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Abstract—A software product line is a set of program
variants, typically generated from a common code base. Feature
models describe variability in product lines by documenting
features and their valid combinations. In product-line engi-
neering, we need to reason about variability and program
variants for many different tasks. For example, given a feature
model, we might want to determine the number of all valid
feature combinations or compute specific feature combinations
for testing. However, we found that contemporary reasoning
approaches can only reason about feature combinations, not
about program variants, because they do not take abstract
features into account. Abstract features are features used to
structure a feature model that, however, do not have any impact
at implementation level. Using existing feature-model reasoning
mechanisms for program variants leads to incorrect results.
Hence, although abstract features represent domain decisions
that do not affect the generation of a program variant. We
raise awareness of the problem of abstract features for different
kinds of analyses on feature models. We argue that, in order
to reason about program variants, abstract features should be
made explicit in feature models. We present a technique based
on propositional formulas that enables to reason about program
variants rather than feature combinations. In practice, our
technique can save effort that is caused by considering the same
program variant multiple times, for example, in product-line
testing.

Keywords-Software product lines, program families, feature
modeling, feature model, automated analyses.

I. INTRODUCTION

A software product line is a set of software-intensive
systems (program variants) that share common code arti-
facts [1]. The overall idea is to efficiently develop similar
programs simultaneously, by systematically reusing develop-
ment artifacts. Program variants are distinguished in terms
of features, which are prominent or distinctive user-visible
aspects, qualities, or characteristics of a software system [2].
Two variants may have several features in common and
differ in other features. In particular, we focus on product-
line engineering methods, in which program variants can
be generated from a common implementation by specify-
ing a selection of features. This includes implementation
techniques, such as conditional compilation [3], plug-ins
and frameworks, or advanced programming-language mech-
anisms with aspects [4], feature modules [5], [6], or delta
modules [7].

In general, not all combinations of features are useful
and result in meaningful program variants. For instance,

there might be mutually exclusive features or features that
require other features. A variability model specifies all valid
feature combinations and thus the program variants that can
be generated. A common form of variability models are
feature models [2], [8], [9]. Feature models can have several
representations, e.g., a propositional formula in which each
feature belongs to a variable and the formula evaluates to
true for all valid combinations [10].

We noticed that not all features in typical feature models
are used to distinguish program variants. Some are only
used to structure the model and selecting or eliminating
them does not make any difference in the generated variant
code. We denote such features as abstract features. Due to
abstract features, the set of feature combinations and the
set of program variants are not equivalent. Multiple valid
feature combinations result in the same generated program
variant.

There are numerous approaches to reason about valid fea-
ture combinations in feature models [9]. However, there are
also many interesting questions, for which we want to rea-
son about program variants. For example, for combinatoric
testing [11], type checking [12]–[15], or verification [16],
we want to select certain sets of program variants or need to
reason about the relationship of features in program variants.
Similarly, for reasoning about non-functional properties of
program variants [17], abstract features are not relevant,
but can increase measurement effort significantly. Finally,
deleting an abstract feature from the feature model does
not change possible program variants and may hence be
considered as feature-model refactoring [18]. Contemporary
automated analyses of feature models can be used to reason
about valid combinations of features, but not to reason
about program variants. When using automated reasoning
nonetheless, the results are at least inaccurate or inefficient.

As a consequence, we distinguish two semantics: (a) the
semantics of feature models as known from literature [19],
describing the valid combinations of features and (b) the
semantics of program families describing distinct program
variants of a product line. According to our experience, both
are needed and complementary to each other. However, in
order to not redevelop all reasoning mechanisms again for
the program-families semantics, we provide a mechanism
to translate the program-families semantics in a way that
existing reasoning mechanisms for the feature-model seman-
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Figure 1. A feature model representing a product line of graph libraries.

tics can be used. We implemented that translation in our
tool framework FeatureIDE [20], developers need to make
abstract features explicit during feature modeling.

In summary, we make the following contributions:
• We raise awareness of the problem of abstract features.
• We distinguish two semantics for feature models to rea-

son about both, valid feature combinations and program
variants.

• We introduce the notion of abstract features into feature
modeling.

• We provide a translation from feature-model semantics
to program-family semantics based on propositional
formulas, so that existing reasoning mechanism for
feature models can be used for reasoning about program
variants.

• We provide an open-source implementation as part of
FeatureIDE.1

II. FEATURE MODELS

A feature model specifies the features of a product line
and the valid combinations thereof [2]. Feature models have
a hierarchical structure: each model has one root feature and
every feature can have further subfeatures. The subfeatures
of a feature can either be mandatory, optional, or can be in
an Or-group or an Alternative-group [8], [21]. A feature is
called compound feature if it has subfeatures and primitive
feature otherwise [10].

We give an example in Figure 1. The feature model
represents a product line of graph libraries and is a simplified
version of a real existing feature model designed by others.2

Variants of the graph library always support edges which
are either directed or undirected. A graph library may also
provide algorithms, such as assigning a consecutive number
to all nodes, calculating the shortest path between two given
nodes, or detecting cycles in graphs.

Besides the hierarchical structure, many feature modeling
notations also allow cross-tree constraints. A cross-tree con-
straint is an additional constraint (often an arbitrary propo-
sitional formula) on the features of the feature model [10].
If a feature model contains multiple cross-tree constraints,

1http://fosd.net/featureide
2http://fosd.net/featurehouse

Feature Model Propositional Formula

Optional feature Ci Ci ⇒ P

Mandatory feature Ci (Ci ⇒ P ) ∧ (P ⇒ Ci)

Or-group P ⇔
∨

1≤i≤n Ci

Alternative-group (P ⇔
∨

1≤i≤n Ci) ∧∧
i<j(¬Ci ∨ ¬Cj)

Figure 2. Translation of feature models into propositional formulas. P
denotes a compound feature with the subfeatures C1, C2, . . . , Cn.

all of them must be fulfilled. In our example, the cycle
detection and calculation of a shortest path require directed
graphs, i.e., those algorithms are not available for graphs
with undirected edges.

A feature model can be translated into a single propo-
sitional formula which evaluates to true if and only if
the combination of features is valid. It is constructed by
conjoining (a) the propositional formula for each construct
in the feature model (see Figure 2), (b) all cross-tree
constraints, and (c) a formula requiring the root feature [10].
The resulting propositional formula describes the semantics
of feature models, i.e., the valid combinations of features.
In the following, we give the propositional formula for our
example feature model.

(E ⇒ G) ∧ (G⇒ E) ∧ (A⇒ G) ∧ (E ⇔ D ∨ U)

∧ (¬D ∨ ¬U) ∧ (A⇔ N ∨ S ∨ C) ∧ (S ∨ C ⇒ D) ∧G

In addition, a feature model can be represented as a
set of sets of features [19]. Given a set of features F , a
configuration (feature combination) C is defined as C ⊆ F .
Then, a feature model can be specified by a set S of
configurations. A configuration C is called valid if and only
if C ∈ S.

There are many different notations and extensions of
variability models [9], [19]. Our approach is general in
that it can deal with all models that can be translated into
propositional formulas, which is possible for most notations
and extensions [22].

III. MAPPING FEATURES TO IMPLEMENTATIONS

To reason about program variants, we briefly need to
introduce typical implementation mechanisms. We focus
only on mechanisms, which, for a given configuration, can
generate a program variant from a common implementation
automatically. To allow this generation, there is typically
some more or less complex mapping between features (prob-
lem space) and implementation artifacts (solution space).

In the simplest case, we can map each (non-abstract)
feature to a single code unit. For example, we can map a
feature to a plug-in for a framework, to an aspect [4], a
feature module [5], [6], or a delta module [7]. In Figure 3,
we excerpt an implementation using AHEAD-style feature
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layer GraphLibrary;
class Graph {

Node[] nodes;
Edge[] edges;

}
class Node {

String name;
}

layer Directed;
class Edge {

Node source, target;
}

layer Undirected;
class Edge {

Node nodeA, nodeB;
}

layer Cycle;
refines class Graph {

boolean containsCycle() {
//do cycle checking

}
}
refines class Node {

boolean visited = false;
}

layer Number;
refines class Graph {

void assignNumbers() {
//assign numbers

}
}

Figure 3. A 1:1 mapping between features and feature modules using
feature-oriented programming.

modules, in which each non-abstract feature is mapped to
exactly one implementation module containing classes or
class refinements. A variant is generated by assembling the
modules that correspond to selected features and composing
(or weaving) the corresponding code fragments. Proponents
of feature-oriented software development argue that this
simple 1:1 mapping is a strength in understanding and
structuring the product-line implementation [23].

In more complex scenarios or with other implementation
techniques, a simple 1:1 mapping may not be sufficient. For
example, when variability is implemented with conditional
compilation such as #ifdef directives of the C preprocessor,
a single feature can be mapped to multiple code fragments.
In addition, the inclusion of a single code fragment may
be influenced by multiple features. In Figure 4, we show
such a mapping for an implementation of the graph library
using conditional compilation. Again, a variant is generated
by assembling the code fragments that correspond to a con-
figuration. Besides conditional compilation, many product-
line mechanisms and tools, such as pure::variants [24],
CIDE [25], FeatureMapper [26], or application conditions in
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#ifdef GraphLibrary
class Graph {

Node[] nodes;
Edge[] edges;

#ifdef Number
void assignNumbers() {

//assign numbers
}

#endif
#ifdef Cycle && Directed

boolean containsCycle() {
//do cycle checking

}
#endif
}
class Node {

String name;
#ifdef Cycle

boolean visited = false;
#endif
}
class Edge {
#ifdef Undirected

Node nodeA, nodeB;
#endif
#ifdef Directed

Node source, target;
#endif
}
#endif

Figure 4. An n:m mapping between features and preprocessor statements.

DeltaJ [7], allow complex mappings between features and
implementation artifacts.

Finally, in some implementation settings, developers can
even script arbitrary Turing-complete mappings. Such con-
figuration scripts are not accessible to automated reasoning,
unless heavyweight solutions like symbolic execution [27]
are employed. Examples are build systems and Gears [28].

In all cases, we can see that certain features do not
affect the implementation (in complex mappings, it might
not be easy to recognize automatically though). For example,
selecting or not selecting Shortest will not affect generated
program variants, because it is not (yet) mapped to imple-
mentation artifacts.

IV. REASONING ABOUT PROGRAM VARIANTS

When implementing a software product line, it is often
necessary to reason about all valid program variants. We
give some example scenarios:
• We have implemented a software product line and want

to test [11], type check [12]–[15], [29], or verify all
program variants [16].

• We want to detect dead code, i.e., code fragments that
are never used in any program variant [30], [31].

• When changing the feature model, we want to de-
termine whether there are any changes to program
variants (i.e., whether feature-model change is a refac-
toring) [18], [22].
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• We want to estimate non-functional properties per fea-
ture or per variant (such as code size, energy consump-
tion, or response time), in which case we are, of course,
only interested in features that actually affect program
variants [17].

For many of these questions, we may be tempted to
use automated analyses of feature models, that has been
broadly investigated in literature [9]. A typical strategy is
to translate a feature model into a propositional formula and
subsequently use off-the-shelf solvers, such as satisfiability
solvers, BDDs, or CSP solvers, to reason about valid con-
figurations [9], [10].

Unfortunately, existing automated analyses for feature
models will usually yield inaccurate results, when trying to
answer questions about program variants, because the same
program variant may be generated given several distinct
configurations. In the presence of abstract features, we may
consider identical program variants multiple times, leading,
for example, to a higher number of program variants required
for combinatoric testing and proofs during verification that
are more complex than actually necessary.

In Figure 5, we illustrate the mismatch between config-
urations and program variants using our running example.
At the left side, all valid configurations are enumerated, in
which initial letters are used to identify features. Arrows
indicate the generation of program variants from configu-
rations. At the right side, the according program variants
are described as sets of implementation artifacts. For sim-
plicity, we denote the code artifacts belonging to a certain
feature with lowercase letters. For instance, {G,E,D} and
{G,E,D,A, S} produce identical programs as A and S are
not mapped to any implementation artifact. There are ten
different valid configurations, but only six different program
variants.

A. Making Abstract Features Explicit

The mismatch between configurations and program vari-
ants is primarily caused by abstract features.3

Definition: We define a feature as abstract, if and
only if it is not mapped to any implementation
artifacts. We call all other features non-abstract or
concrete, i.e., a concrete feature is mapped to at
least one implementation artifact.

We require the product-line developer to specify for each
feature whether it is abstract or not. For some implemen-
tation mechanisms, we could deduce which features are
abstract by analyzing the implementation and the existing
mapping between features and code, especially when simple
one-to-one mappings are used as in Figure 3. However, as

3There may be cases, in which two features are mapped to identical code
fragments. This would lead to similar mismatch between configurations and
program variants as abstract features. However, in our experience such cases
are rare and negligible for most kinds of analysis, whereas abstract features
are pervasive in most feature models. Hence, we focus on abstract features.

Configurations
{G,E,D}

{G,E,D,A,N}
{G,E,D,A, S}
{G,E,D,A,C}
{G,E,D,A,N, S}
{G,E,D,A,C, S}
{G,E,D,A,N,C}
{G,E,D,A,N,C, S}

{G,E,U}
{G,E,U,A,N}

Program Variants

{g, d}

{g, d, n}

{g, d, c}

{g, d, n, c}

{g, u}
{g, u, n}

Figure 5. Generating a program variant given a valid configuration
corresponds to a surjective function, i.e., multiple configurations may be
mapped to the same program variant.

explained in Section III, in general such analysis is difficult.
We would need to invest into different analysis methods for
different kinds of mappings (if possible at all). Hence, we
advocate a simpler approach, in which developers manually
specify which features are abstract. To support developers
in the general cases nonetheless, we provide a checking
mechanisms for known and simple kinds of mappings in
our implementation, which issues a warning if an abstract
feature is mapped to implementation artifacts or a concrete
feature has no mapping.

In feature models, such as in Figure 1, we depict abstract
features with a lighter background color. Two configurations
that differ only in abstract features correspond to the same
program variant.

We are unaware of any prior explicit distinction between
abstract and concrete features. Previous formalizations of the
semantics of feature models do not take abstract and concrete
features into account [19], [32]–[34]. Nevertheless, abstract
features have been used implicitly (cf. also related work in
Section VII) and have actually been a cause of confusion:

• In existing product-line implementations, often, some
features are not mapped to code. However, we have
seen very different mappings, and there does not seem
to be a general pattern of which features are abstract or
concrete. Sometimes the root feature and all or some
compound features were mapped to implementation
artifacts, sometimes they were not; in some cases, some
primitive features were abstract, in others, primitive
features were always concrete.

• Several authors acknowledge that not all features of a
product line are necessarily mapped to code, but they
do not specify which features are abstract and do not
discuss implications for automated reasoning [30], [35],
[36].

• Some tools actually prevent users from mapping
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compound features to implementation artifacts (e.g.,
GUIDSL from the AHEAD tool suite [5] and XCon-
fig [30]), whereas other tools allow arbitrary mappings
to any features, so that root, compound, and primitive
features can potentially all be abstract or not (e.g.,
pure::variants [24]).

• In discussions with product-line implementers, we
heard different and contradictory assumptions on which
features can or should be mapped to code. Some experts
have strong opinions that certain features have to or
must not be abstract, although they could not point us
an existing specification. Interestingly, also in reviews
for a prior submission of this paper, we received strong,
but contradicting opinions as feedback. One reviewer
insisted that the root of a feature model is always
assumed to be abstract, whereas another reviewer found
it natural that all features are abstract if and only if they
are compound.

We conclude that abstract features are relevant for feature
modeling, but in current notations, they are assumed only
implicitly and not clearly specified. We argue that whether
a feature is abstract or concrete should be part of the
modeling notation and semantics or at least part of the tool
infrastructure that is used for automated reasoning about
program variants.

B. Abstract Features in Practice

To further illustrate the impact of abstract features and
the mismatch between configurations and program variants,
we take a closer look at four case studies and compare
valid configurations with program variants. We selected four
publicly available feature models with corresponding im-
plementations.4 The selected product lines were developed
by disjunct teams independent of this research project. We
manually explored mappings between feature model and
implementation artifacts to identify abstract features.

As shown in Figure 6, we found between 18 and 66
percent abstract features in the analyzed software product
lines. Abstract features were (a) used to structure the feature
model by grouping other features, (b) required to work
around limitations of the used tool infrastructure (indicated
by meaningless names), or (c) used for features not yet im-
plemented. In three out of four cases, we found a mismatch
between configurations and program variants. The strong
mismatch in Devolution results from the fact that many
features were modeled but have not been implemented (yet).

These numbers show that reasoning about program vari-
ants using traditional reasoning techniques for feature con-
figurations may lead to significantly distorted results. Hence,
we investigate how to overcome this mismatch with a special
treatment of abstract features during analysis.

4Unfortunately, for most existing feature model examples, such as those
in the SPLOT repository, no mappings to implementations are available and
abstract features are not documented [37].
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# Features 38 28 32 22

# Concrete primitive features 20 16 11 14
# Concrete compound features 0 7 0 2
# Abstract primitive features 7 1 9 0
# Abstract compound features 11 4 12 6

# Configurations 156 3240 19 656 462
# Program variants 126 1560 84 462

Figure 6. Statistics on how concrete and abstract features are used and
mismatch between valid configurations and program variants in four case
studies.

V. SEMANTICS OF PROGRAM FAMILIES

To support analyses on program variants, we distinguish
between two semantics.
• The semantics of feature models describes valid con-

figurations and can be used to derive statistics about
feature models and to detect inconsistencies in feature
models, e.g., dead features which are not contained in
any valid configuration or false optional features which
are declared as optional but actually required in all valid
configurations due to cross-tree constraints [9]. This
semantics is well specified in literature [19], [32]–[34].

• The semantics of program families describes all pro-
gram variants that can be generated using valid con-
figurations. This semantics is necessary when reason-
ing about program variants, for example, to perform
pairwise testing of features [11], or to compute non-
functional properties for features [17]. In all these
cases, redundant computations caused by the mismatch
between configurations and program variants should be
avoided by applying the semantics of program families.

We argue, that both semantics are needed and complemen-
tary. For every problem, one has to decide which semantics
should be applied and used.

A. Eliminating Abstract Features

Fortunately, we can transform the semantics of feature
models into the semantics of program families if abstract
features are explicitly marked in the feature model. In a
nutshell, we can then derive program variants basically
by removing all abstract features from configurations, as
indicated in Figure 5.

However, in general, it is not feasible to first compute the
set of all configurations and then remove abstract features
to gain the set of all program variants, because the number
of configurations grows up-to exponentially in the number
of features. Hence, we propose a mechanism to transform
a propositional formula specifying all valid configurations
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into a propositional formula specifying the set of distinct
program variants.

Technically, we eliminate all abstract features in the
propositional formula describing the feature model (seman-
tics of feature models). The result is a propositional formula
that contains only concrete features (semantics of program
families). To eliminate an abstract feature A from a propo-
sitional formula p, we substitute A by its possible values
(selected or not selected): We create a new propositional
formula p′ = p[A→ true]∨ p[A→ false], where p[A→ X]
denotes the formula resulting when replacing all occurrences
of A in p with X .5 This process can be repeated until
all abstract features are eliminated. The final propositional
formula evaluates to true for all combinations of concrete
features that are valid according to the feature model, which
uniquely describe all program variants of the product line.

B. Optimizations

The presented transformation does not scale well as is,
because with every elimination of an abstract feature, we
double the size of the propositional formula. However, there
are several optimizations that can be applied to prevent
exponential explosion for common feature models.

Since the propositional formula describing a feature model
is usually in conjunctive normal form or close to conjunctive
normal form, optimizations based on boolean algebra can
be applied. We only need to substitute an abstract feature in
those clauses that contain the feature using commutativity
and distributivity, so that duplication occurs locally. In
addition, we can apply straight forward simplifications, such
as A ∧ true ≡ A or A ⇒ true ≡ true. In Figure 7, we
illustrate the removal of abstract features in our running
example using these optimizations.

A further helpful optimization is to replace abstract fea-
tures by a definition in terms of concrete subfeatures. That is,
variables representing an abstract feature are substituted by a
disjunction of its subfeatures. We developed this technique in
previous work, but in general, there is not always a definition
for abstract features (especially in the presence of cross-tree
constraints and abstract primitive features) [18], [22]. Still,
whenever possible, we use this substitution instead of the
general pattern, and only fall back to the general pattern
when required.

C. Implementation

We have implemented the possibility to explicitly mark
abstract features and the transformation from feature-model
semantics to program-family semantics in FeatureIDE [18],
[20]. FeatureIDE provides a feature model editor and some
reasoning facilities (e.g., reasoning about feature model
edits, determining and counting valid configurations) based

5Some notations of propositional formulas do not allow true and false
in formulas. In this case, we introduce two fresh variables T and F and
substitute as follows: p′ = (p[A→ T ] ∨ p[A→ F ]) ∧ T ∧ ¬F .

p0 = (E ⇒ G) ∧ (G⇒ E) ∧ (A⇒ G)

∧ (E ⇔ D ∨ U) ∧ (¬D ∨ ¬U)

∧ (A⇔ N ∨ S ∨ C) ∧ (S ∨ C ⇒ D) ∧G

// elimination of E:

p1 =
(
(true⇒ G) ∧ (G⇒ true) ∧ (true⇔ D ∨ U)

∨ (false⇒ G) ∧ (G⇒ false) ∧ (false⇔ D ∨ U)
)

∧ (A⇒ G) ∧ (¬D ∨ ¬U)

∧ (A⇔ N ∨ S ∨ C) ∧ (S ∨ C ⇒ D) ∧G

// simplifications:

p′1 = (D ∨ U) ∧ (A⇒ G) ∧ (¬D ∨ ¬U)

∧ (A⇔ N ∨ S ∨ C) ∧ (S ∨ C ⇒ D) ∧G

// elimination of A and simplifications:

p2 = (D ∨ U) ∧ (¬D ∨ ¬U) ∧ (S ∨ C ⇒ D) ∧G

// elimination of S and simplifications:

p3 = (C ⇒ D) ∧ (D ∨ U) ∧ (¬D ∨ ¬U) ∧G

Figure 7. Transforming the propositional formula describing the valid
configurations into a propositional formula describing the program variants
of our running example.

on a translation of feature models to propositional formulas
and using a satisfiability solver. FeatureIDE is open source
and available at http://fosd.net/featureide.

In FeatureIDE, developers can explicitly mark features as
abstract, which are represented using a different background
color (all feature models in this paper are in fact exported
from FeatureIDE). FeatureIDE also supports a number of
different implementation techniques and mappings, and can
provide warnings when a feature marked as abstract actually
maps to implementations or vice versa.

Based on these markings, FeatureIDE implements the
translation into program-family semantics, so that reasoning
is possible both about configurations and program families.
For example, we may classify a feature model edit as
refactoring or specialization depending on which semantics
is used. Again, there are reasons for both semantics and
depending on the task both might be needed. Our imple-
mentation in FeatureIDE offers the flexibility to select which
meaning is required for the task at hand.

Regarding performance, due to the optimizations outlined
above, our current implementation can easily translate all
feature models from Figure 6 in less than a second. There-
fore, we omit further performance measures.

VI. DISCUSSION

To support the semantics of program families, we propose
that designers of feature models should explicitly specify for
each feature whether it is abstract. Instead of leaving the
decision and full flexibility to the developer, we could also
enforce restrictions on possible notations, some of which
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Directed ∨ Undirected

¬Directed ∨ ¬Undirected

Cycle ⇒ Directed

Figure 8. A feature model without abstract features describing the same
variants of graph libraries as the feature model in Figure 1.

seem to be implicitly assumed by some developers anyway
(cf. Section IV-A). In the following, we defend our decision
for more flexibility instead of explicit conventions.

A. Avoidance of Abstract Features

We could simply avoid abstract features by forcing that
every feature in a feature model is mapped to imple-
mentation artifacts. In this case, the semantics of feature
models and program families would be identical and no
further transformations of propositional formulas would be
necessary.

However, our experience and case studies in Figure 6 have
shown that abstract features (especially abstract compound
features) are useful instruments for structuring a feature
model and increasing the comprehension of the variability
and provided functionality of a product line.

Although we can always avoid abstract features by trans-
lating their structures to cross-tree constraints (which is
in fact similar to what our translation does), the resulting
formulas or feature models usually loose readability. For
example, the feature model in Figure 8 is equivalent to the
one in Figure 1 (with respect to program-family semantics),
but it is much harder to recognize which possible algorithms
on graphs are provided, since the abstract feature Algorithms
was eliminated. Furthermore, avoiding abstract features may
lead to additional cross-tree constraints. In our example, it
is not obvious that Directed and Undirected are alternative
features, which is stated by the first and the second cross-
tree constraints. Both, the removed groups and the additional
constraints make the feature models harder to understand.

Additionally, given a feature model and a certain mapping
to implementation artifacts, we would need to remove all
abstract features manually from the feature model, before
we can reason about program variants. Manually removing
abstract features requires non-trivial adjustments of cross-
tree constraints containing the feature to remove. Here, tool
support is necessary and the presented semantics for program
families can even help when refactoring feature models.

Furthermore, there is a minor conceptual issue regarding
the root feature. If we force that the root feature must be
concrete, we cannot express all meaningful software product
lines. The reason is that a concrete root feature is a core

A

B C

S

T

B C

A

Figure 9. Converting concrete compound features to concrete primitive
features when forcing that all compound features are abstract. The feature
A is a concrete compound feature. We create two new abstract features S
and T. In the translated feature model, all compound features are abstract.

feature, i.e., a feature contained in every program variant.
Thus, if the root feature must be concrete, we cannot express
product lines without core features. Hence, even advocates
of having only concrete features typically allow (or require)
the root feature to be abstract.

In summary, we believe that abstract features are essential
for readability of feature models and can provide further
structure that can be helpful for stakeholders.

B. All Compound Features are Abstract

As argued above, abstract features can and should not be
avoided entirely. But then, instead of specifying for every
single feature whether it is abstract or concrete, we could
enforce a pattern, for example, specifying that all compound
features (i.e., feature with subfeatures) are abstract and
all primitive features are concrete. This way, the notation
specifies what is abstract and not the developer. This idea is
already realized in some tools such as GUIDSL [5], [10] and
XConfig [38], [39]. Requiring that all compound features
are abstract comes with disadvantages though, which we
experienced when we committed to this pattern in earlier
versions of FeatureIDE.

First, translating feature models with concrete compound
features into a feature model in which all compound features
are abstract is generally possible, however, this may reduce
readability. We can make all compound features abstract by
adding abstract features and moving all subfeatures of the
compound feature to the newly created abstract feature as
illustrated in Figure 9. Using this conversion, we get many
new abstract features that may complicate the feature model
more than necessary.

Second, this pattern restricts design choices for graphi-
cal feature-model editors. In earlier versions, FeatureIDE’s
graphical editor was based on the GUIDSL format and,
hence, required that all compound features are abstract.
To not break the conventions, we cannot allow to add
subfeatures to concrete primitive features (the feature would
become an abstract compound feature) and we cannot allow
to add an abstract feature that does not have subfeatures
yet. The solution in FeatureIDE was to provide an operation
“create compound feature above” to add abstract features as
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parent to an existing feature. In practice, this turned out as
counterintuitive and inconvenient. We experienced usability
issues of different implementations in four years of teaching
with this model, when observing our students while using
FeatureIDE.

We tried two options, but none of them was satisfying
from a usability standpoint. In the first year, we allowed to
create new subfeatures for every feature, with the effect that
adding a subfeature can make a concrete feature abstract,
so code written for that feature cannot be used anymore. In
the second and third year, we ensured that only compound
features can get new subfeatures and new compound features
would be created above a feature. The way of creating fea-
tures was far from natural thinking and it required to rename
features when a compound feature needed implementation
artifacts, which was not expected before.

Only when we allowed students to specify which features
are abstract in our latest version as proposed in this paper
(fourth year of teaching with FeatureIDE), we observed that
students could intuitively use operations to modify feature
models. In addition, warnings about abstract features with a
mapping to code and about missing mappings from concrete
features to code turned out helpful to force users to keep
information about abstract features up to date (which can be
clearly seen by comparing feature models and implementa-
tions created in these four years).

In summary, we conclude that enforcing patterns would
be possible, but from a usability point of view, we believe
that we should extend the feature modeling notation with
abstract features instead of some external specifications how
to understand existing models.

VII. RELATED WORK

Implicit usage of abstract features: In related work,
abstract features were used only implicitly. Batory et al. note
that some features are “empty”, because no code needs to
be written to implement that functionality [35]. They give
an example, but do not state for every feature whether it is
abstract or not. White et al. argue that the developer’s desire
to provide a well-structured hierarchy leads to the fact that
mostly only primitive features affect the implementation of a
product or consume resources [36]. Sincero et al. presented
a feature model with a compound feature Search and its
alternative subfeatures DFS, BFS, and None [30]; we assume
that the feature None is an abstract feature and maybe even
Search might not come with any implementation artifacts.

We are not aware of any feature modeling approach that
makes abstract features explicit. Nevertheless, we found
tools that support abstract features in some form. The
feature-modeling language GUIDSL and the corresponding
reasoning tool (part of the AHEAD tool suite) encodes the
convention that every compound feature is abstract [5], [10].
Therefore, code can only be assigned to primitive features.
The reason for this choice in GUIDSL is that a feature model

is represented as a grammar. Compound features are mapped
to non-terminal symbols and primitive features are modeled
as terminal symbols. A valid word according to the grammar
corresponds to a program variant and since non-terminal
symbols cannot occur in a word, all compound features are
abstract.

The Linux kernel is a software product line implemented
using C’s preprocessor [3], [30], [39]. LinuxKernelConf
can be seen as a feature modeling language [30]. It was
originally intended to improve the process of deriving valid
Linux kernel variants, but it can also be applied to other
projects. The tool XConfig is used to configure valid variants
using a feature model in the language LinuxKernelConf. The
language basically consists of entries with a name and some
constraints to other features. Entries either define a config-
uration option or just help to organize other entries [38].
We and others [30], [39] argue that entries are equivalent to
features, since a LinuxKernelConf document specifies the
valid combinations of entries. Furthermore, an entry that
gives no configuration option and is only used to organize
other entries is equivalent to an abstract feature according
to our notation. As for GUIDSL the LinuxKernelConf lan-
guage assumes that every compound feature is abstract, i.e.,
entries that have other entries as children do not provide
configuration options.

The tool SPL Conqueror uses an integrated product-line
model that distinguishes between domain features and code
units implementing the domain features [17]. Each domain
feature may be mapped to a code unit or not. According to
our notation, domain features which are not mapped to a
code unit are abstract. SPL Conqueror is primarily used to
trace non-functional properties from the implementation to
the domain features to support product derivation [17].

Finally, some researchers have noticed the mismatch be-
tween valid feature configurations and program variants for
specific mappings. This was typically detected when analyz-
ing implementations containing variability [12], [29], [31],
[32]. However, these approaches are always restricted to spe-
cific implementation methods, for example explicit machine-
readable mapping between feature model and implementa-
tion model [32], one-to-one mappings between features and
modules [29], or conditional-compilation based implemen-
tations [12], [31]. In general, mappings may be complex
and Turing-complete, so that automated reasoning is not
always feasible or requires heavyweight analysis techniques.
In contrast, our abstract-feature solution is lightweight, can
be used independently of the mapping mechanisms, and can
still be used to reason about the set of distinct program
variants.

Semantics and other variability models: The semantics
of feature models was formalized to avoid ambiguities [32]–
[34]. To the best of our knowledge, no formal semantics
supports abstract features appropriately or discusses program
families. For instance, Bontemps et al. presented a formal
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semantics, in which a feature model is a tuple [34]; this
semantics can easily be extended by the set of abstract
features, which is a subset of all features.

In this paper, we discussed only FODA-style feature mod-
els [2], [8] and their semantics. However, there are various
extensions and alternative variability modeling notations [9].
For example, Riebisch et al. introduced group cardinalities
in feature models [40], which specify a lower bound n and
an upper bound m of subfeatures that need to be selected if
the parent feature is selected. As many other extensions,
group cardinalities can easily be expressed using cross-
tree constraints [22], [41] and thus can be transformed into
propositional formulas, meaning that our approach can be
applied to such models as well.

Finally, our solution is based on, but not restricted to
propositional formulas. Feature models can be converted
to several solvers and logics, e.g., constraint satisfaction
solvers [42] or higher-order logic [43]. The need for abstract
features and eliminating abstract features for reasoning about
program variants remains.

Extracting feature models: Czarnecki and Wasowski
proposed an algorithm to extract a feature model from a
propositional formula [44], [45]. Given the formula they
calculate an implication hypergraph, while the possible
output feature models correspond exactly to minimum span-
ning trees. In case that there is no minimum spanning
tree, we cannot construct a feature model without abstract
features [44]. If abstract features are allowed, one could add
one or more abstract features and additional edges at the
implication hypergraph such that there exists a minimum
spanning tree for it. The resulting algorithm could extract a
feature model for every given propositional formula.

VIII. CONCLUSION AND FUTURE WORK

We discussed the possible mappings between features and
implementation artifacts using different product-line imple-
mentation techniques. A peculiarity is that some features
may not be mapped to any implementation artifacts and
in case studies we found surprisingly many such features,
which we call abstract features. A problem with abstract
features is that the semantics of feature models does not
allow to reason properly about program variants. As a
result, when requesting program variants, we may get certain
program variants several times. To prevent from possibly
redundant calculations when testing or verifying product
lines, we propose to make abstract features explicit in
feature models and show how a propositional formula can
be retrieved describing the set of distinct program variants.

In future work, we will evaluate how efficient such
propositional formulas can be retrieved for very large feature
models with some or many abstract features. According
to our experience, the specification of which features are
abstract and which are concrete should be verified by the

tool (and can sometimes even be extracted from implemen-
tation and mapping). We already implemented mechanisms
for one-to-one mappings in feature-oriented programming,
but, further research is required to automatically extract
information from other and more complex mappings.
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