for these

exceptional cases of 5 and 10 states – is due to problems with
the EM learning procedure.

3.6 Structural words

Comparing the original Zipf curve for the Hamlet corpus with
the line of slope -1 as presented in Figure 2(a), we identify a
slight “bump” caused by the most frequent words (approxi-
mately up to rank 100). One possible hypothesis for the rea-
son of its occurrence is the presence of structural words, or
“stop words”. As opposed to content words, these structural
words have only grammatical purpose, and their repertoire is
limited, but they occur very often. Guided by the assump-
tion that structural words are very short, we decided to model
the generation of the text as a two component mixture of pro-
cesses: One component generates, with probabilityp, words
up to a fixed lengthk, and the other component, with proba-
bility 1− p, words of arbitrary length. Each component uses
transition probabilitiesP formalized as a first order Markov
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Figure 7: Model selection criteria.
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Figure 8: Example HMM with 10 states. Shown are only
edges and emissions with probability greater than.1.

model, which was estimated from the Hamlet corpus. The
mixture can be modeled as a Hidden Markov Model: The
hidden state is a product states = (c, j, a), consisting of an
indicatorc ∈ {1, 2} of the mixture component, the counter
1 ≤ j ≤ k of the number of emitted letters (for the bounded
length case) and the actual current emitted lettera, hence the
emission probabilities are deterministic. This mixture model
is parameterized byp and k. We experimented with vary-
ing values of these parameters, and Figure 3.6 presents re-
sults forp = 0.9 andk ∈ {2, 3}. Whereas fork = 2 the
log-normal bounded word behavior dominates, fork = 3 the
curve very closely approximates the true rank-frequency dis-
tributions. This result shows the power of Hidden Markov
Models to capture more complex stochastic behavior. It also
demonstrates that a simple modified first order model can ap-

proximate the true rank-frequency distribution very well.

3.7 Comparison of Models
Looking back at Figure 5, the convergence results are clear-
est for the case of Markov models of increasing order. Ta-
ble 1 supports this impression: While the top-50 words of the
sixth-order Markov model are nearly identical to the top-50
words in the original corpus, many unnatural words still oc-
cur in the data generated by the 200-state HMM. However,
this comparison is not quite fair: A 200-state HMM has only
approximately2002 + 200 ∗ 27 + 200 = 45600 parameters,
while a sixth-order Markov model has277 = 10.5 billion! An
appropriate comparison is the 150-state HMM, which has ap-
proximately 26000 parameters, to the second order Markov
process with approximately 20000 parameters. Figure 9(a)
shows the rank-frequency distributions of these models and
the original (Reuters) data. The curves of the two models are
conspicuously similar.

More rigorous is again the comparison of theL2 distances
in rank-frequencies between models and true data (Figure 5).
Although the complex 150-state HMM has more parameters
than the simple second-order Markov model, itsL2 distance
is slightly higher. The same happens for the case of the the
HMM with 25 states, which has almost as many parameters
as the first order Markov model but a higherL2 distance. We
believe that this is due to the fact that in the Markov model
case it is possible to explicitly compute the maximum likeli-
hood estimates of the parameters, whereas for the HMM, the
EM algorithm can get stuck in local minima. Independently
of this observation, we can conclude that one can clearly see a
convergence behavior of the rank-frequencies also in the case
of Hidden Markov Models, and the picture is more detailed
than that from the higher order Markov chains, since one has
a more fine-grained control over the number of parameters.

4 Conclusions and Future Work
We presented a literature overview discussing power-law
and log-normal distributions arising from human language
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Figure 9: Model comparison and structural / content words.

and randomly generated text. We then showed how Hid-
den Markov Models can capture the behavior of the previ-
ous models for randomly generating text and indicated how
they can lead to various rank-frequency distributions, such as
power laws and log-normal distributions. We proved an ex-
tension to Conrad’s and Mitzenmacher’s theorem[3] which
allows to explicitly compute power law exponents for Markov
chains for which the rows of the transition matrix are permu-
tations of each other. This captures the important special case
of random walks ind-regular graphs. A promising perspec-
tive for future work would be to extend this result for general
higher order Markov processes or even Hidden Markov mod-
els.

The focus of this paper was on empirical analysis of rank-
frequency behavior for randomly generated text. We showed
how the artificial rank-frequency distributions converge to the
true distribution for increasing order of the Markov process,
as well as for an increasing number of hidden states in the
HMM setting. We also proposed a mixture of processes gen-
erating both bounded and unbounded length words, which
even in the first order case closely approximates the true rank-
frequency distribution for the Reuters corpus. This mixture
can be formulated in our HMM framework. We believe that
our results shed more light on the rank-frequency behavior of
text with a varying amount of randomness.
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