
Lecture Notes on
Register Allocation Optimizations

15-411: Compiler Design
Frank Pfenning, Rob Simmons

Lecture 17
October 27, 2015

1 Introduction

In this lecture we’ll look way back at the lecture on register allocation, and consider
the ways in which register allocation can be optimized to improve program perfor-
mance. The most important operation we’ll consider is register coalescing, which
gets rid of register-register moves when doing doesn’t lead to spilling more temps.

One of the advantages of Pereira and Palsberg’s chordal graph coloring algo-
rithm [PP05] is that it lends itself to a register coalescing approach that is inde-
pendent of the actual register allocation process. In contrast, register allocation
algorithms like the one covered in the textbook [App98, Chapter 11] tend to tightly
integrate register allocation and register spilling, making both more complicated.
Recall that this process has five steps, only four of which were considered in our
initial presentation:

1. Build the interference graph from the liveness information.

2. Order the nodes using maximum cardinality search.

3. Color the graph greedily according to the elimination ordering.

4. Spill if more colors are needed than registers available.

5. Coalesce non-interfering move-related nodes greedily.

2 Register Allocation Heuristics

Pereira and Palsberg’s algorithm for register allocation is notable in that it does not
tell us which registers to spill in step 4, it only tells us how many registers we will
need to spill.

LECTURE NOTES OCTOBER 27, 2015



Register Allocation Optimizations L17.2

Pereira and Palsberg suggest two heuristics for deciding which colors should
be spilled and which colors should be mapped to registers: (i) spill the least-used
color, and (ii) spill the highest color assigned by the greedy algorithm. For pro-
grams with loops and nested loops, it may also be significant where in the programs
the variables or certain colors are used: keeping variables used frequently in inner
loops in registers may be crucial for certain programs.

It can also be advantageous to add heuristics to step 2 of Pereira and Pals-
berg’s algorithm, maximum cardinality search. In practice, this algorithm encoun-
ters many “ties” where multiple different registers could be chosen as the next
register. If the algorithm prefers to break ties by selecting more frequently used
temps (or temps used inside of more nested loops), then those temps will be con-
sidered earlier by the greedy graph coloring algorithm and potentially assigned
lower-numbered colors.

Other options that can be used for heuristically ordering or spilling temps in-
clude:

• values that rematerialize easily, i.e., that can be recomputed easily (say with 1
or 2 instructions) from other registers or at least loaded from or recomputed
easily from few memory accesses. When rematerializing from memory, the
placement of the instruction needs to be scheduled appropriately for cache
and pipeline efficiency reasons.

• values that (approximately) will not be used quickly again when following
the (likely) control flow, counting loop bodies as “closer” than loop exits.

• values that interfere with many others.

3 Register Coalescing

The most important optimization related to register allocation is eliminating register-
to-register moves with register coalescing. Algorithms for register coalescing are
usually tightly integrated with register allocation. In contrast, Pereira and Palsberg
describe a relatively straightforward method that is performed entirely after graph
coloring called greedy coalescing.

Greedy coalescing is based on two simple observations:

1. If we have a move u ← u, it won’t change the meaning of the program if we
delete it.

2. If two temps do not have an interference edge between them, then the two
different temps could both be renamed to be the same temp without changing
the meaning of the program. (This is simply what it means for two temps to
not interfere!)

LECTURE NOTES OCTOBER 27, 2015



Register Allocation Optimizations L17.3

Therefore, if t and s do not interfere, then we can always eliminate the move
t ← s by creating a new temp u, replacing both t and s with u everywhere in the
program, and eliminating the move.

We wouldn’t want to do this before graph coloring, because it tends to make
a chordal graph non-chordal and it also tends to increase the number of colors
needed to color the graph. But with a little bit of care, we can coalesce registers t
and s for some moves t← s after we have colored the interference graph but before
we have rewritten the program to replace temps with registers. The algorithm is as
follows:

1. Consider each move between variables t ← s occurring in the program in
turn.

2. If there is an edge between t and s, that is, they interfere, they cannot be
coalesced.

3. Otherwise, if there is a color c which is not used in the neighborhoods of t
and s, i.e., c 6∈ N(t)∪N(s), and which is smaller than the number of available
registers, then the variables t and s are coalesced into a single new variable
u with color c. Then create edges from u to any vertex in N(t) ∪ N(s) and
remove t and s from the graph.

Because of the tested condition, the resulting graph is still K-colored, where K is
the number of available registers. Of course, we also need to eventually rewrite
the program appropriately by replacing both t and s with u everywhere so that the
program remains in correspondence with the graph.

It’s important to realize that this is not an optimal register coalescing algorithm,
in that it won’t necessarily remove the maximum number of moves. Optimal reg-
ister allocation can be done using a reduction to integer linear programming, but
this would be too slow.

Let’s look at an example, considering the interference graph below, which can
be colored with three colors as follows:

0 2 0 1 0

x4 x0 x1 x5 x6

x2 x3

1 2

We can always coalesce a move between two registers of the same color. For
instance, we can coalesce a move x0 ← x3 by creating a new temp y with the same
color 2 . We would then want to substitute y for x1 and x3 everywhere in the
program. This new temp will have all the neighbors that x0 had (x1, x2, and x3) as
well as all the neighbors that x3 had (x1 and x2).

LECTURE NOTES OCTOBER 27, 2015



Register Allocation Optimizations L17.4

0 0 1 0

x4 x1 x5 x6

x2 y

1 2

Of course, coalescing two temps that are already the same color isn’t the interest-
ing case. If that’s all we wanted to do, we should have just rewritten the program
completely and eliminated obviously redundant self-moves from the register asso-
ciated with 2 to itself.

As a more interesting example, consider the move y ← x5 in our rewritten
program. (Before rewriting, this would have been either x0 ← x5 or x3 ← x5.)
We can eliminate that move by replacing both y and x5 with z everywhere in our
program. The register y has neighbors with both the color 0 and the color 1 , and
x5 has only neighbors with the color 0 . We will give z the color 2 , the lowest
color not in the neighborhoods of y and x5.

0 0 0

x4 x1 x6

x2 z

1 2

To demonstrate a bit about why doing optimal register coalescing is not straight-
forward, consider what would happen if the original program contained the move
x3 ← x4. In our new program, this would have been rewritten to z ← x4, and
because there is an interference edge between z and x4, this move cannot be elimi-
nated.

In the original graph, however, we could have eliminated the move x3 ← x4 by
coalescing x3 and x4 into a new temp w. However, because x4 in the original graph
has neighbors colored 1 and 2 , and because x3 in the original graph has nodes
colored 0 and 1 , we can only color our new temp w with a color that isn’t present
in the original graph.

2 0 1 0

x0 x1 x5 x6

w x2

3 1

LECTURE NOTES OCTOBER 27, 2015



Register Allocation Optimizations L17.5

Would we want to perform this step? Almost certainly: even though we’re
increasing the number of colors needed to color the graph, we have at least 3 caller-
save registers available, and it’s always worthwhile to use those if possible. In the
opposite direction, we might wish to avoid coalescing registers if one of the temps
had a low color that would be assigned to a temp and the other had a high color
that would be assigned to a stack location.

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, Cambridge, England, 1998.

[Cha82] Gregory J. Chaitin. Register allocation and spilling via graph coloring.
In Proceedings of the Symposium on Compiler Construction, pages 98–105,
Boston, Massachusetts, June 1982. ACM Press.

[Hac07] Sebastian Hack. Register Allocation for Programs in SSA Form. PhD thesis,
Universität Karlsruhe, October 2007.

[PP05] Fernando Magno Quintão Pereira and Jens Palsberg. Register alloca-
tion via coloring of chordal graphs. In K.Yi, editor, Proceedings of the
Third Asian Symposium on Programming Languages and Systems (APLAS’05),
pages 315–329, Tsukuba, Japan, November 2005. Springer LNCS 3780.

LECTURE NOTES OCTOBER 27, 2015


	Introduction
	Register Allocation Heuristics
	Register Coalescing

