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Abstract

Power laws arise through many natural processes.
Zipf showed that the frequencies of words, as they
appear in Shakespeardtamlet follow a power
law distribution. Mandelbrot explained this effect
as a result of an underlying information-theoretic
optimization problem. Miller invoked doubt by
showing that a very simple mechanism could also
explain the presence of power laws: A monkey typ-
ing words with uniformly and independently se-
lected letters would also produce word frequencies
following a power law. In consequence, several
other researchers proposed and investigated rank-
frequency distributions of randomly generated text.

In this paper, we first present a literature overview
over this exciting topic. We then propose a class
of Hidden Markov Models (HMMs) which gener-
alizes the models previously investigated, generat-
ing power law, log-normal and other behavior. We
extend a result of Conrad and Mitzenmacher for
computing the power law exponent of zero order
Markov processes to a setting which captures ran-
dom walks ind-regular graphs. In an extensive em-
pirical evaluation, we investigate convergence of
rank frequency distributions for randomly gener-
ated text to those of natural language corpora, for
increasing orders of Markov Processes and HMMs
with an increasing number of hidden states. Our
analysis uses four real-world corpora: the Reuters
corpus, Shakespeare’s Hamlet, Goethe’s Faust and
source code of the Linux kernel.

1 Introduction

Zipf's law is a mathematical model of the relationship be-
tween the frequency and frequency-rank of words in natural
language text. Estoupd] and Zipf[15] independently ob-
served this relationship after manually counting the frequency
of each word in a large amount of text. They discovered
that the frequency; of theith ranked word (in terms of fre-
quency) is roughly given by the formuja = ¢i—%, for some
parametery > 0 and normalizing constarnt which is now
know as Zipf’s law, or power law with exponeat

Apart from word frequencies, power laws have been found
to accurately model a wide range of real-world phenomena,
including the distribution of incomes[12], city sizes[16]
and the structure of the interni&. There is no a priori rea-
son why these phenomena should exhibit power law behavior.
Hence, in an effort to obtain a deeper understanding of these
phenomena, there is a significant amount of literature devoted
to finding an explanation of Zipf's law along the lines of the
Central Limit Theorem for the normal distribution. In this
paper, we review and generalize some of this literature, con-
centrating on the aforementioned rank-frequency distribution
of words.

1.1 Literature overview

The first explanation of Zipf’s law was offered by Zipf him-
self[16]. He argued that authors want to minimize the length
of text required to communicate an idea, even if this intro-
duces ambiguities. On the other hand, readers want to mini-
mize the effort required to understand (disambiguate) the text.
Zipf claimed that this trade-off, called thginciple of least
effort, leads to Zipf's law. Although his arguments were not
mathematically rigorous, recent empirical evidehkesup-
ports Zipf’s hypothesis.

Zipf's explanation was superseded by Mandellhgbtwho
used information theory to formally derive a process gener-
ating Zipf's law. Mandelbrot regarded language design as
an optimization problem, in which the aim is to maximize
the average amount of information communicated per aver-
age word cost. Suppose tld most probable word; oc-
curs with probabilityp;. Then the information which words

IActually, Pareto studied the distribution of incomes before
Zipf's law was discovered. Sdé] for details.



communicate is given by the entropy of the generating probounded word lengths has been proposed so far.

cess, namely- ). p;lgp;. Generally, we want more fre- o o

quent words to have a smaller cost (length), since they ard.2 Organization and Contributions

used more often. Mandelbrot solved the optimization prob4n the remainder of this paper, we present a particular class
lem by encoding each word; by the integeri, which has  of Hidden Markov Models as a generalization of the mod-
costlog,, i, wheren is the size of the alphabet. els described above. We show that these models can generate

Mandelbrot’s result suggests that the evolution of the Enpower laws, log-normal distributions and other behavior. Fur-
glish language is influenced by an underlying optimizationthermore, we show how to explicitly compute the power law
process. Although this appears to be a compelling explanaexponent for a specific class of Markov processes which cap-
tion, a subsequent paper by Mandelbi®}t hinted that his tures the case of random walksderegular graphs.
own optimization process had a much simpler explanation. In an extensive empirical evaluation, we investigate con-
In this paper, Mandelbrot describes a Markov model for genvergence of rank frequency distributions for randomly gen-
erating random text by way of a thought experiment, in whicherated text by Markov processes of increasing order to those
a monkey randomly types on a keyboard wittetters (the al-  of natural language corpora, aiming at verifying Shannon’s
phabet) and one space bar, where each key is pressed indep#reory. We also investigate similar convergence effects for
dently with probability inferred by the above optimal encod- HMMs estimated from natural language text, where the num-
ing. Mandelbrot proved that the random text generated by thber of hidden states is gradually increased. Intuitively, with
monkey is asymptotically distributed according to Zipf's law. HMMs we have much finer control over the number of param-
Miller [10] considered a special case of Mandelbrot’s experi-eters involved in the estimation, and hence we would expect
ment in which the monkey hits the keysiformly at random  a slower and more detailed picture about the convergence of
Although there is no underlying optimization in this exper- the rank-frequency distributions. The reason for this is that
iment, the limiting behavior is still Zipf's law. The reason the number of parameters grows exponential in the order of
for this is purely statistical - the number of words of length the Markov process, whereas they only grow polynomially in
I, which isn!, increases exponentially i while the prob-  the number of hidden states of the HMM.

. . 1\ Motivated by the hypothesis that languages consist of a
ability that such a word occurs, which (g — m) n+1? repertoire of structural words as well as an ever growing
decreases exponentially inA simple calculation shows that collection of content words, along with the assumption that
it is the trade-off between these two properties that leads tetructural words have short length, we analyze mixtures of
Zipf's law. Miller concluded that Zipf’s law can be derived processes. In these mixtures, one component generates text
“without appeal to least effort, least cost, maximal informa-of bounded length, and the other component generates text
tion, or any branch of the calculus of variatidns of unbounded length. We show that the rank frequency dis-

Perline[13] considered the monkey-at-a-typewriter exper-tributions of these mixtures correspond more closely to the
iment with fixed word sizé and an arbitrary probability dis- observed natural rank-frequency distributions. Our analysis
tribution over the letters. This model leads to a log-normaluses four real-world corpora: the Reuters corpus of news ar-
distribution in the following way. Lep; be the probability ticles, Shakespeareldamlet Goethe’'sFaustand C source
that the monkey types thgh letter of the alphabet, and let code of the Linux kernel.

X, = p; if this is the jth letter of the current word. Then

Y = X, X, ... X gives the probability that the monkey types 2 A more general model

a randomly choseftletter word. Since th&X;’s are i.i.d and
InY = > InX;, InY converges to the normal distribution
by the Central Limit Theorem, and S6 converges to the
log-normal distribution. Perline also extended this argumen
to hold for words up to some fixed size

In this section we propose a more general framework for
Miller's [10], Perline’s[13] and Mitzenmacherd11; 3

hought experiments. We will consider what happens if the
ey strokes are generated by a Hidden Markov Model. A pair

Although this result holds for any fixed Mitzenmacher of sequences of random variables: .cy over a finite set of

[11] notes that this sequence of log-normal distributions nee@Ates> and(Oy )y over a finite alphabed and joint prob-
not converge to a log-normal distribution. In fact, under weakablllty Pris called a Hidden Markov Model (HMM) if
assumptions on the probability distribution of letters, this se- Pr(X, i1 = x| Xy = x) =
guence converges to the Zipf’'s 1da]. - - _
- Pr(Xip1 = 1| Xa = 21, , Xy = 74)

Markov processes for generating random text have been
considered before, e.g. by Mandelb{® as mentioned and theO; are conditionally independent of all other vari-
above, and byf7] who considered the case of a particular ables givenX; for all t > 1. We will assume stationarity,
two-parameter family of Markov processes. [¥], Shan- ie. Pr(Xyy = y|X; = x) = P(a,y) forall 2,y € S
non hypothesized that text generated by Markov processendPr(O; = o|X; = z) = Q(z,0) forallz € S,0 € A
of increasing order estimated from natural language wouldind¢ > 0. The HMM is fully specified by the transition
increasingly resemble natural language text. To the best ahatrix P, the emission matrixQ and an initial distribution
our knowledge, nobody derived results about rank-frequency over S. A sample fromPr is called a trajectory of the
distributions for random text generated by arbitrary MarkovHMM. Let us associate a special elementof both S and
models. Furthermore, no class of models able to describe thé& with the blank character separating words, and define this
process of generating random text both with bounded and urstate to be absorbing, i.eP(L, L) = 1. We furthermore



require thatPr(inf, X; = L < o0) = 1, Q(s, L) = 0for  whereq > 0,1 — ¢ —¢*> > 0 and letQ deterministically
s # 1L andQ(L, 1) =1, i.e. trajectories will almost surely emit the current state. Furthermore choese= (1,0,0).
reach the absorbing state, and from there only emit the chaiFhen every wordw generated by the process has probabil-
acter L. For any trajectory, we call the sequence of emissionsty ¢*(1 — ¢ — ¢2) for somek > 0. Using the terminology
o1,...,0: Up to and not including the first occurrence bf  from Mitzenmacher’s proof, we call the pseudo-rank ab.
a word (note that this might include the empty word). ThisThere is one word of pseudo-rank 0 (“a”), one of pseudo-rank
definition ensures that there is a one-to-one correspondende(“aa”), two words of pseudo-rank 2 (“ab” and “aaa”) and a
between trajectories of the HMM and words. simple induction yields that there af¢; words of pseudo-
Consider how the examples in the literature fall into thisrankk whereFy, is thek-th Fibonacci number (whet&, = 0
framework. Letu be a distribution oM \ { L}, andp > 0. andF; = 1). This can be seen from the fact that the words
The corresponding HMM will have two stateS,= {1, L}  with pseudo-rank are generated from the words of pseudo-

and we can associate with it the transition matrix rankk — 1 by appending the last character twice and from the
words of pseudo-rank — 2 by appending the last character
P= < 1 Bp 117 > flipped. Using the identi_t)Zf:1 F; = Fyyp — 1 it follows
that whenFy o — 1 < j < Fiy3 — 1, the j-th frequent
In the statel, the emission probabilities will b@(1,a) =  Word has pseudo-rank SinceF; = ®*/v/5 + o(1) where

p(a)fora e A\ {1}, andQ(L, L) = 1. Ifwe letthe initial ~® = (1 + v/5)/2 is the golden ratio, for the frequendy it
distribution bev,, = ((1 — p),p), then the distribution over follows that

the words generated by this HMM is exactly the distribution
of words generated by Miller's experiment (ifis uniform)

or Mitzenmacher's generalization. where we can directly read off bounds for the power law ex-
Of course this model captures the case where the undeponent.

lying process is specified by a Markov chain as considered The above observation leads to the following generaliza-

in [96 7|]- 'U;h's (l:aasbel'welsf :h A e;lnd each Staﬁle gmlts tion of Conrad and Mitzenmacher's Theorem:

symbols with probability 1. Such a chain can easily be trans- B

fgrmed such trrJ1at it hasyexactly one absorbjngtatey Proposition 1 (based on Theorem III-A from [3]). Let
More interestingly, the concept of HMMs allows us to for- #1 = (p1,...,pn—1,p.) b€ a distribution overd, where

malize Perline’s moddl13], where letters are chosen i.i.d. at the n-th element is associated with the blank Further-

random, but only words of a fixed lengttor of length up to ~ MOre: forl < j < mletu; = (pr)-.Pr;(n-1):PL)

| are considered. We can formulate this process as an HMVYf/here”i is a permutation of the integers ..., » — 1, and

very similarly to the i.i.d. case, but instead of a singttate, '€tAn = (0,...,0,1). Then the rank frequencies of the tra-

we will have states, . . ., I. For the case of words with length J€ctories of the Markov process defined by

exactlyl, statet + 1 follows statet with probability 1 for

g8 (VBT =2(1 g g?) < f; < goss(VEUHIZ3(1 g g2

1 <t <1[-1,and staté is deterministically followed byL. /“L_l
We furthermore require that no stateZ 1 may emit thel P = : )
symbol. For the case of words up to lengthwe simply add hn

an edge from statels ..., ! — 1 to L with probabilityp > 0. ] o ]
with start distributionu, = e; (the j-th unit vector) for any

2.1 When do we get power laws? 1 < j < n follow a power law distribution with explicitly

. : . . computable power law exponent.
We want to identify properties under which the word fre- P P P

quency distribution of a given HMM follows a power law. proof, In [3], Conrad and Mitzenmacher prove the following
In [3], Conrad and Mitzenmacher prove that in the i.i.d. casegtatement. Letl be a multiset of positive integeis > - - - >
power laws arise. 11f7], Kanter and Kessler show that this each with multiplicityw,, . . . , w,,, and enumerate the ele-
is also the case for a very specific Markov chain controlleqnents asr,, ..., oy whereN = 3. w;. For each reat > 0,
by two parameters. For the case of fixed word lengths, logtet ¢, be the number of distindN-ltupIes(ml, ...,my) of
normal behavior arisdd.3]. _ _ nonnegative integers, such thai, m;o; < v. Let D be
It is tempting to try to generalize Conrad’s and Mitzen- the |least common multiple of the denominators of the ratios
macher’s proof to the case of Markov chains. The follow-g, /4, which are assumed to be rational, andret D/aj.
ing observation indicates that this might be possibld1l,  Furthermore leff(z) = 3, w;z% andz be the unique pos-
Mitzenmacher presents a simple proof that for a two letter alitjve solution of f(x) = 1. Define
phabet and unequal probabilitigandg?, the word frequency
distributions follow a power law. Here we present a similar A — 1
proof, but for the case of a more complex Markov chain. r(1— .T(l)/r)xof/(l'o) '
LetA=S={1,2,1},

Then it holds that

¢ ¢ 1—qg—¢

P=|¢ q 1-q-¢ |, S e, ~ Al (1)
0 0 1 v<t



The proof of this Theorem by Conrad and Mitzenmacher isSection 3.3, investigate rank frequency behavior for several
very involved, and involves technigues from complex analy-first order Markov models. In Section 3.4, we will discuss the
sis. They also extend this result to the case of irrational ratiog;onvergence of the rank-frequency distributions for Markov
by passing to appropriate limits. After stating this generalmodels of increasing order. These investigations will be par-
theorem, they specialize it to the case wheyecounts the alleled in Section 3.5 for the case of Hidden Markov Models
number of words with probability} (1 — >, w;p;), where  with an increasing number of hidden states. Section 3.6 pro-
each letter is struck independently of the previous letters. Iposes a mixture model of two first order Markov processes,
this case, the,; are simply defined by = a; > --- > a,  one generating words of bounded length, and one generating
wherea; = log p; words of arbitrary length, and shows that this mixture model

To prove l?ﬁgléeneralization for permutated Markov prO_achi('eve_s rank frequency behavior very close to the true natu-
ral distribution. Finally, in Section 3.7, we compare the dif-

cesses, we only have to observe, thatounts also the num-

ber of words with probability? (1 — 3", w;p;), where each ~ferent proposed models. . .

letter is generated according to this more general process. | he overall goal of our analysis was to verify the asymp-
This can be seen by considering that word probabilities ofOliC results discussed in the literature empirically on finite
words of lengthn + 1 are constructed by multiplying word datg and to investigate rank-frequency dlstrlbutlons for sce-
probabilities of words of length by some entry of thg-th ~ Narios that are difficult to analyze theoretically. These sce-
row of the transition matri¥>, wherej is the respective-th ~ Narios are meant to fill a gap between the crudest model of
letter. As the base case, the unique word with length 0 (th@atural language—the memoryless "monkey” case—and the
empty word) always has probability — 3>, w;p;. Hence, ehalworof.ac,tual natural language in order to investigate the
the assumption of independent key presses is not necessa ,I|d|ty of Zipf’s law for higher-order but yet artificial models
the fact that word probabilities are constructed by the sam@' natural language.

factors as in the independent case is sufficient. O 3.1 Zipf's law across different corpora

Note that this extension applies to the interesting specialWe performed experiments with Zipf's original corpus—
case of random walks i@regular graphs, where the random Shakespeareldamlet—, Goethe'sraust a corpus of Reuters
walk ends with a probability which is the same for every news articles from August 20-22, 1996, and part of the
node in the graph. It remains true for the directed case, whereinux kernel (version 2.6.11.7, all C files ikernel
each node has exacttyoutgoing edges, and each node dis-kernellirq , kernellpower , fs/ext3 , fs/afs
tributes probabilitie®, . . . , p; over all outgoing edges. init andlib directories). For all our analyses, we con-

One might wonder whether all Markov models lead toverted the text to lower case and removed all characters apart
power law behavior. Consider the following counterexamplefrom the letters A through Z and the space character. Fig-
of a Markov Chain for which the distribution neither follows ure 3.1 gives the rank-frequency distributions of the corpora.
a power law nor a log-normal distribution. Ldt S, Q,» be  Barring the ten most frequent words, all three purely natural-
defined as above and language corpora follow a nice Zipf distribution, Reuters
yielding the straightest curve. The curve of the Linux ker-
nel, on the other hand, seems to follow a log-normal distribu-
tion. Consisting mainly of C-language and partly of natural-
language comments, the vocabulary size (and thus maximum
word-length) is severely restricted. Thus a more log-normal
behavior of the rank-frequency distribution is expected.
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whereg+¢? = 1. Allwords w generated by this process have
probabilitiesq® - ¢® for k > 1. We again calk the pseudo-
rank ofw. In this case, a simple induction yields that there are
exactlyk words of pseudo-rank. Hence wherk(k—1)/2 < 10
j < k(k +1)/2, the j-th frequent word has pseudo-rahk

i . < Shakespeare’s
we fi,d - NTE “2\..~~  Hamlet

VA48 < (VAT 243 ’ s

~ Linux
. . % Kernel
and hence we do not get power law behavior. In this case, the o Ggethi‘s S
. - F aus X
number of words with pseudo-rarkgrows only polynomi- %

ally in k.

Reuters .
Corpus 5

Word frequency

3 Experiments T

In this section we provide extensive evidence that rank fre-

qguency distributions from a variety of natural and artificial ‘ ‘

text corpora follow power law behavior. 10 10 10’ 10 10
Initially, in Section 3.1, we introduce the four natural text Word rank

corpora used in our analysis. In Section 3.2 we reproduce ) )

the asymptotic results about randomly typing monkeys dis- Figure 1: Comparison of corpora.

cussed in10 empirically on finite data. We will then, in
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(a) Miller's monkey for two and 26 letters. (b) Monkey on an ergonomic keyboard.

Figure 2: Rank-frequency curves of several zero- and first-order Markov models.

3.2 Uniform letter probabilities The first model explored is only a slight generalization: a

The first experiment concerns Miller's scenario of a monkeyMonkey typing on asrgonomickeyboard, separated into two
typing letters with uniform probabilities. Figure 2(a) shows halves. We assume the monkey uses its left hand to type on
the rank-frequency distribution resulting from generated data"€ |€ft keyboard half, and its right hand for the other half,
for the original two-letter case as well as for all 26 letters oftnereby alternating letter-by-letter between its hands. The
the alphabe?. For comparison, the graph also contains theSPace key is assumed to be reachable by both hands and each
rank-frequency distribution dlamlet—and a line with slope ~ 1€tter is again equally likely. Note that this model is an HMM
—1. One can see that the graph shows a step-behavior as dp-the spirit of Section 2, having two states for each keyboard
posed to the much smoother Zipf curve. This is due to the fa alf with emission probabilities for the respective symbols
the number of words of a given length—which, in the uni- an(_j one absorbing space key state. I_t_also can b_e_ viewed as
form case, directly determines their expected frequencies—2 first-order Markov model with transition probability14
increases exponentially in the word length, as indicated iipf a letter in one half of the keyboard transitioning to a letter
Section 1. When the number of words in the corpus growd" the other half (or space), and probability zero for all other
large, words of greater length are expected to occur in the coffansitions. Figure 2(b) shows the resulting rank-frequency
pus, and thus the number of steps in the graph increases, gbstr|t?ut|on, strikingly similar to the above 26-letter case of
that on a bigger scale the graph looks more and more lineafillér's monkey. B . .

In the two-letter case words of greater length are produced N the nextexperiments, the transition matrix governing the
earlier; thus, more steps can be seen in the correspondiffggnsition probabilities from a given state to the next one was
graph than in the 26-letter case, whose only distinguishabl@ssigned (i) randomly from an elementwise uniform distribu-
step is the one from rank 1 to rank 27 representing the 280N With subsequent normalization and (ii) as the maximum-
words of length one. Also, the slope in the two-letter case idikelihood estimate from thelamletcorpus. Figure 3 shows
steeper than the slope in the 26-letter case, as predicted by tHe rank-frequency curves from the generated data and from

theory. the original data. Unsurprisingly, the data generated accord-
ing to the maximum likelihood estimate frorlamletyields
3.3 First order Markov processes a curve much closer to the original rank-frequency curve as

ompared to data from random transition matrices. Striking,

One might wonder whether the power-law behavior of the’ . AT
owever, is the similarity of the rank-frequency curves from

rank-frequency curve is valid for more sophisticated but ye_he different random transition matrices. The irregular transi-

artificial language models. We studied the case of a ﬁrStti n matrix estimated from actual natural lan leads t
order Markov process underlying the generation of letters; Ood aa roe'smataoﬁ ofgl'ngc utﬁ slg ula %e?ggsg?hee?r T oa
The model has 27 states for the letters of the alphabet angl pproximat Iné wi peL, w uly

the space key. As previously, generation of the space key i?r:gorzn trra_nf(ljtlorn rr:;?trrhc]es yleldf %C%V?nth?tl IS ml\c/l)irl? ?'rr:'lﬁf
interpreted as the end of a word. 0 the zero-oraer uniform case or the memoryiess Wiiller mo

key, with the difference that the large step from rank 1 to rank
2Here and in Figure 2(b), two (nearly identical) graphs are showr? 7 IS much smoother in the random first-order Markov model

for each distribution from generated data, reflecting the small variCase.
ance in results from different runs. The question arises whether different initial-state distribu-
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tions can lead to fundamentally different types of generated | .

corpora for a given transition matrix. The answer is no: As -
long as there is a non-zero probability path from each state e Original data
to the space state, the initial distribution will only have influ- . S ;3‘()&“\,(\’,02;;‘;
ence on the first word in the corpus. After that word has been ) 10 Y -
generated, we are always in the space state, which caused thes =
end of the first word, and thus from now on the initial distri- §
b_ution isirrelevant. In our experiments, the initial state for the 2 10 First order Markov mode)
first-order Markov model was chosen to be the space state. = for both subsets
3.4 Convergence of Markov processes with 10l
increasing order
In his groundbreaking papdr4] on information theory, 1o o 0 o
Shannon hypothesized that text generated by Markov mod- Word rank
els of increasing order estimated from natural language text
should increasingly resemble the underlying natural lan- Figure 6: Corpus homogeneity.

guage. For reasons of data-sparseness, it has been impos-
sible to estimate a sufficiently close Markov model to ver- . .
ify this claim. A weaker cIai% is that there is a sequence?"5 _Conver_gence of Hldder_1 Markov Models with
of Markov models of increasing order whose rank-frequency increasing number of hidden states
distribution converges to the rank-frequency distribution ofAnalogously to our analysis in Section 3.4, we analyzed how
natural language. We verified this claim empirically on thethe rank frequency distributions changes if increasingly com-
Reuters corpus by estimating higher-order Markov modelgplex Hidden Markov Models are estimated from the same cor-
(HOMMs) from the data. Table 1 lists the most frequentpus of natural language text. For this experiment, we consid-
words in the original data set and in artificial corpora generered the first 10000 words of the Reuters corpus. For each
ated by first-, third-, and sixth-order Markov models. While number of hidden statds we generated random initial val-
the first-order model still gives clear precedence to one- andes for the transition matri® € R¥**, the observation ma-
two-letter words as in the case of Miller's uniform zero-ordertrix Q € R**27 and the initial distributions € R?" as spec-
model, the top-50 words generated by the third-order modeied in Section 2. The parameters were chosen uniformly at
are already a nearly-perfect permutation of the original toprandom from the interval0, 1) and then normalized to prob-
50 words. The sixth-order model yields words at ranks 1-5Qability distributions. These matrices were then used as ini-
with even nearly identical positions as in the Reuters data. tial values for the Baum-Welch parameter learning algorithm
Figure 4(a) displays the rank-frequency distributions of thefor Hidden Markov Model§2]. Since this expectation maxi-
Reuters corpus and corpora generated from Markov Modelgization method is only guaranteed to find local maxima, we
of orders 1 to 6. Clearly, the graphs become increasinglyised several random restarts. For each experiment, we per-
close to the true distribution and are nearly indistinguishabléormed 100 iterations, which provided a tolerance of approx-
from it for orders 5 and 6. In order to quantify the conver- imately 0.1% of the absolute log-likelihood. We then used
gence behavior, we computed the distance between the the learned models to generate artificial corpora of 1.5 mil-
true and the artificial curve for each Markov model (Figurelion words each from which we estimated the rank-frequency
5(a)). The distance is monotonically decreasing with increasdistributions. Figure 7(a) shows the log-likelihoods with stan-
ing Markov order and appears to converge to zero asymptotiard error bars for an increasing number of hidden states, and
cally. Figure 7(b) shows the corresponding Akaike Information Cri-
terion (AIC) score. This common model selection criterion,
Overfitting issues and corpus homogeneity In the above along with computational restrictions, led us to only consider
experiments, we tested models estimated from a corpudMMs up to size of 200 hidden states.
against the very same corpus. This is objectionable since the Figure 8 shows an example of a learned Hidden Markov
convergence results might be due to overfitting. Figure 3.Model with ten hidden states. Only edges and emissions with
shows the rank-frequency graphs of two different sections oprobabilities greater than 10 percent are drawn. It is interest-
the Reuters corpus (the section used in the experiment abougg to see that there are two states which clearly account for
and a held-out section) together with the rank-frequencies afost of the vowels. Furthermore, the transitions are illumi-
data generated from two first-order Markov models trainechating: There is one state emitting ‘ct’ which leads with high
from these sections. The Reuters corpus is strikingly hoprobability to a state emitting ‘hr’, apparently accounting for
mogeneous in terms of rank-frequencies. The graphs for théie common consonant combinations of ‘ch’ and ‘tr'’. There
training and the held-out section are nearly indistinguishableis a state which likely emits spaces and the letter ‘s’, with
Therefore, testing against the held-out section in the above self-loop. This intuitively makes sense, since many words
experiments would have resulted in approximately the samstart and end with the letter ‘s’.
results. As one would expect, the corpus homogeneity also Figure 4(b) presents the rank-frequency curves for 1, 25,
leads to strongly similar rank-frequency behavior of the cor-75 and 200 states, along with the original data. Although the
responding trained first-order Markov models. convergence is not as drastic as for the higher order Markov
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9 | re th it ang r s S S
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14 m en if and at in is was was
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17 g to an che for te with from by
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29 se er er t tue by would | which he
30 | oe hs thed thin will me year an an
31 ei tor e sto ants ce not has which
32 es Sss u tho mon C up have have
33 eo al ped ats t we have would market
34 en co sed or they ay they are had
35 ne ont sang its u ts ther market are
36 re at t mar wat se market | were new
37 er thy ho no inter is we not were
38 aa ot ins py con id which | new would
39 tt es p ther sail ad this had not
40 || at cre ons they ther ar are company|| company
41 st she ther than fors re u after this
42 ot con who thit dor al or this after
43 to pe sat has co SS first up up
44 ta te its be thesdas pr his u we
45 || oo tar ser stry if of no we they
46 tn tin ip af are to mill first first
a7 an is af that fow it their billion billion
48 ar whe con all mare de per they u
49 ti ten se may cost ve been one one
50 Ss ti wo haid inted nd who their or

Table 1: Most frequent words for different models, based on initial 10K words of Reuters data set.
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Figure 5: Convergence ih, distance.

processes, it can be seen that the curve for 200 hidden statesceptional cases of 5 and 10 states — is due to problems with
much more closely approximates the true distribution than théhe EM learning procedure.

curves for fewer states. The curve for one state (the i.i.d.

case) favors the very short words (i.e. the one-letter words)3.6  Structural words

The curve for 75 states approximates thg true distribution betComparing the original Zipf curve for the Hamlet corpus with
ter than the curve for 25 states for the high-frequency Word?’he line of slope -1 as presented in Figure 2(a), we identify a
Err]aenllé slsgror) a?]rllg Jr\;\?c:]r dpsr ovides comparable performance foélight “bump” caused by the most frequent WOI’.dS (approxi-
' mately up to rank 100). One possible hypothesis for the rea-
We again computed thk, distance between the true rank- son of its occurrence is the presence of structural words, or
frequencies and the rank-frequencies for artificial text for dif-“stop words”. As opposed to content words, these structural
ferent numbers of states. The results are presented in Figvords have only grammatical purpose, and their repertoire is
ure 5(b). This figure also provides the standard error barimited, but they occur very often. Guided by the assump-
for up to 100 states — the last two experiments could not b&ion that structural words are very short, we decided to model
repeated due to high computation time. The graph shows e generation of the text as a two component mixture of pro-
monotonically decreasing, distance, with the only excep- cesses: One component generates, with probabilityords
tion that the i.i.d. case matches the true distribution moraup to a fixed lengttk, and the other component, with proba-
closely than even the 10 state Hidden Markov Model. We bebility 1 — p, words of arbitrary length. Each component uses
lieve that this issue — and also the high variability for thesetransition probabilities? formalized as a first order Markov
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Figure 8: Example HMM with 10 states. Shown are only
edges and emissions with probability greater than

model, which was estimated from the Hamlet corpus. Th
mixture can be modeled as a Hidden Markov Model: Th
hidden state is a product state= (¢, j, a), consisting of an
indicatorc € {1,2} of the mixture component, the counter
1 < j < k of the number of emitted letters (for the bounded
length case) and the actual current emitted letférence the

emission probabilities are deterministic. This mixture model

is parameterized by andk. We experimented with vary-
ing values of these parameters, and Figure 3.6 presents
sults forp = 0.9 andk € {2,3}. Whereas fork = 2 the
log-normal bounded word behavior dominates,fct 3 the

curve very closely approximates the true rank-frequency dis

tributions. This result shows the power of Hidden Markov

€
€

proximate the true rank-frequency distribution very well.

3.7 Comparison of Models

Looking back at Figure 5, the convergence results are clear-
est for the case of Markov models of increasing order. Ta-
ble 1 supports this impression: While the top-50 words of the
sixth-order Markov model are nearly identical to the top-50
words in the original corpus, many unnatural words still oc-
cur in the data generated by the 200-state HMM. However,
this comparison is not quite fair: A 200-state HMM has only
approximately200? + 200 * 27 + 200 = 45600 parameters,
while a sixth-order Markov model h&g” = 10.5 billion! An
appropriate comparison is the 150-state HMM, which has ap-
proximately 26000 parameters, to the second order Markov
process with approximately 20000 parameters. Figure 9(a)
shows the rank-frequency distributions of these models and
the original (Reuters) data. The curves of the two models are
conspicuously similar.

More rigorous is again the comparison of the distances
in rank-frequencies between models and true data (Figure 5).
Although the complex 150-state HMM has more parameters
than the simple second-order Markov model,fitsdistance
is slightly higher. The same happens for the case of the the
HMM with 25 states, which has almost as many parameters
as the first order Markov model but a highler distance. We
believe that this is due to the fact that in the Markov model
case it is possible to explicitly compute the maximum likeli-
hood estimates of the parameters, whereas for the HMM, the
EM algorithm can get stuck in local minima. Independently
of this observation, we can conclude that one can clearly see a
convergence behavior of the rank-frequencies also in the case
of Hidden Markov Models, and the picture is more detailed

fian that from the higher order Markov chains, since one has

a more fine-grained control over the number of parameters.

4 Conclusions and Future Work

Models to capture more complex stochastic behavior. It alséVe presented a literature overview discussing power-law
demonstrates that a simple modified first order model can a@nd log-normal distributions arising from human language
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and randomly generated text. We then showed how Hidf3]
den Markov Models can capture the behavior of the previ-
ous models for randomly generating text and indicated how
they can lead to various rank-frequency distributions, such a
power laws and log-normal distributions. We proved an ex-
tension to Conrad’s and Mitzenmacher’s theord@hwhich (5]
allows to explicitly compute power law exponents for Markov (6]
chains for which the rows of the transition matrix are permu-
tations of each other. This captures the important special case
of random walks ind-regular graphs. A promising perspec- [7]
tive for future work would be to extend this result for general
higher order Markov processes or even Hidden Markov mod£8]
els.

The focus of this paper was on empirical analysis of rank.9l
frequency behavior for randomly generated text. We showed
how the artificial rank-frequency distributions converge to the[1 ]
true distribution for increasing order of the Markov process,
as well as for an increasing number of hidden states in the j]
HMM setting. We also proposed a mixture of processes gen-
erating both bounded and unbounded length words, which
even in the first order case closely approximates the true ranki2]
frequency distribution for the Reuters corpus. This mixture
can be formulated in our HMM framework. We believe that [13]
our results shed more light on the rank-frequency behavior of
text with a varying amount of randomness. [14]
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