
TypeChef: Toward Type Checking #ifdef Variability in C

Andy Kenner
Metop Research GmbH
Magdeburg, Germany

andy.kenner@metop.de

Christian Kästner
Philipps University Marburg

Marburg, Germany
kaestner@informatik.

uni-marburg.de

Steffen Haase,
Thomas Leich

Metop Research GmbH
Magdeburg, Germany

haase/leich@metop.de

ABSTRACT
Software product lines have gained momentum as an approach to
generate many variants of a program, each tailored to a specific
use case, from a common code base. However, the implementation
of product lines raises new challenges, as potentially millions of
program variants are developed in parallel. In prior work, we and
others have developed product-line–aware type systems to detect
type errors in a product line, without generating all variants. With
TypeChef, we build a similar type checker for product lines writ-
ten in C that implements variability with #ifdef directives of the
C preprocessor. However, a product-line–aware type system for C
is more difficult than expected due to several peculiarities of the
preprocessor, including lexical macros and unrestricted use of #ifdef
directives. In this paper, we describe the problems faced and our
progress to solve them with TypeChef. Although TypeChef is still
under development and cannot yet process arbitrary C code, we
demonstrate its capabilities so far with a case study: By type check-
ing the open-source web server Boa with potentially 2110 variants,
we found type errors in several variants.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures; D.3.4 [Programming Languages]: Processors—Preproces-
sors; D.2.13 [Software Engineering]: Reusable Software

General Terms
Languages, Reliability, Theory

Keywords
Type system, conditional compilation, C, cpp, #ifdef, partial prepro-
cessor, disciplined annotations

1. INTRODUCTION
Software product line engineering is an efficient means to implement
variable software. By selecting from a set of features, a developer
can generate different program variants from a common product-line

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’10 October 10, 2010, Eindhoven, The Netherlands
Copyright 2010 ACM 978-1-4503-0208-1/10/10 ...$10.00.

implementation. However, variability comes at a price of increased
complexity. Instead of developing and testing a single variant, devel-
opers deal with potentially millions of variants in parallel. Already
with a few features, we quickly reach a point at which it is no longer
possible to compile and run every possible variant in isolation, due
to the vast number of variants (up to 2n variants for n features).

To address this problem, researchers have developed mecha-
nisms that check certain criteria for the entire product line, in-
stead of checking each variant in isolation. This ranges from sim-
ple guarantees of syntactic correctness [22], to dead-code detec-
tion [34, 35], to type checks and similar referential-consistency
checks [1, 2, 8, 16, 21, 36], and to behavioral checks using, among
others, model checking [7, 14, 24, 31]. Usually, the idea is to ana-
lyze source code before variant generation when it still includes its
variability mechanisms; the approaches check implemented variabil-
ity against the variability model, which describes all valid feature
combinations.

Especially, product-line–aware type checking (or reference check-
ing, or safe composition) has shown to scale [8, 20, 36]; type check-
ing an entire software product line with millions of variants is usually
as fast as checking a handful of variants in isolation. Product-line–
aware type checking has been explored for different variability im-
plementations, most prominently for AHEAD-style feature modules
and class refinements [1, 36] and for annotation-based implementa-
tions (typically using some form of conditional compilation, also
known as negative variability) [2,8,16,21]. However, corresponding
type systems were usually targeted at dialects of Java (or Feather-
weight Java) which limited their applicability to industrial software
product lines.

A typical setting to implement variability in industrial software
product lines is to use C as programming language [17] and use
conditional-compilation directives (#ifdef, #if, #elif, #else, #endif)
of the C preprocessor cpp to implement variability (despite broad
criticism on the C preprocessor, which is out of scope here). Al-
though we are unaware of any statistics or surveys on industrial
product-line implementation, our personal communication with tool
providers and developers indicates that actually a majority of indus-
trial software product lines are implemented with the C preprocessor.
For example, HP’s product line Owen for printer firmware with over
2000 features implements variability entirely with cpp [29, 32];
so do many open source programs [25], of which the Linux ker-
nel with over 8000 features is probably the most prominent exam-
ple [25, 33, 35]. Three more examples of industrial product lines
presented at last year’s Software Product Line Conference that im-
plement variability at least partially with preprocessors are Danfoss’
product line of frequency converters [18], Wikon’s product line
of remote control systems [30], and NASA’s product line of flight
control systems [11].

Our overall goal is to type check an entire product line written in
C and cpp with all its variants. To this end, we construct a product-
line–aware type checker called TypeChef (type checking #ifdefs).
Unfortunately, the transfer from a confined research setting in the
Java environment to industrial C code turned out much harder than
expected. Even though C’s type system is rather simple, the C pre-
processor cpp makes analysis difficult. In a nutshell, cpp works on
token level; it can be (and is) used at fine granularity and in patterns
that are very hard to understand by analysis tools. Additionally, file
inclusion and lexical macro substitution (which were not present in
previous Java settings) interfere with our analysis, especially when
macros are conditionally defined or have alternative expansions. Fi-
nally, also presence conditions for code are more complex; cpp does
not only allow propositional formulas after #if directives, but also
integer constants (which may be defined, redefined, or undefined
during preprocessing) and various operations on them.

In this paper, we describe the problems of type checking a product
line implemented with C and cpp and describe our solution with
TypeChef so far. Specifically, we designed a partial preprocessor
to tame cpp directives to a disciplined level; and we designed and
implemented a type checker that understands #ifdef directives and
checks them in a way similar to previous product-line–aware type
systems. TypeChef is work in progress; we cannot parse arbitrary
C code, yet; we do not support alternatives and some manual code
preparation is still necessary. Nevertheless, we have already applied
TypeChef to a small open-source implementation of the Boa web
server with 110 features and found several inconsistencies.

In summary, we make the following contributions: (1) We outline
the difficulties of product-line–aware type checking for C code.
(2) We present and implement an initial solution with TypeChef.
(3) In that context, we propose the concept of a partial preprocessor
to handle file inclusion and macro substitution. (4) We demonstrate
how TypeChef can detect inconsistencies in a small case study.

2. PRODUCT-LINE–AWARE TYPE CHECK-
ING

Let’s start by revisiting the basic idea behind product-line–aware
type systems, without considering the particularities of cpp, yet.

Consider the trivial code fragment in Figure 1. It does nothing
more than output a single line of text. However, which text this is
depends on preprocessor flags (or features in a product-line context).
Lines 4 and 7 are only compiled if the corresponding features are
selected; otherwise cpp removes the code before compilation. To
describe when a code fragment is included, we speak of a presence
condition pc; a code fragment is only included when its presence
condition evaluates to true for the given feature selection. Line 4
has the presence condition pc(line4) = WORLD, i.e., it is only
included when feature WORLD is selected.1 This small program,
which we can consider as product line, has two features (WORLD

and BYE) and can generate four possible variants (with neither
feature, with both features, or with either feature). Only two of these
four variants will compile though. The compiler will issue an error
for the second definition of variable msg (“Line 7: redefinition of
msg”) when both features are selected and will issue an error about
a dangling reference (“Line 11: msg undeclared”) when neither
feature is selected.

With a product-line–aware type system, we want to guarantee
that all potential variants of a product line are well-typed, without

1Deriving presence condition from #ifdef, #elif, and #else direc-
tives (including nesting) is straightforward; for a formal definition
see [34]. A code fragment that is not nested in #ifdef directives has
the presence condition true, i.e., it is included in all variants.

1 #include <stdio.h>
2
3 #ifdef WORLD
4 char * msg = "Hello World\n";
5 #endif
6 #ifdef BYE
7 char * msg = "Bye bye!\n";
8 #endif
9

10 main() {
11 printf(msg);
12 }

Figure 1: Example C program

generating all variants. That is, we want to check types before
running the preprocessor with a specific feature combination but
still guarantee that all variants compile after generation.

In a nutshell, we resolve references and compare annotations
in the original code, typically based on an underlying abstract-
syntax-tree representation. In Figure 1, printf references a function
that is declared in the included stdio.h file and msg references the
declarations in Line 4 or 7. Based on these reference pairs, we
compare the annotated features. The function call printf in Line 11
is not annotated by a feature, neither is the function declaration in
stdio.h; hence, both call and declaration are included in all variants
and do not cause type errors. However, variable msg is only declared
when feature WORLD or feature BYE is included, but referenced
in all variants, so we can predict that some variants will not compile.
Similarly, we can identify that there are variants in which both
variable declarations are included at the same time and issue an
error.

In most cases, checking annotations regarding all possible fea-
ture combination is too strict though. Typically, domain experts
restrict possible feature combinations in a product line, for exam-
ple, by specifying that either feature WORLD or BYE has to be
selected in every variant. In product-line engineering, it is best prac-
tice to document such domain knowledge in variability models. A
variability model describes the intended variability of the program.
Typical forms of variability models are feature models and their
graphical representation as feature diagrams [19], but some projects,
such as the Linux kernel, have their own variability-modeling lan-
guages [35].

A product-line–aware type system can use a variability model
as input and type check only variants allowed by the variability
model, instead of all feature combinations. Mathematically, check-
ing only allowed variants is expressed as VM → (pc(caller) →
pc(target)); that is, the presence condition of the caller must imply
the presence condition of the target in all variants allowed by the
variability model VM. Similarly, we can check for redefinitions of
variables or functions with VM → ¬(pc(def1)∧pc(def2)). If the
formula is not a tautology (determinable by a SAT solver or other
solvers), we issue an error message and can provide an example of
a feature selection that causes a type error. For reasoning in a type
system, most kinds of variability models can be translated directly
into logics [4, 36], and reasoning about them is tractable for even
very large models [27]. Our experience shows that the time spent by
SAT solvers to determine tautologies is negligible compared to the
remaining lookup processes [20].

Given a feature model VM = (WORLD∨BYE)∧¬(WORLD∧

BYE) that defines that exactly one feature must be selected in all
variants, we can statically guarantee that the code from Figure 1 is
well-typed in all variants: the check regarding printf is trivially a
tautology (VM → true → true), the reference check regarding

msg is a tautology (VM → true → (WORLD ∨ BYE)), and
also the condition to prevent redefinition is a tautology (VM →
¬(WORLD∧ BYE)).

Checked Properties. Our aim is to find type errors. That is, we
want to find the same errors for the entire software product line that
a compiler would find for a specific variant. We neither address
dynamic properties nor further static properties beyond the type
system, such as single assignment. That is, we ensure that each
variant compiles, but not that it has meaningful runtime semantics.
Adopting static analysis and behavioral checks to software product
lines are interesting but separate research challenges [7, 14, 24, 31].

The type system of C is considered as weak, because of implicit
type conversion, and unsafe, mainly because of casts between point-
ers. Chandra and Reps [6] summarize “In C, a pointer of a given
type can be cast into any other pointer type. Because of this, a
programmer can interpret any region of memory to be of any type.
Traditional type checking for C cannot enforce that such reinter-
pretation of memory is done in a meaningful way, because the C
standard allows arbitrary type conversions between pointer types.
For this reason, C compilers and tools such as lint do not provide
any warnings against potential runtime errors arising from the use
of casts.”

Still, there are many kinds of errors that the C type system de-
tects, including dangling variable references (as in Figure 1), dan-
gling function calls, function calls with an incorrect number of
parameters, redefinitions of functions and variables, references to
undefined types, and type mismatch for assignments and function
arguments [17]. Our long-term goal is to cover the entire type sys-
tem of C as specified in the standard [17]. Nevertheless, we start
by checking references (to variables, functions, type declarations),
because they are most problematic in a product-line setting, in our
experience.

3. PARSING PRE-CPP CODE IS HARD
The main challenge in type checking C code is to parse C code
that still contains cpp directives (pre-cpp code) into a representa-
tion that allows us to look up presence conditions and references
between elements. Already parsing preprocessed C code is difficult
in practice [5], but parsing pre-cpp code is a difficult challenge,
a challenge already faced by many refactoring and code-analysis
tools [3, 9, 10, 13, 26, 28, 37]. Solution strategies either use heuris-
tics [13, 28]—which is not suitable for type checking, since we
want to give guarantees—or parse only a subset of possible input
programs [3, 26].

A common subset strategy is to build a parser that understands
C code with preprocessor directives at certain locations only. For
example, #ifdef directives may only wrap entire functions or state-
ments, but not arbitrary tokens. We call such restricted use of #ifdef
directives disciplined annotations. Given disciplined annotations,
we can create an abstract syntax tree and assign presence conditions
to subtrees. Unfortunately, enforcing disciplined annotations may be
realistic when writing new code; but an earlier large-scale analysis
of 40 cpp-based product lines with a total of 30 million lines of
code [20] has shown that on average 11 % of all #ifdef directives
are not in a disciplined form. Consequently, without manual prepa-
ration or further tool support, hardly any file can be parsed with this
approach.

Additional difficulties come from macro substitution and file
inclusion. To parse C code (even when all conditional compilation
directives are disciplined), #include directives and macros must be
expanded. That is, although we want to parse pre-cpp code, we
need to handle file inclusion and macro substitution during parsing

1 #define P(msg) \
2 printf(msg);
3
4 main() {
5 P("Hello\n")
6 P("World\n")
7 }

(a) Macro-defined
syntactic structure

1 #ifdef BIGINT
2 #define SIZE 64
3 #else
4 #define SIZE 32
5 #endif
6
7 allocate(SIZE);

(b) Alternative
macro expansions

1 #ifdef SIZE==64
2 #define BIGINT
3 #endif
4
5 #ifdef BIGINT
6 //...
7 #endif

(c) Conditionally
defined features

Figure 2: Difficulties in parsing C code

nevertheless. For example, we can only check the reference of the
function call printf in Figure 1, if we include and parse stdio.h first
(and recursively the files it includes). To parse the statements in
Figure 2a, we need to expand the macro first, which inserts the
semicolon necessary to parse the body as two statements. To make
matters worse, a macro can have alternative expansions as shown
in Figure 2b, and we might need definitions of macros (which may
depend on other macros) in future presence conditions as illustrated
in Figure 2c.

Parsing pre-cpp code is the main challenge for type checking C
code, whereas detecting references on an abstract syntax tree and
checking presence conditions against a feature model is a straightfor-
ward adaptation. Undisciplined annotations, macro substitution, and
include directives were all not problems in prior approaches based
on Java and its restricted preprocessors or language extensions. In
the next section, we describe how we tackle these problems and
present a first solution with our tool TypeChef.

4. AN OVERVIEW OF TYPECHEF
TypeChef addresses the problem of analyzing pre-cpp code in mul-
tiple steps—partial preprocessor, expansion to disciplined annota-
tions, parsing, reference analysis, and solving—as illustrated in
Figure 3. We discuss each step and its challenges and solutions in
isolation.

4.1 Partial Preprocessor
First, we are interested in pre-cpp code because of its variability.
Nevertheless, we have to expand macros and file inclusions to be
able to parse the source code at all. To this end, we contribute a
partial preprocessor: We pursue the strategy to process macros and
file inclusion without affecting variability of conditional compilation
constructs. In the example of Figure 3, we recursively include all
code from stdio.h (for brevity we show only the declaration of
method printf) and replace all occurrences of the macro T by its
expansion char *. Note that the #ifdef directives are not changed.

Technically, we currently use a simple hack to implement the
partial preprocessor. With a script, we comment out all #ifdef direc-
tives (except include guards, see below) as illustrated in Figure 4,
then run the original preprocessor (which now sees only #include
and #define directives and processes them as usual), and finally
remove the comments to restore the #ifdef directives. Regarding
file inclusion, the preprocessor already provides #line directives to
maintain information where code came from; this is important to
display error messages at the correct location later on. Regarding
macro expansion, we do not store information about expansion, yet.

Include guards deserve special attention. An include guard is a
standard pattern in C to prevent multiple or recursive inclusions of a
file; it uses the same #ifdef or #ifndef directives as feature code, but
follows the pattern illustrated in Figure 5. The partial preprocessor
must process include guards, because otherwise indefinite loops can

1 #include <stdio.h>
2 #define T char *
3 main(){
4 T msg =
5 #ifdef WORLD
6 "Hello World\n";
7 #else
8 "Bye Bye!\n";
9 #endif

10 printf(msg);
11 }

(1) Partial Preprocessor ⇓

1 ...
2 int printf(const char *, ...);
3 ...
4 main(){
5 char * msg =
6 #ifdef WORLD
7 "Hello World\n";
8 #else
9 "Bye Bye!\n";

10 #endif
11 printf(msg);
12 }

(2) Expansion to Disciplined Annotations ⇓

1 ...
2 int printf(const char *, ...);
3 ...
4 main(){
5 #ifdef WORLD
6 char * msg = "Hello World\n";
7 #else
8 char * msg = "Bye Bye!\n";
9 #endif

10 printf(msg);
11 }

(3) Parsing ⇓

printf
(2: f. decl)

main
(4-11: f. def)

msg
(6: v. decl)

msg
(8: v. decl)

printf
(10: f. call)

greet.c
(1-11: file)

pc: WORLD pc: ¬WORLD pc: true

pc: true

pc: true

msg
(10: param.)

pc: true

pc: true

(4) Reference Analysis ⇓
VM → (true → true)

VM → (true → (WORLD∨ ¬WORLD))

VM → ¬(WORLD∧ ¬WORLD)

(5) Solving ⇓

“all variants are well-typed”

Figure 3: TypeChef steps

1 #include <stdio.h>
2 #define T char *
3 main(){
4 T msg =
5 //#ifdef WORLD
6 "Hello World\n";
7 //#else
8 "Bye Bye!\n";
9 //#endif

10 printf(msg);
11 }

Figure 4: Intermediate step of the partial preprocessor: Com-
menting out conditional compilation directions

1 #ifndef _FLAG
2 #define _FLAG
3 ...
4 #endif

Figure 5: Include-guard pattern

occur. Hence, we do not comment out preprocessor directives that
belong to include guards. Fortunately, we do not need to consider
include guards as variability in our type system; it is acceptable
to not have them in presence conditions. To distinguish between
include guards and #ifdef directives that implement variability, we
currently use a pattern matching mechanism: TypeChef recognizes
#ifndef and #define directives at the beginning of a file and #endif
at the end of a file as include guard. Alternatively, we could rely on
naming conventions, such as “flags for include guards start with an
underscore”, which are used in most projects anyway.

This simple partial preprocessor, based on comments, works
reasonably well. However, it has two limitations, which we currently
address in ongoing work. First, and most importantly, we cannot
support alternative macro definitions as illustrated in Figure 2b.
Second, we cannot use previously defined macros in the condition
of an #if directive as shown in Figure 2c. In ongoing work, we
are developing a more sophisticated partial preprocessor, which
can handle alternative macro definitions (by introducing additional
#ifdef directives at expansion) and conditionally defined feature
flags (roughly based on prior work on symbolic execution of cpp
directives [15, 23]).

4.2 Expansion to Disciplined Annotations
In a second step, we enforce disciplined annotations. As disciplined
annotations, TypeChef currently allows #ifdef directives that wrap
one or more entire top-level declarations and definitions (i.e., dec-
larations or definitions of function, structures, unions, and global
variables) and directives that wrap one or more statements inside a
function, or fields inside a structure or union. In contrast, TypeChef
considers conditional compilation directives at finer granularity or
around partial elements as undisciplined.

In general it is always possible to expand undisciplined annota-
tions to disciplined ones (not all of these expansions are necessarily
parseable or well-typed, of course). In the worst case, we can use
a brute-force mechanism which replicates the entire code for every
possible feature combination. To prevent the exponential complexity,
expansions at finer granularity are useful. For example, in Figure 3,
we replicate the statement and have two alternative statements in-
stead. In many cases, it might also be possible to manually rewrite
to code into a disciplined form, often by introducing additional
variables.

1 compilation_unit: external_declaration*;
2 external_declaration:
3 function_def |
4 variable_def |
5 ’#if’ cppexp ’\n’ external_declaration ’\n’ cppthenfunc;
6 cppthenfunc:
7 ’#endif’ ’\n’ |
8 ’#else’ ’\n’ external_declaration ’\n’ ’#endif’ ’\n’ |
9 ’#elif’ cppexp ’\n’ external_declaration ’\n’ cppthenfunc;

10 function_def ...

Figure 6: Extended C grammar

Name Type Scope Presence Condition

printf char * → int 0 true

msg char * 0 WORLD

msg char * 0 ¬WORLD

Figure 7: Extended symbol table for the example from Fig. 3

Currently, TypeChef does not yet automate this step, but a devel-
oper has to manually expand undisciplined annotations. In related
work, Garridio has implemented such expansion for refactoring C
code [12]; we plan a similar tool to automate the task.

4.3 Parsing
Once we have included all files, substituted all macros, and enforced
disciplined annotations, the remaining parsing is straightforward.
We take a standard C grammar and extend it with productions of
#ifdef directives as illustrated in Figure 6 (Lines 7–11 are added to
detect #ifdef directives around top-level declarations). From such
grammar, we generate a parser for TypeChef, which produces an
abstract syntax tree. Parsed #ifdef directives are either part of this
tree or can be reduced to presence conditions that are annotated at
every structural element as shown in Figure 3. For TypeChef, we
have implemented such parser with the parser generator ANTLR,
based on an existing GNU C grammar.

4.4 References Analysis
Based on the abstract syntax tree with presence conditions, Type-
Chef now looks up references that should be checked. As a result of
this step, TypeChef creates a set of formulas (one for each reference
or one conjunct formula for all references) that we can later feed
into a solver.

Reference lookup in C is mostly straightforward by iterating
once over the abstract syntax tree.2 A simple symbol table, as in
Figure 7, is sufficient to store all declared types, variables, and
functions, and their respective type, scope,3 and presence condition.
Whenever, we reach a declaration, we add a corresponding entry
in the symbol table; in case already an entry with the same name
is present (or even multiple), we produce a formula in the form
VM → ∧

i ¬(pc(newDecl) ∧ pc(prevDecli)) to check that all
declarations are mutually exclusive. When we find a function call
(or variable access or reference to a type), we look up the function’s
(variable’s, type’s) name in the symbol table and retrieve the corre-
sponding presence condition(s). We then produce a corresponding
formula VM → (pc(caller) → ∨

i pc(decli)).

2Technically, we implemented two iterations, which, however, could
be merged.
3A scope is necessary for variables to distinguish between variables
defined globally or in a function. The distinction is not relevant in
our small examples in this paper.

We check references to fields in structures and unions in a similar
way; the only difference is that we need to look up the type of
a local variable first. That is, right now, we can guarantee that
compilation will not fail due to dangling function invocations, and
dangling references to variables, fields, or types. In ongoing work,
we additionally add checks to ensure consistency between function
declarations and functions definitions, and to ensure matching types
for assignments, function arguments, and so on; so far, we check
only simple references. Also matching signatures in different object
files, as checked by the linker, will be addressed.

4.5 Solving
Finally, we need to solve the formulas produced during reference
analysis. Throughout this paper, we used propositional formulas
for presence conditions and variability models. Actually, the C
preprocessor supports more than that: It additionally supports nu-
meric constants and various operations, such as sum, comparison,
and bitwise shifting [17]. Therefore, TypeChef encodes presence
conditions and feature models as constraint satisfaction problem as
described by Benavides et al. [4], instead of using a propositional
formula. Technically, TypeChef uses the constraint-satisfaction-
problem solver Choco4 to check for tautologies. We check the
formula for each reference in isolation (instead of building one big
formula), so that we can trace an error directly to the reference
which causes it.

In case a formula is not a tautology, Choco finds a counter exam-
ple representing a specific variant which will not compile. We can
present the counter example to the user for further debugging. We
can produce an error message that mimics the style of a C compiler
(file, line, reason) and that additional provides information about
problematic variants.

5. CASE STUDY: BOA WEBSERVER
We implemented TypeChef as outlined above. As discussed, Type-
Chef is still work in progress, and there are still significant limita-
tions which prevent applying it to a large-scale industrial C project.
Especially, the manual expansion of undisciplined annotations is a
severe restriction. Still, we want to demonstrate TypeChef at this
stage with a (favorable) case study.

As subject of our case study, we selected the open-source web
server Boa, version 0.94.13.5 Boa is a lightweight, single-threaded,
and fast implementation of a web server, used mostly in embedded
systems and for fast delivery of static content (e.g., slashdot.org
uses it to deliver image files). It is written in C (6 200 LOC; 38
files) and contains some variability implemented with cpp’s #ifdef
directives. Together, there are 110 different #ifdef flags. Some of
these flags deal with low-level portability issues, but several can be
considered as features in the sense of a product line, for example
GUNZIP to support packed HTML files, USE_LOCALTIME to
switch between local time and GMT, INET6 to switch between
IPv4 and IPv6, three alternative hashing algorithms, and several
debug options (logging levels, extra supervision for hash tables,
and others). Unfortunately, features and their dependencies are not
documented. In theory, there are up to 2110 variants of Boa. Even
if we consider only some #ifdef flags that correspond to end-user
variability in a product-line sense (see examples above), we estimate
about a thousand possible variants. Hence, generating and checking
all variants in isolation does not scale.

We selected Boa because of its manageable size and because al-
most all of its #ifdef directives are in a disciplined form already. Af-

4http://www.emn.fr/z-info/choco-solver/
5http://www.boa.org/

1 #ifdef YYPARSE_PARAM
2 int yyparse (void

*YYPARSE_PARAM)
3 #else
4 int yyparse (void)
5 #endif
6 {
7 //method body
8 }

(a) Original undisciplined im-
plementation

1 #ifdef YYPARSE_PARAM
2 int yyparse (void

*YYPARSE_PARAM)
3 {
4 //method body
5 }
6 #else
7 int yyparse (void)
8 {
9 //method body

10 }
11 #endif

(b) Expanded disciplined im-
plementation

Figure 8: Alternative method signatures in Boa

ter applying the partial preprocessor, we only needed to expand eight
undisciplined annotations, such as the alternative method signatures
in Boa’s internal (generated) parser shown in Figure 8. Furthermore,
neither alternative macros nor conditional feature definitions (cf.
Sec. 4.1) cause serious complications in Boa. Boa is a favorable
case study that is not significantly affected by the limitations of our
current implementation. Nevertheless it is valuable to demonstrate
feasibility of our approach and to encourage further improvements
toward accepting more and larger C implementations.

With reference analysis, TypeChef detects 38 671 references
within the entire implementation of Boa (including references within
the included header files). These are 2 008 function calls, 7 250 ref-
erences to variables, 21 934 references to types, and 7 479 references
to fields of structures or unions. Of the 38 671 references, 35 478
(92 %) are obviously correct because the target code fragment is
not wrapped by #ifdef directives or because both elements have the
same presence condition. This left us with 3 193 references, which
we handed to the solver. Of these, 2 171 (68 %) were tautologies,
the remaining 1 022 references are potentially indicators of errors.
Additionally, there were 138 potential references for which we did
not find a target, which indicate dead or unmaintained code (or
incorrect header files in our environment).

We have to be careful with interpreting the solver’s results though.
To the best of our knowledge, Boa does not have a variability model,
neither explicitly nor implicit in some developer documentation. The
build environment (configure script) does not help either. Neverthe-
less, domain knowledge that might have been obvious to the original
developers might dictate certain dependencies between features,
which we were not aware of. Even a single missing dependency
in the feature model can lead to many error reports. Finally, there
are some false positives caused by limitations of TypeChef’s current
implementation. Hence, we manually inspected the reported errors.

With manual inspection, we could confirm a small number of
bugs or undocumented dependencies (we are not familiar enough
with the source code to make that judgment). Here, we show two
of them with a small code excerpt. First, as illustrated in Figure 9,
the flag DEBUG must never be included in any variant, otherwise
there will be a dangling reference to h in mmap_cache.c. Second, as
illustrated in Figure 10, the flag HAVE_SYS_FCNTL_H must be
included in all variants, otherwise there will be a compilation error
due to unknown types in included headers of alphasort.c.

TypeChef needs about one minute to check all variants (parsing,
reference analysis, and solving), whereas compiling a single variant
requires about four seconds on the same system. Solving all equa-
tions for the 3 193 non-trivial references takes six seconds with the
solver Choco. Hence, already with 20 variants, TypeChef is faster

1 struct mmap_entry *find_mmap(int data_fd, struct stat *s)
2 {
3 char *m;
4 int i, start;
5 ...
6 #ifdef DEBUG
7 fprintf(stderr, "New mmap_list entry %d (hash was %d)\n",

i, h);
8 #endif

Figure 9: Detected bug or undocumented dependency in in-
cludes of file mmap_cache.c

1 #ifdef HAVE_SYS_FCNTL_H
2 ...
3 typedef __darwin_off_t off_t;
4 typedef __darwin_pid_t pid_t;
5
6 ...
7 #endif
8
9 int sendfile(int, int, off_t, off_t *, struct sf_hdtr *, int);

10 ...
11 pid_t fork(void);

Figure 10: Detected bug or undocumented dependency in in-
cludes of file alphasort.c

than the brute-force strategy of compiling all variants in isolation,
which is in line with prior experience in product-line–aware type
systems for Java [20].

6. RELATED WORK
There have been many approaches to analyze pre-cpp code for
various purposes. One driving factor were refactorings, which—
compared to Java or Smalltalk—are very difficult to implement for
pre-cpp C code. For example, Vittek used a brute-force-expansion
mechanism as sketched in Section 4.2 [37] and Garridio developed
a sophisticated mechanism to expand undisciplined annotations at
fine granularity [12, 13]. With some heuristics, Garridio’s tool was
also able to deal with macro expansion and file inclusion, and it
could propagate changes back to the original pre-cpp code. Simi-
larly, Padioleau uses a sophisticated mechanism based on heuristics
(including a significant amount of per-project heuristics) to parse
pre-cpp code [28]. However, for type checking, we do not want
to rely on heuristics; hence, we decided to use a simpler but more
accurate mechanism of a partial preprocessor, which is sufficient
for type analysis (but would not have been sufficient for refactoring
because it cannot propagate changes back).

Additionally, there are several approaches that analyze cpp with-
out looking at the underlying code. For example, Tartler et al.
analyze C code (including the Linux kernel) for dead code, which
cannot be included in any variant [35] and extract presence condition
for every code fragment [34]. With a related goal, Hu et al. and
Latendresse used symbolic execution to determine presence con-
ditions for all code fragments, also for cases in which features are
defined or undefined within the source code as in Figure 2c [15, 23].
Favre extracts the exact semantics of cpp for further analysis [10].
These approaches work on lines of arbitrary source code, whereas
TypeChef looks in between preprocessor directives and analyzes the
underlying C code regarding references.

Aversano et al. were the first to suggest to type check a C pro-
gram including its #ifdef variability [2]. They primarily addressed
alternative declarations with different types, in contrast to our focus

on references. Their focus was low-level portability of C programs
instead of variability in a product line setting, but the solutions and
even proposed architectures are similar. In their work, they already
proposed an extended symbol table as we used in Figure 7, but,
unfortunately, this project was neither implemented nor continued.

The approach to parse pre-cpp C code by an extended grammar
after manual preparation toward disciplined annotations is often
credited to Baxter and Mehlicher [3], who also discussed their ex-
perience that 85 % of all #ifdef directives are disciplined and the
remaining directives received manual attention. In addition, there
are several suggestions to replace text-based preprocessors such
as cpp with a more restricted preprocessor that know the under-
lying structure [22, 26, 38]. Such approaches restrict conditional
compilation constructs to entire language fragments (as we do with
disciplined annotations) and either abandon macros or propose syn-
tax macros that are easier to handle. McCloskey and Brewer even
provide a semi-automatic migration tool for their disciplined pre-
processor ASTEC [26]. Unfortunately, we do not expect that we can
force developers to switch to a different preprocessor (especially
when huge amounts of legacy code are involved) or to manually
change their implementations toward disciplined annotations. There-
fore, in future work, TypeChef aims at preparing the source code
automatically during analysis by partial preprocessing and (in the
future) automatic expansion of undisciplined annotations.

Finally, in the context of more restricted languages (Java, Feath-
erweight Java, UML), there have been many approaches to check
for type errors, reference errors, and other kinds of errors in entire
software product lines, e.g., [1, 7, 8, 16, 21, 31, 36]. Their details
are beyond the scope of this paper, but the general idea, as outlined
in Section 2, is similar in most of them. For a detailed discussion
see [20].

7. CONCLUSION
The variability in software product lines provides many opportuni-
ties but also complicates development and testing, because a whole
family of related variants is developed in parallel. Our goal is to
detect implementation errors as early during product-line develop-
ment and without compiling and testing every variant in isolation.
With TypeChef, we transfer prior advances in type checking entire
software product lines to industrial C code, in which variability is
implemented with the C preprocessor cpp. Unfortunately, cpp has
several characteristics that make analysis of unpreprocessed code
very difficult. As we have described, to parse C code, we need to
expand macros and file inclusion directives and we have to deal with
preprocessor directives at every level of granularity and in many
undisciplined forms that are difficult to handle.

TypeChef makes first steps toward making C code accessible
for product-line–aware type checking. It combines several prior
approaches to analyze pre-cpp code. With a partial preprocessor,
we resolve macros and inclusion directives. With a specialized
parser, we can subsequently parse disciplined #ifdef directives, ana-
lyze references and types within the source code, and detect errors
with an off-the-shelf solver. TypeChef is work in progress, and in
ongoing work, we address limitations, such as alternative macro
expansions and undisciplined annotations. Nevertheless, we could
already demonstrate the feasibility of TypeChef in a favorable case
study, which is encouraging for further attempts to type check larger
code bases of industrial C code. Our long-term goal is to soundly
type check the entire Linux kernel with over 8 000 features and a
well-specified variability model.

Acknowledgments. Käster’s work is supported by the European
Research Council (grant ScalPL #203099).

8. REFERENCES
[1] S. Apel, C. Kästner, Größlinger, and C. Lengauer. Type Safety

for Feature-Oriented Product Lines. Automated Software
Engineering, 17(3):251–300, 2010.

[2] L. Aversano, M. D. Penta, and I. D. Baxter. Handling
Preprocessor-Conditioned Declarations. In Proc. Int’l
Workshop Source Code Analysis and Manipulation (SCAM),
pages 83–92. 2002.

[3] I. Baxter and M. Mehlich. Preprocessor Conditional Removal
by Simple Partial Evaluation. In Proc. Working Conf. Reverse
Engineering (WCRE), pages 281–290. 2001.

[4] D. Benavides, P. Trinidad, and A. Ruiz-Cortes. Automated
Reasoning on Feature Models. In Proc. Conf. Advanced
Information Systems Engineering (CAiSE), pages 491–503.
2005.

[5] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A Few
Billion Lines of Code Later: Using Static Analysis to Find
Bugs in the Real World. Commun. ACM, 53(2):66–75, 2010.

[6] S. Chandra and T. Reps. Physical Type Checking for C. In
Proc. Workshop on Program Analysis for Software Tools and
Engineering (PASTE), pages 66–75. 1999.

[7] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F.
Raskin. Model Checking Lots of Systems: Efficient
Verification of Temporal Properties in Software Product Lines.
In Proc. Int’l Conf. Software Engineering (ICSE), pages
335–344. 2010.

[8] K. Czarnecki and K. Pietroszek. Verifying Feature-Based
Model Templates Against Well-Formedness OCL Constraints.
In Proc. Int’l Conf. Generative Programming and Component
Engineering (GPCE), pages 211–220. 2006.

[9] J.-M. Favre. Understanding-In-The-Large. In Proc. Int’l
Workshop on Program Comprehension, page 29. 1997.

[10] J.-M. Favre. CPP Denotational Semantics. In Proc. Int’l
Workshop Source Code Analysis and Manipulation (SCAM),
pages 22–31. 2003.

[11] D. Ganesan, M. Lindvall, C. Ackermann, D. McComas, and
M. Bartholomew. Verifying Architectural Design Rules of the
Flight Software Product Line. In Proc. Int’l Software Product
Line Conference (SPLC), pages 161–170. 2009.

[12] A. Garrido. Program Refactoring in the Presence of
Preprocessor Directives. PhD thesis, University of Illinois at
Urbana-Champaign, 2005.

[13] A. Garrido and R. Johnson. Analyzing Multiple
Configurations of a C Program. In Proc. Int’l Conf. Software
Maintenance (ICSM), pages 379–388. 2005.

[14] A. Gruler, M. Leucker, and K. Scheidemann. Modeling and
Model Checking Software Product Lines. In Proc. Int’l Conf.
Formal Methods for Open Object-Based Distributed Systems
(FMOODS), pages 113–131. 2008.

[15] Y. Hu, E. Merlo, M. Dagenais, and B. Laguë. C/C++
Conditional Compilation Analysis using Symbolic Execution.
In Proc. Int’l Conf. Software Maintenance (ICSM), pages
196–206. 2000.

[16] S. S. Huang, D. Zook, and Y. Smaragdakis. cJ: Enhancing
Java with Safe Type Conditions. In Proc. Int’l Conf.
Aspect-Oriented Software Development (AOSD), pages
185–198. 2007.

[17] International Organization for Standardization.
ISO/IEC 9899-1999: Programming Languages—C, 1999.

[18] H. P. Jepsen and D. Beuche. Running a Software Product Line

– Standing Still is Going Backwards. In Proc. Int’l Software
Product Line Conference (SPLC), pages 101–110. 2009.

[19] K. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson. Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Technical Report CMU/SEI-90-TR-21, SEI,
1990.

[20] C. Kästner. Virtual Separation of Concerns. PhD thesis,
University of Magdeburg, 2010.

[21] C. Kästner and S. Apel. Type-checking Software Product
Lines – A Formal Approach. In Proc. Int’l Conf. Automated
Software Engineering (ASE), pages 258–267. 2008.

[22] C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and D. Batory.
Guaranteeing Syntactic Correctness for all Product Line
Variants: A Language-Independent Approach. In Proc. Int’l
Conf. Objects, Models, Components, Patterns (TOOLS
EUROPE), pages 175–194. 2009.

[23] M. Latendresse. Rewrite Systems for Symbolic Evaluation of
C-like Preprocessing. In Proc. European Conf. on Software
Maintenance and Reengineering (CSMR), pages 165–173.
2004.

[24] K. Lauenroth, K. Pohl, and S. Toehning. Model Checking of
Domain Artifacts in Product Line Engineering. In Proc. Int’l
Conf. Automated Software Engineering (ASE), pages 269–280.
2009.

[25] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze.
An Analysis of the Variability in Forty Preprocessor-Based
Software Product Lines. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 105–114. 2010.

[26] B. McCloskey and E. Brewer. ASTEC: A New Approach to
Refactoring C. In Proc. Europ. Software Engineering
Conf./Foundations of Software Engineering (ESEC/FSE),
pages 21–30. 2005.

[27] M. Mendonça, A. Wąsowski, and K. Czarnecki. SAT-based
Analysis of Feature Models is Easy. In Proc. Int’l Software
Product Line Conference (SPLC), pages 231–240. 2009.

[28] Y. Padioleau. Parsing C/C++ Code without Pre-Processing. In
Proc. Int’l Conf. Compiler Construction (CC), pages 109–125.
2009.

[29] T. T. Pearse and P. W. Oman. Experiences Developing and
Maintaining Software in a Multi-Platform Environment. In
Proc. Int’l Conf. Software Maintenance (ICSM), pages
270–277. 1997.

[30] D. Pech, J. Knodel, R. Carbon, C. Schitter, and D. Hein.
Variability Management in Small Development Organizations
– Experiences and Lessons Learned from a Case Study. In
Proc. Int’l Software Product Line Conference (SPLC), pages
285–294. 2009.

[31] H. Post and C. Sinz. Configuration Lifting: Verification meets
Software Configuration. In Proc. Int’l Conf. Automated
Software Engineering (ASE), pages 347–350. 2008.

[32] J. G. Refstrup. Adapting to Change: Architecture, Processes
and Tools: A Closer Look at HP’s Experience in Evolving the
Owen Software Product Line. In Proc. Int’l Software Product
Line Conference (SPLC), 2009. Keynote presentation.

[33] S. She, R. Lotufo, T. Berger, A. Wąsowski, and K. Czarnecki.
The Variability Model of The Linux Kernel. In Proc. Int’l
Workshop on Variability Modelling of Software-intensive
Systems (VaMoS), pages 45–51. 2010.

[34] R. Tartler, J. Sincero, D. Lohmann, and
W. Schröder-Preikschat. Efficient Extraction and Analysis of
Preprocessor-Based Variability. In Proc. Int’l Conf.

Generative Programming and Component Engineering
(GPCE), 2010.

[35] R. Tartler, J. Sincero, W. Schröder-Preikschat, and
D. Lohmann. Dead or Alive: Finding Zombie Features in the
Linux Kernel. In Proc. GPCE Workshop on Feature-Oriented
Software Development (FOSD), pages 81–86. 2009.

[36] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe
Composition of Product Lines. In Proc. Int’l Conf. Generative
Programming and Component Engineering (GPCE), pages
95–104. 2007.

[37] M. Vittek. Refactoring Browser with Preprocessor. In Proc.
European Conf. on Software Maintenance and Reengineering
(CSMR), pages 101–110. 2003.

[38] D. Weise and R. Crew. Programmable Syntax Macros. In Proc.
Conf. Programming Language Design and Implementation
(PLDI), pages 156–165. 1993.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

