
Complete Cross-Validation for Nearest Neighbor Classifiers

Matthew Mullin MDM@JUSTRESEARCH.COM

Just Research, 4616 Henry Street, Pittsburgh, PA 15213 USA

Rahul Sukthankar RAHULS@CS.CMU.EDU

Just Research, 4616 Henry Street, Pittsburgh, PA 15213 USA
The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213 USA

Abstract
Cross-validation is an established technique for
estimating the accuracy of a classifier and is nor-
mally performed either using a number of ran-
dom test/train partitions of the data, or using k-
fold cross-validation. We present a technique
for calculating the complete cross-validation for
nearest-neighbor classifiers: i.e., averaging over
all desired test/train partitions of data. This
technique is applied to several common classi-
fier variants such as K-nearest-neighbor, strat-
ified data partitioning and arbitrary loss func-
tions. We demonstrate, with complexity analy-
sis and experimental timing results, that the tech-
nique can be performed in time comparable to
k-fold cross-validation, though in effect it aver-
ages an exponential number of trials. We show
that the results of complete cross-validation are
biased equally compared to subsampling and k-
fold cross-validation, and there is some reduc-
tion in variance. This algorithm offers significant
benefits both in terms of time and accuracy.

1. Introduction

In supervised learning (Mitchell, 1997), a pool of labeled
data, S, is used to predict the labels of unseen data. Since
the distribution of data is unknown, the generalization ac-
curacy (the probability that an unseen data point will be
correctly classified) cannot be directly determined. Using
S, we can calculate an empirical accuracy and this can be
used as an estimate of the generalization accuracy.

Two accepted techniques for estimating the generalization
accuracy are subsampling and k-fold cross-validation. In
the former, S is partitioned into a training set, T , and a test
set S\T .1 The empirical accuracy is given by the fraction of

1S\T denotes the set difference of S and T : the elements of
S that are not in T .

test set items labeled correctly by a classifier trained on T .
In the latter, S is partitioned into k equally-sized subsets.
Each subset is used as a test set for a classifier trained on the
remaining k − 1 subsets. The empirical accuracy is given
by the average of the accuracies of these k classifiers. Both
techniques may employ a stratified partitioning in which
the subsets contain approximately the same proportion of
classes as S.

The empirical accuracy obtained using either of these tech-
niques depends on the items from S that appeared in a
given subset, and is therefore a random variable,2 and
any given trial of subsampling or k-fold cross-validation is
equivalent to a single observation. The best estimate of the
generalization accuracy is given by the expectation of this
random variable, termed complete cross-validation (Ko-
havi, 1995). However, directly calculating this expectation
requires averaging over all permissible partitions of S and
is generally impractical since the number of such partitions
grows exponentially with |S|. Therefore, it is customary
to create an estimate by averaging the accuracies from a
manageable number of partitions (Mitchell, 1997). Unfor-
tunately, the variance of the random variable can be signif-
icant and obtaining an estimate with sufficiently low vari-
ance can require a large number of time-consuming trials.

This paper presents a technique for calculating the com-
plete cross-validation (CCV) for the nearest neighbor fam-
ily of classifiers (including the popular K-nearest-neighbor
algorithm). Nearest neighbor methods (Dasarathy, 1991)
frequently appear at the core of sophisticated pattern recog-
nition and information retrieval systems. For instance, a di-
versity of face recognition methods such as elastic bunch-
graph matching (Wiskott et al., 1997), eigenfaces (Turk &
Pentland, 1991), and the support vector machine face rec-
ognizer (Phillips, 1998) all fall into this family. Similarly,
wavelet-based image retrieval (Jacobs et al., 1995), vector
space model for text-retrieval (Salton, 1971) and latent se-

2The random variables corresponding to the two techniques
are generally different.

mantic indexing (Deerwester et al., 1990) also employ vari-
ants of nearest-neighbor methods in their matching phase.
Not only is our complete cross-validation accuracy identi-
cal to that obtained by averaging over the exhaustive enu-
meration of partitions, it can be computed very efficiently.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the general technique, applies it to sev-
eral classifier types and provides a complexity analysis for
each variant, showing that complete cross-validation is ef-
ficient. Section 3 shows that the theoretical bias of CCV
is equivalent to k-fold cross-validation, and that the vari-
ance is typically lower. Section 4 presents empirical results
on standard datasets that support these theoretical claims.
Section 5 concludes with an outline of future research.

2. Expectation of Empirical Accuracy

This section describes a general method for efficiently
calculating the complete cross-validation accuracy for the
nearest-neighbor family of classifiers. Our goal is to calcu-
late the expectation of the empirical accuracy, as given by
either k-fold cross-validation or subsampling. We define
the following terms:

N Size of S (|S|)
c(x) The class label associated with x
C Number of class labels in S
Ni Number of elements in class i.

Ni = |{x : c(x) = i}|
k Number of folds in k-fold cross validation (CV).

First, we simplify the problem by demonstrating that the
accuracy obtained using complete k-fold cross validation
can easily be obtained by evaluating the equivalent com-
plete subsampling where |S \ T | = N/k. Let P =
(p1, p2, . . . , pk) be a partition of S for cross-validation,
Subsampling(T) be the empirical accuracy computed by
subsampling with training set T and CV(P) be the em-
pirical accuracy computed by k-fold cross-validation with
partition P . Then by definition we have:

CV(P) =
1

k

k∑

i=1

Subsampling(S \ pi).

The expectation is, by substitution and linearity:

E[CV] =
1

k

k∑

i=1

E[Subsampling(S \ pi)]

=
1

k

k∑

i=1

E[E[Subsampling(S \ pi)|pi = p]],

by Proposition 6.1 in Ross, 1988 (p. 285). Now:

E[CV] =
1

k

k∑

i=1

E[Subsampling(S \ p)]

= E[Subsampling(S \ p)],

because E[Subsampling(S \ p)] is independent of i. And

E[CV] = E[Subsampling(T)]

by a simple correspondence of a test set p and the training
set T = S \ p. Thus, the remainder of the paper focuses
on complete subsampling. Let T be the set of permissible
training sets. The expectation of the empirical accuracy
using complete subsampling is simply the proportion of
possible classifications that are correctly classified (over all
T). The number of possible classifications is

∑

T∈T |S\T |,
while the total number of correct classifications is:

A =
∑

T∈T

∑

x/∈T

correct(x, T), (1)

where the binary function, correct(x, T), returns 1 iff x is
correctly labeled3 by a classifier trained on T . Equation 1 is
a large sum (with |T | terms) of small inner sums (each with
fewer than N terms). We focus on efficiently computing
this seemingly-intractable sum. We begin by manipulating
Equation 1 into a more manageable form:

A =
∑

T∈T

∑

x/∈T

correct(x, T) (2)

=
∑

(x,T)∈S×T
x/∈T,T∈T

correct(x, T)

=
∑

x∈S

∑

T∈T
T 63x

correct(x, T)

︸ ︷︷ ︸

Ax

. (3)

This identity expresses the key insight of our technique:
that the total number of correct classifications can be com-
puted in two equivalent ways. In the direct method, the
number of correct classifications for a particular test/train
split is summed over all possible splits (Equation 2). Alter-
nately, one can count the number of splits, Ax, for which a
particular item in the test set, x, is correctly identified and
sum over every item in the data set (Equation 3). Com-
putationally, this transforms the problem into a small sum
of large inner sums. Fortunately, in the case of nearest-
neighbor classifiers, Ax can be efficiently calculated with-
out explicit enumeration, enabling us to efficiently obtain
our goal (expectation of empirical accuracy).

3It is implicit that x ∈ S, so that x /∈ T ⇔ x ∈ S\T .

The training phase of any classifier in the nearest-neighbor
family simply consists of storing all of the labeled items
in T . In the testing phase, to classify an item x from the
test set, the similarity between x and each of the items in
T is computed and x is assigned a label computed from the
labels of the most similar items in T . The similarity mea-
sure between items need not satisfy metric properties such
as symmetry or the triangle inequality. We require that the
similarity between items be invariant over test/train splits
so that a fixed ordering of items in S, sorted by similarity,
can be created for every x ∈ S.4 For a particular item, x,
this ordered list looks like:

x : x1 x2 x3 . . . xi . . . xN−2 xN−1.
← More similar Less similar→

This list contains all of the items in S; for a given split,
some of the xi items will be in the training set and the
remainder will be in the test set. A given split correctly
classifies x iff its label is correctly computed from the ele-
ments in the training set most similar to x. Note that these
elements are not necessarily the leftmost elements above,
since the leftmost elements may have been assigned to the
test set. We show below how the number of splits that pre-
dict a given label can be computed without enumeration
and demonstrate how this enables us to efficiently evaluate
Ax for several classifiers. We introduce the approach using
1-nearest-neighbor and then generalize to loss functions,
stratified datasets, K-nearest-neighbor and rank-scoring.

2.1 Classifier 1: 1-Nearest-Neighbor with Fixed |T |

Despite its simplicity, the 1-nearest-neighbor (1-NN) clas-
sifier has good theoretical properties (Cover & Hart, 1967),
and has been successfully applied to a broad range of prob-
lems. We first consider the case of complete subsampling
where the training set is of a fixed size, |T | = α, and the
classifier is 1-nearest-neighbor. In the context of the dis-
cussion above, a given split correctly classifies x iff x and
its nearest neighbor (most similar element in T) have the
same class label.

Consider the set of training sets, E ⊂ T , where the ele-
ment most similar to x’s is denoted xi. If c(x) = c(xi),
then all classifiers using T ∈ E correctly classify x, else
none of them do; thus, the number of total correct classifi-
cations is incremented by |E| iff c(x) = c(xi). By exam-
ining the additional constraints on E , we obtain |E| without
explicitly enumerating E . Our constraints are: (1) the items
x1, . . . , xi−1 cannot be in T , since xi is the most similar
element in T to x; (2) aside from xi, there are α− 1 items
in the training set, all of which must appear somewhere in
the N − i − 1 available positions to the right of xi (see
the diagram above). Therefore, given x and xi, there are

4Any reasonable tie-breaking criterion may be applied.

(
N−i−1

α−1

)
splits that will create training sets satisfying these

constraints. Summing over all possible positions xi gives
us the following:

Ax =

N−1∑

i=1

I(x, xi)

(
N − i− 1

α− 1

)

, (4)

where I(xi, xj) is an indicator function that returns 1 if
c(xi) = c(xj), and 0 otherwise. Equation 4 reduces the
number of terms in Equation 3’s intractable inner sum from
|T | =

(
N
α

)
to only N − 1. Unless α = 1, or α = N − 1,

this improvement is very significant.

2.1.1 COMPLEXITY ANALYSIS FOR 1-NN

The time required to calculate Ax using Equation 4 is com-
posed of the following parts:

1. Computing similarity between x and each xi: O(N);

2. Sorting the N − 1 items: (N log N);

3. Summing the N − 1 terms in Equation 4: O(N).

Therefore, the time required to obtain Ax is bounded by
O(N log N). Since Ax is computed for each x ∈ S, the
total time is:

O(N2 log N). (5)

The binomial coefficients should be calculated once and
then stored. In all cases presented, there will be at most a
small multiple of N coefficients that need to be stored, and
in practice this calculation takes a small fraction of the total
running time.

When a significant fraction of the data is to be placed in
the training set, Ax can be computed more efficiently as
follows. In Equation 4, note that when i > N − α, the bi-
nomial coefficient

(
N−i−1

α−1

)
= 0. So, rather than summing

N−1 terms, we need only sum the first N−α terms. Also,
rather than sorting all N − 1 items, we need only deter-
mine the N −α nearest neighbors, which can be done with
a priority queue (Knuth, 1973) in time O(N log(N − α)).
This results in a total execution time of O(N 2 log(N−α)),
which can be as low as O(N2) when N −α is a small con-
stant.

By comparison, a single trial of the subsampling takes
O(α (N − α)). The exhaustive computation (Equation 1)
will therefore take O(

(
N
α

)
α(N − α)), which is intractable

for typical α. In fact, our algorithm is more efficient than
averaging the results from O(log N) randomized trials.

2.2 Classifier 2: 1-NN with Arbitrary Loss Function

Loss functions (Vapnik, 1998) offer a generalization of ac-
curacy by penalizing some misclassifications more than

others and by rewarding some correct classifications more
than others. The technique for complete cross-validation
described above can easily be adapted to employ loss func-
tions as follows.

Consider again the set of training sets, E ⊂ T , where the
element most similar to x in T is xi. All classifiers using
T ∈E assign a loss of L(x, xi); thus, the total loss is incre-
mented by |E|L(x, xi). |E| is determined as in Section 2.1.
Summing over all possible positions xi gives us:

Ax =

N−1∑

i=1

L(x, xi)

(
N − i− 1

α− 1

)

. (6)

The algorithms presented in subsequent sections can also
be adapted to include loss functions as described above.
The complexity analysis presented in Section 2.1.1 is also
valid here.

2.3 Classifier 3: Stratified 1-NN

In some applications, the training set is constrained to con-
tain a certain number of items from each class (typically to
reflect the proportions of the classes in S); this is termed
stratification (Kohavi, 1995). For instance, the ORL face
dataset (Samaria & Harter, 1994) contains 10 images from
each of 40 individuals. The face recognition experiments
presented in (Lawrence et al., 1996; Sim et al., 2000) ex-
amine accuracy by varying the size of the training set using
1, 3, or 5 images for each of the 40 classes. In general,
we define αc to be the number of items required from class
c to be in the training set. This section shows how com-
plete cross-validation may be applied to this problem, by
extending the algorithm described Section 2.1.

Consider the set of training sets, E ⊂ T , where the item
most similar to x in T is xi. We first define fi(c) to be the
number of items from a given class, c, that are less similar
than a given item, xi in S (equivalent to the number of
items of the given class appearing to the right of xi in the
diagram above):

fi(c) = |{j : j > i and c(xj) = c}|. (7)

For each class, c 6= c(xi), we must select αc items from a
potential fi(c) candidates for inclusion into the training set
T . For class c = c(xi), since we have already selected xi,
we only need an additional αc−1 items from the fi(c) can-
didates. Since the choices for each class are independent,
the number of training sets that correctly classify x is the
product of the number of choices for each class. All possi-
ble training sets for item x can be generated by considering
i from 1 to N − 1, as above. In a manner analogous to

Equation 4, we can efficiently calculate Ax as:

Ax =

N−1∑

i=1

I(x, xi)

(
fi(c(xi))

αc(xi) − 1

) C∏

c=1
c 6=c(xi)

(
fi(c)

αc

)

(8)

Note that a loss function (see Section 2.2) can be incor-
porated into Equation 8 simply by replacing I(x, xi) with
L(x, xi).

2.3.1 COMPLEXITY ANALYSIS

A similar analysis to the one presented in Section 2.1.1 can
be performed to calculate the bounds on execution time for
this algorithm. The time required to compute Ax using
Equation 8 is composed of the following parts:

1. Similarity computation and sorting (identical to that in
Section 2.1.1);

2. Computing ∀c fi(c) (discussed below);

3. Computing the N − 1 non-zero terms, each requiring
O(C) to multiply the binomial coefficients together:
O(CN).

∀c fi(c) can be efficiently computed since fi+1(c) =
fi(c) − 1 when c = c(xi+1), and is unchanged otherwise.
Therefore, the cost of computing ∀c fi(c) is O(N) . and
the total time needed to compute Ax is O(N log N +CN).
To compute A, we must do this for each x ∈ S; the total
time is given by:

∑

x∈S

O(CN + N log N) = O(N2(C + log N)).

A single trial of the subsampling algorithm takes O(α(N−

α)), where α ≡
∑C

c=1 αk. The analysis is very similar to
that presented in Section 2.1.1.

2.4 Classifier 4: K-Nearest-Neighbor

The 1-nearest-neighbor algorithm has been criticized for
being overly sensitive to labeling errors in the dataset. The
K-nearest-neighbor algorithm (Mitchell, 1997) addresses
this by considering the K most similar elements in the train-
ing set. To simplify discussion, this section focuses on the
instance of binary K-nearest-neighbor classification where
each of the K neighbors votes equally for its label, and x
is assigned the label with the greatest number of votes.5

First, we define some additional notation. Consider the set
of training sets, Es⊂T , where xi is the K-th most similar
item to x in T , and there are exactly s correctly-labeled
items in T that are at least as similar as xi to x. Analogous
to the definition of fi(c) in Section 2.3, we define:

gi(c) = |{j : j < i and c(xj) = c}|.

5We use an odd K to prevent ties.

Without loss of generality, let Ω = c(x) and denote the
other class by 0. Now:

Ax =

N−1∑

i=1

K∑

s= k+1

2

|Es|, (9)

where |Es| is given by:
(

gi(Ω)

s− IΩ(xi)

)(
gi(0)

K − s− I0(xi)

)(
N − i− 1

α−K

)

, (10)

and IΩ(xi) = 1 iff c(xi) = Ω and 0 otherwise, and I0(xi)
defined analogously. The expression for |Es| consists of
three parts:

1. the number of elements more similar than xi to x of
the correct class is gi(Ω), from which we must select
s− IΩ(xi);

2. the number of elements more similar than xi to x of
the incorrect class is gi(0), from which we must select
K − s− I0(xi);

3. there are a total of N − i − 1 elements that are less
similar than xi to x (of either class), from which we
must select α−K.

2.4.1 COMPLEXITY ANALYSIS

The analysis is similar to that presented in Section 2.3.1
with the following differences. Step 2 requires computa-
tion of ∀c gi(c) rather than ∀c fi(c), which also takes O(N)
time. The summation in Step 3 consists of O(KN) terms
taking O(KN) time. Thus, the total time needed to per-
form complete cross-validation for binary-class K-NN is
O(N2(K + log N)).

2.5 Classifier 5: Stratified K-Nearest-Neighbor

The algorithm to compute complete cross-validation for
stratified K-Nearest-Neighbor only requires small modifi-
cations to the approach given in Section 2.4. The third term
in the expression for |Es| (Equation 10) should be replaced
by:

(
fi(Ω)

αΩ − s

)(
fi(0)

α0 + s− k

)

.

This is justified as follows. In the stratified case, (analogous
to the discussion in Section 2.3), there are fi(Ω) correctly-
labeled elements in T that are less similar than xi to x,
of which we must select αΩ − s. Similarly, out of fi(0)
incorrectly-labeled elements in T that are less similar than
xi to x, we require α0 + s− k.

By substituting k = 1 into the above equations, we can
confirm that the formulae for K-NN correctly reduce to the
equations presented in Sections 2.1 and 2.3 for 1-NN. The

complexity analysis for stratified K-NN is almost identical
to the analysis given in Section 2.4.1, resulting in the same
asymptotic execution time.

2.6 Classifier 6: 1-NN with R-Rank-Scoring

In some domains with large numbers of classes, a classifier
is judged to be “correct” iff at least one of the R most sim-
ilar items in the training set matches the query item’s class
label. For instance, a face recognition system may be given
a noisy photograph, x, and asked to return a list of the R
best matches from its database. As long as the identity of
one of the retrieved faces is correct, the system is judged to
be correct (Phillips et al., 1998).

The technique presented above can be extended to accom-
modate such a scoring scheme as follows. Consider the
set of training sets, Er ⊂ T , where xi is the most similar
correctly-labeled item to x in T , and there are exactly r−1
incorrectly-labeled items in T that are at least as similar as
xi to x. The expression for Ax is:

Ax =

N−1∑

i=1

I(x, xi)

R∑

r=1

|Er|, (11)

where:

|Er| =

(
N − i− 1

α− r

)(
i−Nc(x) + fi(c(x)) + 1

r − 1

)

.

We justify the expression for |Er| as follows. The first term
counts the number of ways of selecting α−r elements from
the N−i−1 elements that are less similar than xi to x. The
second term counts the number of ways that r−1 elements
can be chosen from the incorrectly-labeled items that are
more similar than xi to x.

2.6.1 COMPLEXITY ANALYSIS

The analysis is similar to that presented in Section 2.3.1
with the following difference. The summation in Step 3
consists of O(RN) terms: O(RN) time. Thus, the total
time needed to perform complete cross-validation for 1-NN
using a R-ranked-scoring is O(N 2(R + log N)).

3. Statistical Analysis

In this section, we show that empirical accuracies obtained
using k-fold cross-validation, subsampling, or complete
cross-validation all exhibit the same statistical bias, but that
the estimate obtained using complete cross-validation ex-
hibits smaller variance.

For a fixed set, S, the empirical accuracy obtained using
complete cross-validation was shown above to be equal to
the expected value obtained using either of the standard

Table 1. Datasets and their relevant characteristics.

Dataset Sample size/ Dim Classes
|S|

Synthetic —/100 3 4
Abalone-2 4177/600 8 2
Abalone-3 4177/600 8 3
Breast Cancer 699/140 8 2

techniques. Since these are all estimates of the same gen-
eralization accuracy, this implies that the bias is identical.
For the given S, the complete cross-validation estimate is
not a random variable; therefore, its variance is 0. k-fold
cross-validation and subsampling, unless averaged over all
partitions, exhibit a non-zero variance.

In reality, S should not be considered fixed, but is rather a
sample of N elements drawn from some unknown proba-
bility distribution F . In this case, the estimate from com-
plete cross-validation is a function of S, and is therefore
also a random variable, with statistical properties expressed
by:

E[CCV|S] = E[E[CV|S]] = E[CV]

= E[E[Subsampling|S]] = E[Subsampling].

We observe that the empirical accuracies computed by all
three methods are still equally biased. Since the complete
cross-validation estimate is no longer constant, its variance
is non-zero. However, by the conditional variance for-
mula (Ross, 1988) we can write:

Var(CV) = Var(E[CV|S]) + E[Var(CV|S)]

= Var(CCV|S) + E[Var(CV|S)]

≥ Var(CCV|S),

showing that, the variance for complete cross-validation is
generally smaller. The term, E[Var(CV|S)] is the vari-
ance due to the random partitions used in creating the k-
folds. The same argument can be used to show that com-
plete cross-validation estimates exhibit lower variance than
non-exhaustive subsampling. These theoretical results are
confirmed by the experiments presented in Section 4.

4. Empirical Results

Table 1 summarizes the datasets used in the experiments
reported in this section. Abalone and Breast Cancer were
obtained from the UCI repository (Blake & Merz, 1998).
Synthetic consists of 4 Gaussians with equal variance and
significant overlap, and Bayes Error ≈ 0.504.6 Abalone

6The Bayes error for the Synthetic data set was estimated using
a Monte-Carlo simulation with 60000 samples.

is a 29 class problem, however many of the classes have
only very few instances. Abalone-2 and Abalone-3 are two-
and three-class versions of the problem, where the adja-
cent classes were grouped so that data was divided evenly.
Abalone-3 was introduced in (Waugh, 1995). In the Breast
Cancer dataset, the ID field was omitted, as was a field
containing missing values.7

Since the aim of these experiments was not to improve clas-
sification accuracy but rather to compare estimation vari-
ance and timing for different cross-validation strategies, no
effort was made to tune classification parameters. There-
fore, all of the experiments employed a simple Euclidian
distance function on unscaled features. The experimental
methodology is summarized as follows.

Averaging over 50 independent runs using dataset D:
- Generate S by drawing without replacement from D
- CCV: α = 4|S|/5 (only need to run once)
- Stratified CCV: αc = 4Nc/5 (only need to run once)
- 5-fold CV: averaged over 50 trials (random folds)
- 5-fold stratified CV: averaged over 50 trials
- Subsampling: α = 4|S|/5 averaged over 50 splits
- Stratified subsampling: αc = 4Nc/5 averaged over 50
- Compute holdout accuracy: use S to train, D \ S to test.

Because of the low dimension and the small S we have
chosen, we are able to perform more runs with the syn-
thetic dataset, as follows: 100 independent runs were per-
formed, and the 5-fold cross-validations and subsampling
trials were repeated 100 times, and data points were synthe-
sized from a known probability distribution. The holdout
accuracy was estimated using an additional 500 generated
points.

Table 2 summarizes the experimental results. The first
block demonstrates that CCV performs well on synthetic
data: the empirical accuracy obtained using CCV is consis-
tent with that obtained using either k-fold CV or subsam-
pling. It is also close to the holdout accuracy, indicating
that there is little bias. While the time taken to execute a
single trial on CCV is greater than that required to execute
a single trial using standard techniques, it is clear that a
single run of CCV outperforms the average of 100 trials of
the other techniques, both in terms of reduced variance and
faster execution. Note that a given block of experiments
also includes results from the stratified variant of the algo-
rithm. The next block of results demonstrate that CCV also
performs favorably on a real-world dataset. The third block
compares the performance of the various techniques using
the K-nearest-neighbor classifier. The last block compares
the techniques for a rank-scored 1-nearest-neighbor classi-

7The breast cancer database is obtained from the University of
Wisconsin Hospitals, Madison from Dr. William Wolberg (Man-
gasarian & Wolberg, 1990).

fier (no stratified variant here). Table 3 shows experimental
results for CCV vs. CV and subsampling in the case of an
asymmetric loss function. The penalty for misdiagnosing
a malignant cancer as benign is set to be five times greater
than the penalty for misclassifying a benign tumor as ma-
lignant.

From this data, we see that CCV can complete a run in the
time taken to evaluate 3–20 trials of CV (a small fraction
of the time taken to run one CV) and 5–50 trials of random
subsampling.8 In this time, neither of the established meth-
ods is able to substantially reduce its variance on estimated
accuracy.

5. Conclusion

Nearest-neighbor methods appear frequently (in disguise)
in real applications, typically as the final stage of a com-
plex system. This paper presents an efficient technique
for calculating the expected empirical accuracy of nearest-
neighbor classifiers using complete cross-validation. The
general method is specialized to several popular classifier
variants: K-nearest neighbor, stratified data partitioning,
asymmetric loss functions and ranked-scoring. Theoretical
results demonstrate that our method exhibits desirable sta-
tistical properties and has favorable asymptotic complex-
ity. Experimental results on a synthetic classification task
and also on standard machine learning datasets supports the
theoretical claims.

Our technique, which is straightforward to implement, is
immediately applicable; for instance, Classifier 3 (Sec-
tion 2.3) has reduced the time required for parameter op-
timization in a face recognition system (Sim et al., 2000)
from several hours to a few minutes. Thus our technique
may be used as a fast cross-validation component in other
machine-learning algorithms. We are currently incorpo-
rating it into a gradient-descent-based method for feature
weighting with encouraging preliminary results. Our plans
for future research include:

• Extending the technique to allow statistical hypothesis
testing, as in (Dietterich, 1998).

• Addressing a more general set of classifiers. The cur-
rent system is limited to classifiers where the similar-
ity relations between elements are indepedendent of
the training set. We believe that our technique can
be extended to kernel-weighted or distance-weighted
classifiers.

• Working with very large datasets. The current im-
plementations of our technique do not take advan-
tage of specialized data structures developed for large

8Experiments were performed in Matlab 5.3.1 on a PII-300
machine running Linux 2.2.12.

Table 2. A summary of several experiments comparing complete
cross-validation (CCV) with standard techniques (k-fold CV and
random subsampling). The empirical accuracy (column 2) is mul-
tiplied by 10

3 for convenience, as is the variance on the estimate
(column 3). The time per run sums up 50 trials for the standard
methods on all datasets except for synthetic (where 100 trials are
summed). Note that CCV’s estimate of accuracy is consistent
with that of other methods, and that its variance and execution
time compare very favorably.

Experiment Emp. Var Time (s) Time (s)
Acc. per trial per run

1-Nearest-neighbor on synthetic
Holdout 371.2 0.89 0.84 0.8
CCV 369.8 3.68 0.14 0.1
CCV (stratified) 378.5 3.77 0.24 0.2
CV 370.0 4.46 0.06 6.4
CV (stratified) 379.3 4.53 0.08 7.5
Subsampling 361.7 12.25 0.01 1.2
Sub. (stratified) 372.5 12.23 0.02 1.6

1-Nearest-neighbor on Abalone-3
Holdout 566.7 0.12 17.54 17.5
CCV 560.1 0.59 3.47 3.5
CCV (stratified) 561.1 0.59 6.91 6.9
CV 561.2 0.62 0.75 37.5
CV (stratified) 562.5 0.59 0.86 43.0
Subsampling 561.8 2.08 0.52 26.3
Sub. (stratified) 562.2 2.05 0.55 27.6

K-Nearest-neighbor (K=5) on Abalone-2
Holdout 754.1 0.09 25.78 25.8
CCV 748.5 0.35 41.42 41.4
CCV (stratified) 749.3 0.35 21.33 21.3
CV 748.6 0.44 2.03 101.7
CV (stratified) 749.5 0.43 2.14 106.8
Subsampling 747.2 1.54 0.80 40.0
Sub. (stratified) 749.1 1.62 0.84 41.7

1-NN with Rank-scoring (R=10) on Abalone-3
Holdout 970.7 0.04 26.16 26.2
CCV 973.6 0.02 20.95 21.0
CV 973.5 0.04 2.02 101.3
Subsampling 973.5 0.25 0.82 40.7

Table 3. Results of experiments using an asymmetric loss func-
tion: cost for missing a cancer case is set to be 5 times greater
than the cost of a false alarm. The accuracy estimate produced by
CCV is consistent with the standard methods and the execution
time and variance compare very favorably.

Experiment Exp. Var Time (s) Time (s)
Loss per trial per run

Holdout 225.4 4.87 0.47 0.5
CCV 246.1 6.89 0.30 0.3
CV 240.9 12.66 0.06 2.8
Subsampling 230.6 41.46 0.03 1.4

datasets, such as k-d trees (Friedman et al., 1977).

• Directly estimating higher-order statistics. This would
enable us to report confidence intervals on the esti-
mated accuracy.

Acknowledgments

Thanks to Rich Caruana, Dayne Freitag, Terence Sim, and
Gita Sukthankar for valuable feedback on earlier drafts of
this paper.

References

Blake, C., & Merz, C. (1998). UCI repository of machine
learning databases. http://www.ics.uci.edu/
˜mlearn/MLRepository.html.

Cover, T., & Hart, P. (1967). Nearest neighbor pattern clas-
sification. IEEE Transactions on Information Theory,
13, 21–27.

Dasarathy, B. (1991). Nearest neighbor pattern classifi-
cation techniques. Los Alamitos, CA: IEEE Computer
Society Press.

Deerwester, S., Dumais, S., Furnas, G., Landauer, T., &
Harshman, R. (1990). Indexing by latent semantic anal-
ysis. Journal of the American Society for Information
Science, 41, 391–407.

Dietterich, T. (1998). Approximate statistical tests for
comparing supervised classification learning algorithms.
Neural Computation, 10, 1895–1923.

Friedman, J., Bentley, J., & Finkel, R. (1977). An algorithm
for finding best matches in logarithmic expected time.
ACM Transactions on Mathematical Software, 3, 209–
226.

Jacobs, C., Finkelstein, A., & Salesin, D. (1995). Fast mul-
tiresolution image querying. Proceedings of SIGGRAPH
95 (pp. 277–286).

Knuth, D. (1973). The art of computer programming: Sort-
ing and searching. Reading, MA: Addison-Wesley.

Kohavi, R. (1995). A study of cross-validation and boot-
strap for accuracy estimation and model selection. Pro-
ceedings of International Joint Conference on Artificial
Intelligence (pp. 1137–1143).

Lawrence, S., Giles, C., Tsoi, A., & Back, A. (1996). Face
recognition: A hybrid neural network approach (Tech-
nical Report UMIACS-TR-96-16). University of Mary-
land.

Mangasarian, O., & Wolberg, W. (1990). Cancer diagnosis
via linear programming. SIAM News, 23, 1, 18.

Mitchell, T. (1997). Machine learning. New York:
McGraw-Hill.

Phillips, P. (1998). Support vector machines applied to face
recognition. Advances in Neural Information Processing
Systems 11 (pp. 803–809).

Phillips, P., Wechsler, H., Huang, J., & Rauss, P. (1998).
The FERET database and evaluation procedure for face-
recognition algorithms. Image and Visual Computing,
16, 295–306.

Ross, S. (1988). A first course in probability. New York:
Macmillan.

Salton, G. (1971). The SMART information retrieval sys-
tem: Experiments in automatic document processing.
Edgewood Cliffs, NJ: Prentice-Hall.

Samaria, F., & Harter, A. (1994). Parametrisation of a
stochastic model for human face identification. Proceed-
ings of IEEE Workshop on Applications on Computer
Vision (pp. 138–142). ORL database is available at:
<www.cam-orl.co.uk/facedatabase.html>.

Sim, T., Sukthankar, R., Mullin, M., & Baluja, S. (2000).
Memory–based face recognition for visitor identifica-
tion. Proceedings of Face and Gesture (in press).

Turk, M., & Pentland, A. (1991). Eigenfaces for recogni-
tion. Journal of Cognitive Neuroscience, 3, 71–86.

Vapnik, V. (1998). Statistical learning theory. New York:
Wiley.

Waugh, S. (1995). Extending and benchmarking cascade-
correlation. Doctoral dissertation, University of Tasma-
nia.

Wiskott, L., Fellous, J., Krüger, N., & von der Malsburg, C.
(1997). Face recognition by elastic bunch graph match-
ing. Transactions on Pattern Analysis and Machine In-
telligence, 19, 775–779.

