
ETPS: A System to Help Students Write Formal Proofs ∗

Peter B. Andrews (andrews@cmu.edu)
Carnegie Mellon University

Matthew Bishop (matt.bishop@azlan.co.uk)
Azlan Ltd

Chad E. Brown (cebrown@andrew.cmu.edu)
Carnegie Mellon University

Sunil Issar

Frank Pfenning (fp@cs.cmu.edu)
Carnegie Mellon University

Hongwei Xi (hwxi@cs.bu.edu)
Boston University

Abstract.

ETPS (Educational Theorem Proving System) is a program which logic students
can use to write formal proofs in first-order logic or higher-order logic. It enables stu-
dents to concentrate on the essential logical problems involved in proving theorems,
and automatically checks the proofs.

Keywords: ETPS, GRADER, education, teaching logic, proofs

1. Introduction

Students in a variety of disciplines, especially those with a mathemati-
cal flavor, often need to learn how to write correct and rigorous proofs.
This often creates substantial challenges for both the students and their
teachers. A student may easily commit a fundamental logical error in
a proof which makes the rest of the proof useless, so it is important
that a student receive feedback about errors as promptly as possible.
However, reading or grading proofs for a large class of students can be
a very demanding and tedious task.

The ETPS (Educational Theorem Proving System) program can be
used to make the processes of writing and checking formal proofs much
easier and more enjoyable for logic students and their teachers.

The student using ETPS issues commands to apply rules of infer-
ence in specified ways, and the computer handles the details of writing

∗ The development of ETPS was supported by NSF grants MCS81-02870,
DCR-8402532, CCR-8702699, CCR-9002546, CCR-9201893, CCR-9502878, CCR-
9624683, CCR-9732312, CCR-0097179, and a grant from the Center for Design of
Educational Computing of Carnegie Mellon University.

c© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

etps-jar.tex; 5/12/2002; 11:11; p.1



2 Andrews et al.

the appropriate lines of the proof and checking that the rules can be
used in this way. The program thus allows students to concentrate on
the essential logical problems underlying the proofs, and it gives them
immediate feedback for both correct and incorrect actions.

ETPS was developed in conjunction with the automated Theorem
Proving System TPS [3], which has facilities for proving theorems au-
tomatically as well as the purely interactive facilities of ETPS. The two
systems are distributed together, and are available from the web [1].
Details are discussed below.

After reviewing eight programs that support the teaching of logic,
the authors of [5] (which was partially reprinted in [4]) concluded ‘For
elementary and advanced courses in mathematical logic for students
with a formal background, we choose ETPS, a powerful tool that is
also easy to learn.’

2. Environments for Running ETPS

ETPS can be run in an unspecialized environment, in an X-window on a
Unix-based computer, or using a Java interface. There are two versions
of the Java interface. One version provides a command line interface,
while the other provides a point-and-click style interface with popup
windows. The Java interfaces are still being improved.

3. Displaying Formulas and Proofs

ETPS offers the student a choice of styles for displaying logical formulas
(wffs). The simplest style, which is called GENERIC, displays exercise
X2110 (for example) on the screen as

EXISTS x R x

AND FORALL y [R y IMPLIES EXISTS z Q y z]

AND FORALL x FORALL y [Q x y IMPLIES Q x x]

IMPLIES EXISTS x EXISTS y .Q x y AND R y .

If the student is using the X-window interface with the style XTERM
or one of the Java interfaces with the style ISTYLE, ETPS displays
exercise X2110 on the screen as

∃x R x ∧ ∀ y[R y ⊃ ∃ z Q y z] ∧ ∀x∀ y[Q x y ⊃ Q x x]

⊃ ∃x∃ y. Q x y ∧ R y.

Proofs created using ETPS are presented in natural deduction style.
An example of such a proof is in Figure 1. The proof consists of a

etps-jar.tex; 5/12/2002; 11:11; p.2



ETPS 3

(1) 1 ` ∃x R x

∧∀ y[R y ⊃ ∃ z Q y z]
∧∀x∀ y. Q x y ⊃ Q x x Hyp

(10) 1 ` ∃x R x RuleP: 1
(11) 1,11 ` R a Choose: a 10
(20) 1 ` ∀ y. R y ⊃ ∃ z Q y z RuleP: 1
(21) 1 ` R a ⊃ ∃ z Q a z UI: a 20
(22) 11,1 ` ∃ z Q a z MP: 11 21
(23) 1,11,23 ` Q a b Choose: b 22
(30) 1 ` ∀x∀ y. Q x y ⊃ Q x x RuleP: 1
(31) 1 ` ∀ y. Q a y ⊃ Q a a UI: a 30
(32) 1 ` Q a b ⊃ Q a a UI: b 31
(33) 1,11,23 ` Q a a MP: 23 32
(34) 1,11 ` Q a a RuleC: 22 33
(96) 1,11 ` Q a a ∧ R a Conj: 34 11
(97) 1,11 ` ∃ y. Q a y ∧ R y EGen: a 96
(98) 1,11 ` ∃x∃ y. Q x y ∧ R y EGen: a 97
(99) 1 ` ∃x∃ y. Q x y ∧ R y RuleC: 10 98
(100) ` ∃x R x

∧∀ y[R y ⊃ ∃ z Q y z]
∧∀x∀ y[Q x y ⊃ Q x x]
⊃ ∃x∃ y. Q x y ∧ R y Deduct: 99

Figure 1. An ETPS proof of X2110

sequence of lines. Each line of the proof consists of a number in paren-
theses which serves as a label for that line and for the wff asserted in it,
a list (possibly empty) of numbers of lines whose wffs are assumed as
hypotheses for that line, the assertion sign `, the wff asserted in that
line, and a justification.

The TABLEAU command can be used to display the structure of
the proof as a tree.

ETPS can handle higher-order logic (type theory) as well as first-
order logic, and it has facilities for using definitions. These features
enable a wide variety of theorems of mathematics and other disciplines
to be expressed and proved in ETPS in very natural ways.

Each definition can have a face, which causes it to be displayed
and printed using special characters. A definition of a binary operator
can declare that operator to be an infix operator, so that it is printed
between its arguments. Thus, the assertion that the intersection of sets
A and B is a subset of A is displayed as

A ∩ B ⊆ A.

etps-jar.tex; 5/12/2002; 11:11; p.3



4 Andrews et al.

The commands SHOWTYPES and SHOWNOTYPES can be used
to specify that wffs of higher-order logic will be displayed with or
without type symbols. Thus exercise X5305 (a formulation of Cantor’s
Theorem that there is no function which maps a set onto its power set)
can be displayed as

∀ soα. ∼ ∃ goαα∀ foα. f ⊆ s ⊃ ∃ jα. s j ∧ g j = f

or as

∀ s. ∼ ∃ g∀ f. f ⊆ s ⊃ ∃ j. s j ∧ g j = f.

The versatility of the display on the screen when running in an
X-window is limited somewhat by the number of special characters
available.

ETPS has commands for creating files which can be printed to
display complete or incomplete proofs on paper. The command PRINT-
PROOF creates such a file in GENERIC style, while the command
TEXPROOF creates a file which can be run through TEX to display
the proof using the symbols of logic as illustrated above.

4. Proofwindows

The student using the Java or X-window interfaces can execute the
command BEGIN-PRFW to create special proofwindows which display
and automatically update the proof when the student executes com-
mands to apply rules of inference. One of these proofwindows contains
the entire current proof. Another proofwindow displays only the current
subproof, which consists of the line of the proof which the student is
currently trying to derive and the lines from which ’e1 is trying to derive
it. These lines are called active. This helps the student to focus on the
immediate problem. A third proofwindow displays the active lines as
well as the numbers of all other lines of the proof, so that the student
can readily see where the active lines fit into the entire proof and where
new lines can be inserted.

ETPS automatically updates the information about which lines of
the proof are active. For example, when a student starts to prove
X2110, the proof just contains the wff to be proved, as displayed in
Figure 2. (The pseudo-justification PLAN1 simply indicates that this
line has not yet been justified. Such lines are called planned lines.) If

1 Since there has long been a need for a gender-neutral personal pronoun in
English, we shall write ’e as an abbreviation for he or she, and ’e’s as an abbreviation
for his or her.

etps-jar.tex; 5/12/2002; 11:11; p.4



ETPS 5

· · · · · ·
(100) ` ∃x R x

∧∀ y[R y ⊃ ∃ z Q y z]
∧∀x∀ y[Q x y ⊃ Q x x]
⊃ ∃x∃ y. Q x y ∧ R y PLAN1

Figure 2. Initial step in proving X2110

(1) 1 ` ∃x R x

∧∀ y[R y ⊃ ∃ z Q y z]
∧∀x∀ y. Q x y ⊃ Q x x Hyp

· · · · · ·

(99) 1 ` ∃x∃ y. Q x y ∧ R y PLAN2
(100) ` ∃x R x

∧∀ y[R y ⊃ ∃ z Q y z]
∧∀x∀ y[Q x y ⊃ Q x x]
⊃ ∃x∃ y. Q x y ∧ R y Deduct: 99

Figure 3. Second step in proving X2110

the student applies the DEDUCT rule to apply the Deduction Theorem
(backwards) to prove line (100), the proof is modified to that displayed
in Figure 3. At the same time, ETPS deletes (100) from the list of active
lines, since it is now justified and need not be considered again; at this
stage the current subproof window simply displays the lines shown in
Figure 4.

Of course, the student will sometimes wish to change the set of active
lines, and there are commands for doing this.

5. Interacting with ETPS

Rules of inference can be applied very flexibly. Any or none of the lines
referred to in the description of a rule of inference may already be
present in the proof when the student executes that rule. ETPS will

(1) 1 ` ∃x R x

∧∀ y[R y ⊃ ∃ z Q y z]
∧∀x∀ y. Q x y ⊃ Q x x Hyp

· · · · · ·

(99) 1 ` ∃x∃ y. Q x y ∧ R y PLAN2

Figure 4. Active lines for second step in proving X2110

etps-jar.tex; 5/12/2002; 11:11; p.5



6 Andrews et al.

· · · · · ·

(23) 1 ` Q a b PLAN7
(32) 1 ` Q a b ⊃ Q a a UI: b 31
(33) 1 ` Q a a MP: 23 32

Figure 5. An application of Modus Ponens

· · · · · ·

(23) 1 ` Q a b PLAN7
· · · · · ·

(33) 1 ` Q a a PLAN8

Figure 6. Modified portion of proof from Figure 5 after deletion of line (32)

simply ask where the various lines are to be placed, and (if necessary)
what wffs are to be asserted in them.

For example, consider the application of Modus Ponens in Figure 5.
If MP is called when line (32) is present but lines (23) and (33) have not
yet been put into the proof, ETPS will ask for the number of the Line
with Implication (to which the student responds “32”), the number of
the Line with Succedent of Implication (to which the student responds
“33”), and the number of the Line with Antecedent of Implication (to
which the student responds “23”), and ETPS adds lines (23) and (33)
to the proof.

As a consequence of this flexibility in applying rules of inference,
students can construct proofs working forwards, backwards, or in a
combination of these modes.

The student can rearrange or modify a proof by renumbering lines,
deleting lines, and adding new lines. If a deleted line was formerly used
in the justification of another line, the formerly justified line automat-
ically becomes a planned line. For example, the proof lines in Figure 5
are replaced by those in Figure 6 if line (32) is deleted.

Once the proof is complete, the student can execute the CLEANUP
command to simultaneously delete all lines which are not actually
needed in the proof. The SQUEEZE command can be used to renumber
the lines consecutively, transforming the proof in Figure 1 to that in
Figure 7.

When ETPS prompts the student for an argument to a command,
it often provides a default suggestion, which is specified in brackets.
If the student wishes to use this default, ’e simply hits the <Return>

key. This speeds up interaction with ETPS considerably.
Online help is available for all ETPS commands. In particular, de-

scriptions of the rules of inference are available online. If the student

etps-jar.tex; 5/12/2002; 11:11; p.6



ETPS 7

(1) 1 ` ∃x R x

∧∀ y[R y ⊃ ∃ z Q y z]
∧∀x∀ y. Q x y ⊃ Q x x Hyp

(2) 1 ` ∃x R x RuleP: 1
(3) 1,3 ` R a Choose: a 2
(4) 1 ` ∀ y. R y ⊃ ∃ z Q y z RuleP: 1
(5) 1 ` R a ⊃ ∃ z Q a z UI: a 4
(6) 3,1 ` ∃ z Q a z MP: 3 5
(7) 1,3,7 ` Q a b Choose: b 6
(8) 1 ` ∀x∀ y. Q x y ⊃ Q x x RuleP: 1
(9) 1 ` ∀ y. Q a y ⊃ Q a a UI: a 8
(10) 1 ` Q a b ⊃ Q a a UI: b 9
(11) 1,3,7 ` Q a a MP: 7 10
(12) 1,3 ` Q a a RuleC: 6 11
(13) 1,3 ` Q a a ∧ R a Conj: 12 3
(14) 1,3 ` ∃ y. Q a y ∧ R y EGen: a 13
(15) 1,3 ` ∃x∃ y. Q x y ∧ R y EGen: a 14
(16) 1 ` ∃x∃ y. Q x y ∧ R y RuleC: 2 15
(17) ` ∃x R x

∧∀ y[R y ⊃ ∃ z Q y z]
∧∀x∀ y[Q x y ⊃ Q x x]
⊃ ∃x∃ y. Q x y ∧ R y Deduct: 16

Figure 7. Proof of X2110 with lines renumbered

needs more information when prompted for an argument to a command,
’e can respond with ? or ??. If the command involves applying a rule
of inference, in response to ? ETPS might specify that a line number
or wff is needed, whereas in response to ?? it would state the rule of
inference.

Sometimes students who are just starting to learn how to prove
theorems have no idea what to do next. In such cases the ADVICE
command in ETPS may be helpful. (The teacher determines whether
ADVICE may be used on any particular problem.) When this command
is executed, ETPS provides naive advice based on the form of the active
planned line. If the student does not find this advice sufficiently helpful,
’e can execute the ADVICE command again and obtain more specific
or different advice. For example, if the main connective of the active
planned line is an implication as in Figure 2, repeated execution of the
ADVICE command would yield the following dialogue:
<2>ADVICE

Some planned line is an implication.

<3>ADVICE

etps-jar.tex; 5/12/2002; 11:11; p.7



8 Andrews et al.

DEDUCT 100

<4>ADVICE

I can’t see much beyond what I have already told you. Of course, one

could always try an indirect proof.

<5>ADVICE

INDIRECT 100

<6>ADVICE

Using a lemma is usually unnecessarily complicated for simple prob-

lems. But if you have a good idea what that lemma should be, go ahead.

<7>ADVICE

LEMMA 100

<8>ADVICE

One can always introduce a new hypothesis. But it rarely turns out to

be useful, because it’s hard to get rid of it.

<9>ADVICE

HYP 100

<10>ADVICE

I don’t have any other suggestions for planned line 100. If you want

advice for another planned line use SUBPROOF. I will start over with

my initial suggestions, if you call ADVICE again.

ETPS has a convenient formula editor which permits the student to
extract formulas from anywhere in the proof, and build new formulas
from them. Special editor windows (similar to proofwindows) display
and update the wff being edited and the subformula of it which is the
current focus of activity.

When wffs of higher-order logic are being typed in, it is not neces-
sary to specify the types of all the variables. The student must simply
specify enough type information to avoid ambiguity, and ETPS applies
a type inference mechanism based on work by Robin Milner and Daniel
Leivant to determine the types of the other variables.

ETPS puts the commands the student issues while working on an
exercise in a file (called a work file), and these commands can be re-
executed if the student is interrupted or for some other reason needs to
restore ’e’s work. Complete or incomplete proofs can also be saved in
files, and these can be reloaded into ETPS whenever they are needed.

6. Experience with ETPS

ETPS has been used by students in certain logic courses at Carnegie
Mellon University to construct natural deduction proofs since 1983.
It has also been used at The University of Birmingham in England,
and perhaps elsewhere. Students with a technical background generally

etps-jar.tex; 5/12/2002; 11:11; p.8



ETPS 9

learn to use ETPS fairly quickly just by reading parts of the ETPS
Manual (which contains some complete examples of how to construct
proofs in ETPS) and starting work on quite easy exercises.

It can be enlightening to watch how students use ETPS after they
have done a number of exercises and developed habits for using the
system. Sometimes students show remarkable creativity in developing
surprisingly awkward ways of doing things. Even if the final proof of a
theorem is very clean and well structured, it may have been developed
in a very tortuous manner. Therefore, it is sometimes useful to give a
demonstration of how to prove a theorem using ETPS after students
have already proved this theorem, so that they can gain deeper insights
into the process.

Our experience has shown that students generally perform better
when attempting to prove difficult theorems with ETPS than they
perform without ETPS. For example, one of the more challenging
first-order exercises in ETPS is X2138:

∀x∃ y F x y

∧∃x∀ e∃n∀w[S n w ⊃ D w x e]

∧∀ e∃ d∀ a∀ b[D a b d ⊃ ∀ y∀ z. F a y ∧ F b z ⊃ D y z e]

⊃ ∃ y∀ e∃m∀w. S m w ⊃ ∀ z. F w z ⊃ D z y e

Typically, when this exercise is assigned to a class which must write
out proofs by hand, only a few students manage to prove it correctly,
but in a class using ETPS most of the students can prove it.

7. Customizing ETPS

The predefined exercises and most of the rules of inference in ETPS
are taken from the textbook [2]. However, a teacher who wishes to
set up a variant of ETPS with different exercises, rules of inference, or
names for the rules of inference can do so. Adding exercises is trivial. To
define new rules of inference, one uses the RULES module of TPS. One
simply describes the new rules in a simple lisp meta-language (using
the existing rules as examples), and uses commands in TPS to create
the lisp code for executing these commands.

ETPS has a powerful rule of inference called Rule P which allows
one to derive B from A1, . . ., and An if [A1 ∧ . . . ∧ An ⊃ B] is
tautologous (a substitution instance of a tautology). Many rules of
inference involving propositional connectives (such as Modus Ponens,
Modus Tollens, the Transitive Law of Implication, Conjunction Elimi-
nation, and Conjunction Introduction) are special cases of Rule P. The

etps-jar.tex; 5/12/2002; 11:11; p.9



10 Andrews et al.

teacher can decide whether or not Rule P may be used on any particular
exercise.

8. Recording and Processing Grades

ETPS has facilities for automatically recording which exercises are
completed by each student, and putting this information in a record of
grades. This record can be processed by the GRADER program which
is also part of ETPS. The GRADER program has a variety of features
which make it useful for processing grades for any course, whether or
not ETPS is used in that course.

9. Checking Prenex Normal Form Exercises

An additional utility which comes with ETPS is a facility for auto-
maticaly checking exercises which ask students to put wffs into prenex
normal form. Students need some practice at such manipulations, but
such exercises are notoriously tedious to check. When this facility is
used, the students submit their answers (in the form they have learned
to use in writing wffs for ETPS) to the teacher by email. Each answer
has a compound name which indicates which exercise is being done
and which student submitted it. The teacher puts all these answers
into one file, loads them into TPS, and executes a command called
PRENEX-ITERATE. TPS then checks each answer to see whether it is
indeed in prenex normal form, and uses its automatic proof procedure
to try to prove that the answer is equivalent to the wff given in the
problem. Finally, TPS composes a report on the results it obtains for
all the submitted answers. Of course, the search procedure involves
search bounds, so TPS may fail to prove a valid wff, but as a practical
matter the student’s answer is almost always incorrect if TPS fails to
prove that it is equivalent to the given wff in the allotted time.

10. Obtaining ETPS

ETPS is available from the web site
http://gtps.math.cmu.edu/tps.html

From the same web site one can download (as postscript or pdf files)
the ETPS User’s Manual (which is intended for students and other
users of ETPS), the GRADER Manual, and the TPS User’s Manual
(which contains information about setting up ETPS). Online documen-
tation for ETPS is also available at this web site. ETPS has been used

etps-jar.tex; 5/12/2002; 11:11; p.10



ETPS 11

extensively under Unix and Linux systems, and to some extent under
Windows.

ETPS is a Common Lisp program, so a person who wishes to have
ETPS running on ’e’s computer must have (or obtain) a Common Lisp
compiler, and compile ETPS after downloading the source files from
the web. Similarly, one must have a Java compiler on the machine if
one wishes to use one of the Java interfaces for ETPS.

11. Conclusion

Experience has shown that ETPS is an effective teaching tool which
makes it practical and fun for students to get significant practice at
writing formal proofs. It helps both students and teachers to concen-
trate on the essentials of learning and teaching how to prove theorems.

Acknowledgements

We are grateful for contributions to the development of ETPS which
resulted from work done on the TPS project by Dale Miller and Dan
Nesmith. We thank Manfred Kerber and Christoph Benzmüller for
helpful comments.

References

1. TPS and ETPS Homepage. http://gtps.math.cmu.edu/tps.html.
2. Andrews, P. B.: 2002, An Introduction to Mathematical Logic and Type Theory:

To Truth Through Proof. Kluwer Academic Publishers, second edition.
3. Andrews, P. B., M. Bishop, S. Issar, D. Nesmith, F. Pfenning, and H. Xi: 1996,

‘TPS: A Theorem Proving System for Classical Type Theory’. Journal of

Automated Reasoning 16, 321–353.
4. Goldson, D. and S. Reeves: 1993, ‘Using Programs to Teach Logic to Computer

Scientists’. Notices of the American Mathematical Society 40, 143–148.
5. Goldson, D., S. Reeves, and R. Bornat: 1993, ‘A Review of Several Programs

for the Teaching of Logic’. The Computer Journal 36, 373–386.

etps-jar.tex; 5/12/2002; 11:11; p.11



etps-jar.tex; 5/12/2002; 11:11; p.12


