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ABSTRACT

Abstraction and composition are the fundamental issues in
making model checking viable for software. This paper pro-
poses new techniques for automating abstraction and de-
composition using source level type information provided
by the programmer. Our system includes two novel compo-
nents to achieve this end: (1) a behavioral type-and-effect
system for the w-calculus, which extracts sound models as
types, and (2) an assume-guarantee proof rule for carrying
out compositional model checking on the types. Open simu-
lation between CCS processes is used as both the subtyping
relation in the type system and the abstraction relation for
compositional model checking.

We have implemented these ideas in a tool— PIPER. PIPER
exploits type signatures provided by the programmer to par-
tition the model checking problem, and emit model check-
ing obligations that are discharged using the SPIN model
checker. We present the details on applying PIPER on two
examples: (1) the SIS standard for managing trouble tickets
across multiple organizations and (2) a file reader from the
pipelined implementation of a web server.

1. INTRODUCTION
1.1 The problem

Distributed and asynchronous message-passing systems
are notoriously hard to design and test. In this paper we
focus on statically checking behavioral properties of such
systems such as deadlock freedom, absence of race condi-
tions, and message understood properties. In hardware and
protocol design, such properties are checked by manually
constructing models of the system as communicating finite
state machines, and using a model checker to algorithmi-
cally explore the state space of the model. Three main issues
arise when applying model checking to distributed message-
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passing software:

e Expressiveness. Unlike hardware, message-passing
software tends to be more difficult to model as com-
municating state machines. The difficulty stems from
dynamically created indirect references that are sent
as messages.

e State explosion. State explosion is a major limi-
tation, and severely limits the size of models that can
be checked automatically. Abstraction (throwing away
irrelevant information about the system and simplify-
ing it) and composition (dividing the model checking
problem into parts) are the only ways to deal with
state explosion on large programs.

e Integrating user input. Both abstraction and com-
position require user assistance. User input needs to
integrated with the source code tightly. Otherwise,
there is no way way to check for consistency between
user input and source code, and maintain this consis-
tency as the source code evolves.

1.2 Our approach

We adopt the m-calculus [23] as a modeling language for
distributed, asynchronous message-passing systems. We use
a behavioral type system for extracting CCS models (which
are types) from the source code, and perform model check-
ing on the types. Our approach addresses the main issues
mentioned above as follows:

e Expressiveness. Channel passing in the w-calculus is
an expressive modeling tool for capturing several chal-
lenging idioms in communicating software systems.

e State explosion. Our type checker extracts abstract
models from the code. An assume-guarantee principle
enables us to do compositional reasoning at the level
of our types.

e Integrating user input. User input is couched as
type signatures. The type checker generates subtyp-
ing obligations to check the consistency of user annota-
tions with the source code. Type signatures are used
by our type checker to guide model extraction, and
in combination with our assume-guarantee rule, type
signatures support model decomposition.



1.3 Contributions

This paper proposes new techniques for automating ab-
straction and decomposition using source level type infor-
mation provided by the programmer. The technical contri-
butions of this paper are:

o We define a new behavioral type-and-effect system for
the m-calculus, based on the idea of processes-as-effects.
We propose special type signatures for automating ab-
straction and model decomposition.

e We show that open simulation on CCS processes is a
sound and natural notion of subtyping in this system.
We prove a new assume-guarantee rule for open sim-
ulation in CCS, and show that it integrates into the
subtyping logic of the type system.

o We present PIPER, a tool that implements our type
system. PIPER uses type signatures to generate mod-
els for the program. It also generates subtyping obliga-
tions for checking the validity of abstractions provided
in type signatures. PIPER has a backend to the SPIN
model checker, using which we check both temporal
properties on the models, and the subtyping obliga-
tions. We illustrate PIPER on two non-trivial exam-
ples.

1.4 Example

Consider the following system, where a Sender uses a sim-
ple message-acknowledgment protocol to send messages to
a Receiver.

pa.(mla?.a + a?. Error)
pB.(m?.(al.8 + m?.Error))
www?[m, a].Receiver(m, a) |
(vma)(www![m, a].Sender(m, a))

Sender(m,a)

> 1>

Receiver(m,a)

>

System,.

There is a well known channel www (think about this as the
URL of the Receiver) through which the Sender initiates
a conversation, and establishes a pair of fresh channels m
and a to carry out the conversation. Our goal in this exam-
ple, is to check that the error state Error is never reached
in the system System,_. We wish to do this without hav-
ing to explore the state space of the entire system directly.
We automate abstraction and decomposition guided by user
annotations that are provided as type signatures.

Our type system allows the user to specify an effect type
for the channel www of the form

Sender 2 pa.(ml.a?.a)
Receiver = uB.(m?.al.8) . R
www : ch(m : Cp,a: Cy){ Sender = Receiver |)

This type states that www is a channel on which the chan-
nels m and a are passed, which are recursively described by
the types Cr, and C,. The component Sender = Receiver
is a pair of effects in the form of a CCS processes. The
effect Sender is a behavioral specification for Sender (the
continuation of the receive on www) and the effect Receiver
is a behavioral specification for Receiver (the continuation
of a send on www). With the above type signature, PIPER
produces a CCS model for System,:

www?[] |

A
Systemgocog = { (yma)www![].(SeT;der | Recéiwer)

Further, it produces two subtyping obligations:

(nm, a)(Sender | Recéiver) <Sender Sender
(nm, a)(Sender | Receiver) <Receiver Receiver

The n operator (defined in Section 2) is a technical device
for defining which actions on m and a we must observe in
order to discharge the subtyping obligations. The relation
< (defined in Section 2) denotes open simulation between
CCS processes. Both these obligations are discharged using
a model checker. Each obligation mentions only one compo-
nent of the system System, on the left hand side. In general,
such decomposition can lead to exponential cost savings in
state exploration.

The specifications provided in the type signature of the
above example make circular assumptions about each other.
Sender is a sound specification for Sender only when the en-
vironment of Sender behaves according to the specification
Receiver, and Receiver is a sound specification for Receiver
only when the environment of Receiver behaves according
to the specification Sender. Since behavioral abstractions
are used circularly to reason about each other, the sound-
ness of the reasoning needs to be established. Such circu-
lar proof rules are called assume-guarantee(A-G) rules, and
their soundness requires an induction over time.

By soundness of our typing rules and assume-guarantee
principle, we know that System g is a conservative behav-
ioral model of system System,. Since System g does not
even contain the error state Error, we establish that the
error state is unreachable in System . More generally, tem-
poral safety properties that can be checked on System g
carry over to System...

1.5 Paper outline

The remainder of this paper is organized as follows. In
Section 2 we describe the formal framework of our paper,
including our CCS semantics and m-calculus semantics. Sec-
tion 3 presents our behavioral effect type system. Section 4
proves an assume-guarantee principle for CCS with open
simulation. Section 5 describes how we can use our type sys-
tem together with type signatures to drive assume-guarantee
based model decomposition. In Section 6 we present imple-
mentation details about PIPER and illustrate PIPER on two
real-life examples. Finally, Section 7 discusses related work
and Section 8 concludes the paper. Due to space limitations,
proofs of theorems have been left out. They can be found
in our technical report [6].

2. FRAMEWORK

We define syntax and semantics for m-calculus processes
[23] and CCS processes [23], and we define open simulation
and process subtyping on CCS processes. Our definitions
refer to Figure 14 through Figure 17, which are placed in
the appendix at the end of the paper.

2.1 Syntax

Process expressions of the w-calculus are ranged over by
P,Q, R etc. and are defined as follows.

(Processes)
P:=0|Gi+...+Gn | (P|P1)| *P|(ve: C)P

(Guarded expressions)
G = 2'[§].P | 7§ : C].P



In processes, z, y, z range over channel names. We write
Z etc. for vectors of variables. Our m-calculus processes
are typed, with type expressions ranged over by C. Type
expressions are defined in Section 3. The process z!*[Z].P
sends the channels # on channel z and continues as P. The
process z?![§f : C].P receives channels on z and binds them
to % in the continuation P. The process P replicates par-
allel copies of P. Following [19], we use tags, ranged over
by t, to label individual send and receive operations. As in
[19], tags are useful for stating properties of a process, and
they serve additional, technical purposes in Section 4.

CCS process expressions are ranged over by I', A etc. and
are defined as follows.

(Processes)
Pu=0|a|m+...+7 | (ToT1) | pa.T | (vz)T

(Guarded expressions)
v =D | 27T

We write *I[" as an abbreviation for pa.(I" | a).

2.2 Semantics

Structural congruence for w-calculus processes is defined
in Figure 14. Reduction semantics of w-calculus processes is
defined in Figure 15. A substitution of names for names is
denoted o. Substitutions are defined on CCS and w-calculus
process expressions in the natural way. A substitution with
finite support, written {Z — 7}, denotes the simultaneous
substitution of 7 for Z (the vectors of names, Z and ¢, are as-
sumed to be of equal length), acting as the identity on names
not in £. Applications of such substitutions are written in
postfix form, as in I'{Z — ¢}.

Structural congruence for CCS processes is defined in Fig-
ure 16. Reductions on CCS processes is defined in Figure 17.
In addition to reactions, we introduce commitments in rules
O-comm and I-coMM for CCS. Commitments enable us to
do compositional reasoning. In addition to the usual rules
for the restriction operator v we have rules ETA1 and ETA2
for a special operator 7, which we add in order to state our
assume-guarantee rule. An expression of the form (nz)I" al-
lows us to observe reactions (but not commmitments) taking
place on the channel z.

Let Act be the set of all actions of the form z?t¢2, g!?,
z? 782 or ¢ and let a range over elements of Act. If
r 251 2 ... 2% IV, then the sequence aias...an is
called a trace of T'. Traces are ranged over by w. We consider
traces modulo €, that is e may be tacitly inserted or deleted
from traces. For a trace w, let w” denote the trace that
arises from w by eliding all 7 actions. Also, let w°® denote
the sequence that arises from w by replacing all actions of
the form z'1>*2) z!® or 2?7 with x. For a trace w, we define
the norm of w, denoted |w|, to be the sequence (w™)°. We
write w =y w’ as an abbreviation for |w| = |w’|. We write
I' = I" if and only if I' =5 I with w =y a.

2.3 Simulation and subtyping

Subtyping is the principle of model abstraction in our type
system to be presented in Section 3. We fix subtyping on
CCS processes to be open simulation.

DEFINITION 2.1. (Open Simulation) A binary relation R
on CCS processes is called an open simulation relation iff

' R A implies that, for every o, a and T,
o) 5T = 3N o(A) = A and T' R A’
O

Our notion of open simulation is identical to the notion of
weak open simulation studied by Sangiorgi [30]. We drop
the qualifier “weak” for brevity. We note that any open
simulation relation R is closed under substitutions, that is,
I' R A implies o(I') R 0(A), for all 0. We define our notion
of subsumption of CCS processes, called process subtyping,
as follows.

DEFINITION 2.2. (Process Subtyping, <) We define the
process subtyping relation on CCS processes, denoted <, to
be the largest open simulation on CCS processes. O

3. BEHAVIORAL TYPE SYSTEM

We seek a way for programmers to state properties of mes-
sage passing programs, in such a way that the programmer
can control abstraction and model checking in a composi-
tional way. Our solution is based on a new types and effects
system, the core of which we present in this section (see Fig-
ure 1). We will extend the system further in Section 5 (see
Figure 3), and Section 6 contains several examples of its use.
Our type system is inspired by the systems of Gordon and
Jeffrey [13] and of Igarashi and Kobayashi [19]. We defer
more detailed comparisons with previous work to Section 7.

3.1 Typing rules

The type structure in our system is based on the idea of
channel types with latent behavioral effects. Type expres-
sions are ranged over by C' and are defined as follows:

(Effect types)  C == ch(Z: C){T')

We write ch as abbreviation for ch(){ . A w-calculus chan-
nel z may be assigned a type ch(7 : C){T'), expressing that
x denotes a channel on which other channels can be passed,
which are recursively described by C. The names 7 have
binding occurrences in the type shown, and they are used
to range over the channels passed on z. In the component
{T'), ' is a CCS process. We regard this process as a latent
effect, describing the actions that a process can or may take
on channels (ranged over by %) passed along z, and possibly
other channels. Technically, our types are dependent, since
effects (I") are parameterized on names (7).

Our core type system, called £, is defined in Figure 1.
The rules shown in Figure 2 are auxiliary rules, defining
well formed types, type environments and lookup. Type en-
vironments F are lists of bindings of types to channel names,
of the form E := # : C. The domain of an environment E
isdom(E) ={z |z :C € E}.

The type system defines derivable judgments of the form
E F T > P, where E is an environment, P is a m-calculus
process, and I' is a CCS model of P, which soundly approx-
imates the behavior of P. The relation between I' and P is
made precise in Theorem 3.1 below.

Key rules are the input and output rules, [T-INP] and
[T-ouT], and the subsumption rule, [SUB]. In rule [T-INP],
the process I'g describes the effects of the input continuation
on the received channels § (and, possibly other channels) on
z. These effects are captured in the latent effect on the
type of z. At a corresponding output on z, the latent effect



will be realized, via rule [T-OUT], as a concurrent process
To{7 — Z}, which is instantiated with the passed values 2
and running in parallel with the output continuation.

In rule [sUB], the subtyping relation < is open simulation
on CCS processes (Definition 2.1). Rule [sUB] allows us to
perform model abstraction, based on simulation.

As an example typing, consider again our System,_ from
Section 1. With I' given by

I 2 (vwww)(www? | (vma)(www!. Sender(m, a) |
Receiver(m, a)))

one can derive the judgment
0 F T > (vwww : ch(m : ch,a : ch){Sender(m,a))))System,

Section 5 and Section 6 contain more examples of how the
type system works.

3.2 Basic Properties

The following theorem contains the soundness result for
our system. The proof is given in our technical report [6].
The proof makes essential use of the simulation property of
subtyping. In comparison to [19], our notion of subtyping-
as-simulation allows us to prove soundness with respect to
standard CCS reaction semantics for our models I" (see Sec-
tion 7 for further discussion).

THEOREM 3.1 (SUBJECT REDUCTION). If E - T'> P
and P =5 P', then there exists I' such that T = T" and
ErT' > P.

As an immediate corollary of Theorem 3.1, we can soundly
check safety properties on models I' derivable in the type
system: if E+I'> P and I' | O, then P |= Ot.

Our next result shows that our choice of subtyping as open
simulation is natural for the notion of type soundness con-
tained in Theorem 3.1. To see this, let us consider variations
of our type system that arise by reinterpreting the subtyp-
ing relation, in principle by taking any binary relation R
on CCS terms to be the subtyping relation (instead of <)
in the typing rules. Writing I'' R T, we mean that I is a
supertype of I'. Let us denote the type system constructed
this way as £g. One then has E+FT'> P and I R T to-
gether imply E + I > P, by rule [SUB], in system £r. We
can prove the following theorem, which shows that our no-
tion of subtyping as open simulation is the most powerful
notion of subsumption possible for our system £ relative to
our notion of soundness (Theorem 3.1) and the requirement
that typings be closed under substitution. The proof can be
found in [6].

THEOREM 3.2. Let R be a binary relation on CCS pro-
cesses such that the system Er satisfies the following prop-
erties:

1. Er satisfies the subject reduction property.

2. Er satisfies that the relation > is closed under substi-
tutions.

Then R C <.

One can define syntactic abstractions on CCS models,
which are easy to compute. An example is the abstraction
function 1g of [19]. We can show that a modified version is
admissible in our effect system, because it leads to an open

simulation relation contained in <. However, we note that
our definition is different, in that our abstraction depends
on tags and not channel names. See [6] for details.

4. ASSUME-GUARANTEE PRINCIPLE

In this section we prove an assume-guarantee principle for
CCS with respect to open simulation. This principle can be
used to reason about CCS processes compositionally, and
by exploiting it in our type system we open the door to
compositional specification and model checking at the level
of types. Section 5 describes extensions to our type system
to support assume-guarantee reasoning.

Given two CCS processes © and 2, suppose we want to
check if ©® < Q. Suppose further that © = (vZ)(I' | A) is a
composition of two processes I" and A that interact over a set
of restricted channels #, and that the abstract process 2 =
(vZ)(I' | A') is structurally similar to the concrete process
0. We desire to check if © < Q without exploring the entire
state space of © directly. Theorem 4.3 provides a way to do
this.

We wish to consider a process A’ as an abstraction of A
in the context (vZ)(T'| A) (and similarly, an abstraction I"
of I in that context). The essence of Theorem 4.3 is that,
on the restricted channels , we can simplify the abstraction
A in ways that would not otherwise be possible. Intuitively,
with respect to the channels in #, the abstraction A’ only
needs to simulate the interactions that A can perform in the
context of I'. This is so, because we know that no further
(unknown) environment can interfere on the channels in Z,
due to the name restriction vZ. The expression nZ singles
out channels on which reactions can be observed, and is a
technical means to reason about these requirements for A’.

To prepare for Theorem 4.3, we need a few definitions.
Our abstraction A’ must match reactions of A on # by com-
mitments on Z, because we will consider A’ without any op-
erating environment. To state this requirement, we need to
be able to split traces. For an action a occurring in a trace
of (nZ)(I' | A) we define the projections (a)r and (a)a as
follows, by cases over the form of a:

2 if ¢ € T(T) and t2 € T(T)
z!t ift; € T(I') and t2» g T(T)
) (

(mh,tz)l‘ = .'E?t2 if t ¢ T(F andt €T F)
€ ift, € T(T') and t2 ¢ T(T)

(Frt), = itz if ¢ € T(T) and t2 € T(D)
e't . if tlT% ')I'(F) or to & T(T)

(x!t)r _ x: 1 t e N

ot ;?t lffttge-q—(g)
E‘”)‘ r e iftgT(D)
€)r = €

The projection (a)a is defined analogously. If w is a trace
of (nZ)(T'| A), we define the projection of w onto I, denoted
wr, to be given by (wr)y = (wy))r, for ¢ = 1...n, where
wps is the 4'th element of w.

We also need to be able to combine traces. For this pur-
pose, define the partial function @& on Act x Act by set-
ting z!* © 2? = 2" and a®e = e@a = a for all
a € Act. We lift to traces of equal length by defining
(w1 ® wa)pip = (W1)pi] @ (wa2)g, ¢ = 1...n. For a set of
channel names %, we define the relation & F a ~ a' to hold



Ex:CHFTD>P

EFO>O [T-NULL] EF )05 vz O)P [T-NEW]
Etz:ch(j: C){To) Etz:ch(f: C){To)
E,j:CHTo|T1> P E+T>P
gNfn(T1) =0 EF(Z):(y:C)
Erenlioerg: 6p N EFai@Toigo s a@p O
EFTop> Py EFTi> P (r-paR] EFT>P —
EFTo|Ti> P | P i E+ T > +P
EF~y>G; (i=1...n) EFT>P r<r
EFS.vi>3,Gi [r-sun] EFD>P [r-sus]
Figure 1: Behavioral type and effect system ()
OFo [Env1]
E;zt+ CL'U ' Cx}_¢ dom(E) [Exv2)]
rLEe EF{O:( [DEC1]
E,Z:CFo y ¢ dom(E) I i
() CdomB)UFU Ly} Fr@:(5:0) Ere:Oliy=&ie} 00
E;yt ch(z: O)(T) Er{Zz):(]:C,y:C)
. !
Ez:C,E'Fo [Env4]

Ex:C,E't+z:C

Figure 2: Environment rules

Erz:ch(f: CYI' = A")
E,j:CFA|T>P
gNi@T) =0
()T A) <a A

Et 2T > ?j: C|.P

(*) [r-INpP-I

Side-conditions:
For some division of (I1,I2) of (¥, Z) depending on z:

Notation:

(%) For all i € I1, y; is non-blocking for A in (i) (I’ | A).
(1) For all j € I», z; is non-blocking for I' in (n2)(T | AY).

Etz:ch(f:CI' = A)
EFTD>P
E,z2:C'"H{(2): (if: C)
() (T AL) <rT%

E+ (w3)(z!t.(Dy | AY) > 712 : C1].P

() [r-ovr-I]

In rule [T-ouT-I], T} is a shorthand for I'{§ — Z}, and AL is a shorthand for A'{if — 7}.
z z

Figure 3: Additional typing rules for symmetric channels




if and only if a @ o' is defined and satisfying, for all z € &,
that (a = 2!*Va = 2?) = o' £ ¢ and (@' = z* vd' =
z?%) = a # e. We lift this relation to traces of equal length
by setting & F w1 ~ ws if and only if & F (w1)p ~ (w2),
i=1...n.

Finally, we generalize the notion of open simulation under
projections, as follows.

DEFINITION 4.1. (Open Simulation) For any CCS process
0O, let <o be the largest relation on CCS processes satisfying
that T <o A implies, for every o, a and T,

o) -5 T’ = 3N . o(A) 28 A and I’ <o A’
IfT <e A, then we say that T’ is open simulated by A with
respect to ©. O

Notice that T' < A if and only if I' <r A. Hence, we can
use I' < A as an abbreviation for T' <r A.

DEFINITION 4.2. (Nonblocking channel) Let x be a chan-
nel name in £. We say that ¢ is a non-blocking channel of
process I' in the process (nE)(T | A) if and only if whenever
the following conditions hold:

1.0 25T
2. A3 N
3. EFwi~ws
4. T=(..+arT"+...)
then we have
A (ER A L)

where T is some sequence of T actions, a = x? and @ = z!,
ora=z! and @ = z? for some x. m|

We are now ready to state our assume-guarantee theorem.
The proof can be found in [6].

THEOREM 4.3
T, A, T, A" suppose

AL )T | &) <p T
A2. (nB)(T' | A) <a A

A3. for all x in &, either x is non-blocking for o(T) in
(nZ)(T | A") for all substitutions o, or x is non-blocking
for a(A) in (@) (T' | A) for all substitutions o.

Then we have
(&) (T | A) < (nZ)(T" | A")

Theorem 4.3 entails that the following rule [AG] is sound,
given the appropriate non-blocking side-conditions:

@ & <
nx SA
AT IA <@ Ay 9

To see that the non-blocking side conditions are necessary
in Theorem 4.3, consider that our assume-guarantee result
would be unsound if we left them out. Let I' 2 z!* and
A £ g7, Disregarding the non-blocking conditions, the
premises (nz)(I'| 0) <r 0 and (nz)(0| A) <a 0 would be
satisfied. But the conclusion, that (nz)(I'| A) < (nz)(0|0),
is not true.

(ASSUME-GUARANTEE). For any processes

5. COMPOSITIONAL ABSTRACTION

In this section we extend our core type system of Fig-
ure 1 to incorporate the assume-guarantee principle from
Section 4. In Section 4 we noted that it is only useful
to invoke rule [AG] at name restrictions. If, during type
checking, we have arrived at a typing judgment of the form
E+ (vZ)(I'| A) > P, then rule [AG] can be readily applied to
prove a given abstraction (vZ)(T | A) < (vZ)(I” | A’). This
rule already allows us to do compositional model checking,
provided that we specify an abstraction for a process of the
form shown above. However, it would be desirable if ab-
stractions could be automatically built up compositionally
from local abstractions specified in type signatures for each
channel. Section 5.2 describes our proposal for doing this.

5.1 Bounded Signatures

It is not obvious how to incorporate rule [ AG ] into the
type system in a smooth way. To illustrate some of the
problems, let us first consider a very general solution, where
we introduce bounded type signatures of the form

-

z:ch(f : C) (£:To < Ag)

The interpretation of this is that Ag is an abstraction of I'g,
but only in the context signified by the label £. Discharging
the proof obligation 'y < Ag is therefore deferred to the
context designated ¢, which is a restriction (v*§)P. Typing
judgments are extended to the form S;E + I' > P, where
S collects deferred constraints I'g < Ag that are in scope.
At the designated name restriction (v7)P, the type checker
can emit the proof obligation (v#)I's < (v§)I'S, where I's
is the inferred CCS model for P using the ”concrete” effects
T'o, and I'S is the model inferred using the ”abstract” effects
Ao. Rule [AG] may be used to prove the obligation if I' is a
parallel composition.

The bounded signature scheme has a number of draw-
backs. First, the signature must supply both a concrete
effect, I', and an abstract one, A. Second, in some cases
the scheme does not achieve much locality. Our earlier ex-
ample System,  illustrates this problem. For this system,
the abstraction Sender | Receiver < Seﬁder| Receiver must
be specified as a single bounded signature in the latent ef-
fect for channel w. The problems discussed above lead us to
search for restricted yet useful communication idioms, which
can be handled with simpler and more local specifications.
The remainder of this section focuses on this issue.

5.2 Symmetric Channels and Signatures

In this section we observe that channels used according
to the symmetric fragment of the 7-calculus, also called 71,
allows us to apply assume-guarantee based decomposition
in an especially simple and appealing way. We present an
extension to our type system, which automates a strong form
of compositional abstraction for symmetric communication
idioms.

The symmetric 7-calculus 71 was studied by Sangiorgi
[29]. It is defined by restricting output prefixes in the 7r-
calculus to bound output, here written Z![Z].P, and with the
meaning

T[Z.P 2 (v7)(2!'[2).P)



and reaction rule
oot z?[AP+..) .. +2[Z.Q+...) =)
w2)(P{g— 2} | Q)

Since our type system has the ability to discipline communi-
cation on a per-channel basis, we do not have to restrict our-
selves to a subcalculus to take advantage of special idioms.
Instead, we introduce the notion of a symmetric channel, as
follows.

DEFINITION 5.1. (Symmetric channel) A channel x is sym-
metric in a process P, if every output on x in P is bound,
of the form T![Z : C].P. m|

In order to take advantage of the bound output idiom on
symmetric channels, we will introduce a new binary type
constructor, =, on CCS processes, to form type expressions
I'= A

To exploit bound output, we add the rules shown in Fig-
ure 3 to those of Figure 1. We refer to the new system as £1.
The side-conditions in Figure 3 use the concept of a division
of name vectors: given vectors i and Z both of length n and
I; C{1,...,n}for j = 1,2, we say that (I1, I2) is a division
of (,2) f L UL = {1,... ,n}.

The distinctive feature of system €1 is the incorporation of
a new kind of type signatures, called symmetric signatures,
of the form

z:ch(7: O)(I' = A')

In this signature, the effect I' = A’ expresses mutual, cyclic
assumptions of senders and receivers on channel . With
this signature, the channel z is required to be symmetric.
Senders expect receivers to behave according to A’ and re-
ceivers expect senders to behave according to I'. Typing a
receiver, we must establish one half of the premises of rule
[AG], as expressed in the premise

(T | A) <a A

of rule [T-INP-I]. Establishing the premise means that the
model A from the receiver satisfies the specification A’, as-
suming that receivers satisfy I'. Conversely, typing a sender,
we must establish the other half of the premises of rule [AG]
with respect to its model I' and the specifications I'; and A%,
via rule [T-OUT]. In this rule, the notation I'; is a shorthand
for I'{§ — 2} (and similarly for AL) to express that the
specifications I'" and A’ are renamed in terms of the names
Z sent on x. Section 5.3 and Section 6 contain examples of
how symmetric signatures can be used.

Soundness for the system £I can be established by chang-
ing the proof of Theorem 3.1 slightly, using the rule [AG].
The changes needed are shown in [6].

An important property of the rules [T-INP-I] and [T-OUT-I]
is that the premises of rule [AG] are distributed and dis-
charged locally: given the symmetric signature

z:ch(f: O) (I = A')
and a division (I1, I3), we can discharge the obligation
()T | A) <a A

without knowing the actual sender process, and we can can
discharge the obligation (n2)(T'|A%) <r I'; without knowing
the actual receiver process (A models the receiver, and I' the

sender). Rule [AG] implies that one then has
(v2)(Az|T) < (v2)(A% | T%)

This means that abstractions of senders and receivers on
symmetric channels can be built up compositionally, and
they can be verified by local checks, in terms of the specifi-
cation T" = A’, without the need to have the entire system
assembled prior to checking.

5.3 Combinators

We give examples of how we can use simple language ex-
tensions, called combinators, in the vein of Section 5.2, to
express special idioms of module composition that can be
supported by the type checker. The combinators will be
used in our case studies in Section 6.

Our first pair of combinators, called accept and request,
are just intended to make the symmetric idiom more explicit
and readable, by using keywords for both sends and receives
on a symmetric channel. The typing rules for these com-
binators are directly derived from the rules [T-INP-I] and
[T-ouT-I] from Section 5.2.

=,

al?|Z: C|.P
(vZ: C")(al[2].Q)

Using our rules [T-INP-I] and [T-OUT-I] we can now handle
our example System,_ by assuming the type signature

accept a(Z: C) in P a
A

request a(z: C') in Q

w : ch(m : ch,a : ch){ Sender = Receiver)

as promised in Section 1. Using our combinators and closing
the system, it becomes

(vw : ch(m : ch,a : ch){ Sender = Receiverl))
accept w(m : ch,a : ch) in Receiver |
request w(m : ch,a : ch) in Sender

The symmetric paradigm does not exhaust all cases where
strong locality of abstraction is possible. We can still handle
many such cases by simple language extensions that identify
the relevant idiom. For example, we can define combinators
group and join, which allow a finite number of processes
to form a group communicating on a set of shared channels.
For more details see [6].

6. PIPER

We have implemented a typechecker, called PIPER for an
extended version of our core type system. The extensions
have been driven by the usability and effectiveness of the lan-
guage in describing non-trivial real-life systems. Specifically,
we allow named 7 and CCS processes, tail-recursive process
calls, if-then-else selectors, and pure data to be passed on
CCS channels.

The input to PIPER is a set of 7 processes annotated with
type signatures, and a set of X-free LTL formulas that we
want to verify of the system. The propositions in the formu-
las correspond to process names. A proposition is true in a
particular state of the system iff the control of some compo-
nent is within the corresponding process. The goal of PIPER
is to check the LTL formulae on the 7 system. PIPER does
this by first constructing the CCS processes which are be-
havioral types of the 7 system, and then checking the tempo-
ral properties on the types. PIPER also generates subtyping
obligations that relate type signatures to components of the



m system. The typechecking fails if a subtyping obligation
cannot be discharged.

PIPER uses the model-checker SPIN [17] to both verify the
temporal properties and discharge the subtyping obligations
(recall that these involve checking open simulations between
CCS processes). We have implemented a backend for trans-
lating CCS processes to equivalent PROMELA [16] programs,
which can then be verified exhaustively using SPIN. Open
simulation is checked by proving certain temporal proper-
ties on the system obtained by composing the two CCS pro-
cesses in a particular way. We have implemented another
backend that can do this composition and output the result
as a PROMELA program. SPIN is then used for verifying the
property. Since we use SPIN, which is a finite state model
checker, this approach works when the CCS process have fi-
nite number of states. Even for systems with infinite number
of states, we could abstract the processes to a v-free frag-
ment and check properties automatically using techniques
from infinite state model checking [7]. We plan to consider
this possibility in the future. In the remainder of this sec-
tion, we present two examples that showcase the practical
significance of the results presented in the preceding sec-
tions, and the effectiveness of PIPER in analyzing real-life
systems.

6.1 SIS Protocol

The Service Incident Exzchange Standard (SIS) [9] is a
data, transaction and state model designed to enable service
incident tracking systems to share service incident data and
facilitate resolutions. The standard envisages interaction be-
tween service requesters and providers through distributed
maintenance of an FSM ( shown in Figure 4 ). Each service
request that is processed has an associated copy of the FSM
that tracks the status of the request as it gets modified by
various service incidents. By separately maintaining a con-
sistent view of the FSM, the requester and the provider can
keep track of the state of the request at each point of time.

Provide Admin Info
Query Incident

Provide Admin Info
Query Incident

Entitlement

Request Closure

Entitled

Request Problem Info
Provide Admin Info
Query Incident

Problem|Submittal

Provide Admin Info
Query Incident

Query Incident
Provide Admin Info

Figure 4: SIS finite state machine

Both principals maintain a copy of a virtual machine (VM)
that represents the FSM. Either principal can try change the

state of his VM by initiating a transaction. Not all trans-
actions can be initiated by everyone, e.g. Confirm Close
can be initiated only by a service requester, Entitlement can
be initiated only by a service provider, and Query Incident
can be initiated by either. If the transaction is valid for the
initiator and the current state, the transition is taken. How-
ever the change in one VM must be immediately reflected
in the other. It is the onus of the principals to ensure that
the states of the two VMs are consistent at all times and
behavior beyond those allowed by FSM is never observed.
For example a critical requirement is that once a service re-
quest is terminated, it is never reopened. The transitions in
Figure 4 are labeled with transactions that can cause them.

Figure 5 depicts only the high-level structure of a 7 pro-
cess implementing this protocol. The requester and provider
are modeled by Req and Prov respectively. Each is again
composed of two components, the client (represented by
RClient and PClient) which transmits valid transaction re-
quests, and the VM which processes these requests. Each
VM is modeled by a set of eight mutually recursive pro-
cesses (concrete processes), one for each state of the FSM.
For example, RBegSt models the requester’s VM (RVM) in
the Beginning State and ROpPro models the RVM in the
Open Provider state. Their counterparts for the provider’s
VM (PVM) are PBegSt and POpPro. Channels z and y are
used by the clients to communicate with their VMs.

Req(r : ch(num), p : ch(num)) £ (v z : ch(num))
RClient{z) | RBegSt{z,r,p)

RBegSt(x : ch(num), : ch(num), p : ch(num)) 2
z?[n1]. if (n; = SRV_REQ)
then r![NOT_ENT]. RNotEnt(z, r, p)
else RBegSt(z,r,p)
+ p?[n2].Error()

ROpPro(x : ch(num), 7 : ch(num), p : ch(num)) £ ...

Prov(r : ch(num),p : ch(num)) £ (v y : ch(num))
PClient(y) | PBegSt{y,r,p)

A

PBegSt(y : ch(num),r : ch(num),p : ch(num)) = ...

POpPro(y : ch(num),r : ch(num),p : ch(num)) 2 ...
main() 2 (v w : ch(r : ch(num),

p : ch(num)){ RBegSt(r,p) X PBegSt(r,p))
request w(r : ch(num),p : ch(num)) in Reg(r,p) |
accept w(r' : ch(num),p’ : ch(num)) in Prov{r’,p')

Figure 5: Some 7 processes for the SIS protocol

At each step the RVM non-deterministically decides either
to accept a transaction request from RClient over channel z,
or a request for a state transition from PVM over channel p.
In the first case, it checks for the validity of the transaction
in the current state. On success it issues a request for a
state change to PVM over channel r and then changes its
own state. In the second case it checks if the state change
requested by PVM is legal in the current state. If so, it
changes its state, otherwise it goes to the Error state. The
situation is symmetric on the provider’s side.

State transition in each VM is effected by calling the ap-



propriate process. Consider RBegSt described in Figure 5.
If RVM decides to receive a transaction ni from RClient,
it checks if the transaction is a Request Service. If so it
requests PVM to go to Not Entitled state and itself goes
to that state. Otherwise it remains in the Beginning State.
If RVM decides to accept a state change request my from
PVM, it goes to Error state since, in the beginning state,
PVM cannot legally cause any state change.

The abstraction for the system is supplied as a set of ab-
stract CCS processes (shown in Figure 6), one for each con-
crete process. Each abstract process abstracts the behavior
of the corresponding concrete process, e.g. RBegSt abstracts
RBegSt. The abstraction simplifies the system at two lev-
els. First, the interaction with the client is completely elided
e.g. there is no abstract process for RClient. Second, the
abstract processes do not contain error handlers, since they
make assumptions about the environment (note the absence
of Error in RBEgSt and its simplicity compared to RBegSt).
These abstractions are given to PIPER in the symmetric sig-
nature for channel w in process main shown in Figure 5.

RBegSt(r : ch(num),p : ch(num)) £
7|[NOT_ENT]. RNotEnt (p, r)

ROpPro(r : ch(num),p : ch(num)) £ ...

PBegSt(r : ch(num), p : ch(num)) £ ..

POpPro(r : ch(num), p : ch(num)) £ ...
Figure 6: Abstract processes for the SIS protocol

For each of the m processes, PIPER produced a CCS pro-
cess type with identical name. The type produced for the
main process is shown in Figure 7. In order to verify any
property of main, the model checker has to deal only with
the abstract processes, which are much simpler, and have
smaller state spaces. In addition PIPER generated and dis-
charged the subtyping obligations of Figure 8. Finally PIPER
verified several critical properties of the system, some of
which are tabulated in Figure 9. Each row depicts a prop-
erty with the corresponding LTL formula(s). For a more
detailed account of this case study see [6].

main() 2 (v w : ch)(v 7 : ch(num))(v p : ch(num))
w!.(RBegSt{r,p) | PBegSt(r,p}) | w?

Figure 7: Main type for the SIS protocol

< (n r: ch(num))(n p : ch(num))

Req{r,p) | PBegSt(r, p) ) <Req RBegSt(r, p)

( (n 7 : ch(num))(n p : ch(num))

RBegSt{r,p) | Prov{r,p) ) < prov PBegSt{r,p)

Figure 8: Subtyping obligations for the SIS protocol

6.2 \Webserver

We model a file reader from the pipelined implementation
of a webserver. This example originated from the Staged-
Server [21] project at MSR. The file is logically divided into

| Property | LTL formula |
The two VMs never reach two distinct | O-(z A y),
states of the FSM simultaneously - | (z,4) € Q

these formulas are all true
All the states of both VMs are reach- | O-z,

able - these formulas are all false r€ PUR

Once a request is closed neither party | O-(RCloA<T),
can reopen it - these formulas are all | » € R\ {RClo}
true
Once a request is entitled it cannot be | O-(REnt A
unentitled ORNotEnt)

Figure 9: SIS properties verified by Piper. P and R
are abstract states of the provider’s and requester’s
VM. @ contains pairs of states from P and R which
correspond to distinct states of the FSM.

a number of blocks. The task of reading each block from
the disk and transmitting it over the network is handled by
separate processes. The blocks can be read in parallel from
the disk but must be transmitted in proper sequence. The
objective is to mitigate the disk I/O bottleneck. Figure 10
describes the 7 process for the system.

Sender(p : ch(c: ch,d : ch(num); n : num)
( Sender(c, d;n))) 2
p?[c’,d';n'].if (n' = MAX) then ¢'?.d'![n/]
else(v ¢’ : ch)p![c’,d'; (n' +1)].c'?.d"\[n'].c""!

Receiver(c : ch(num); n : num) 2 ¢?[n’].
if (n # n') then Error{) else Receiver{c;(n + 1))

main() 2 (va: ch(num))(v b : ch(c: ch,d : ch(num);
n : num){ Sender{c,d; n) ))(v ¢ : ch)
bllc,a; 0].c! | * Sender(b) | Receiver{a;0)

Figure 10: 7 process for the webserver

Sender models the process that reads and transmits one
block of the file. First it reads three values from channel p
-cd,d and n'. ¢ is the channel on which it must wait for
a signal before it can transmit the index n’ of its block on
channel d'. Note that for the purpose of verifying that the
blocks are transmitted in sequence, it suffices to reason only
in terms of their indices.

If n’ refers to the last block to be transmitted, Sender
waits on ¢ and then transmits n’. Otherwise it creates a
fresh channel ¢ and transmits ¢, d and (n' + 1) on p.
This data is received by another copy of Sender (¢” will act
as ¢ for this copy). Then it waits on ¢/, transmits n' and
signals the copy which is now waiting on ¢”’. Receiver models
the process that receives the file blocks. main models the
entire system consisting of a process that starts off the initial
Sender, infinite copies of Senders and a Receiver.

The proof that the blocks are transmitted in sequence is
non-trivial owing to the channel hiding in Sender and the
way these fresh channels are used by one copy of Sender
to signal another. The abstract behavior of the sender is
modeled by the two CCS processes described in Figure 11.
The types produced are described in Figure 12.

In addition the typechecker emitted the typing obligation



Sender(c : ch,d : ch(num); n : num) £
c?.SendFrom{d; n)

SendFrom(c : ch(num);n : num) £
if (n = MAX) then c![n]
else cl[n].SendFrom{c; (n + 1))

Figure 11: Abstract user-defined type for the web-
server

Sender(p : ch) £ p?.if (L) then 0 else 0

Receiver(c : ch(num); n : num) £ ¢?[n/].
if (n # n’') then Error() else Receiver(c; (n + 1))

main() % (v a: ch(num))(vb: ch)(v c: ch)
bl.(c!|Sender{c,a;0)) | * Sender{b) | Receiver{a;0)

Figure 12: CCS types for the webserver

shown in Figure 13. For a fixed value of MAX, this obligation
can be discharged by PIPER. We were able to do this for
MAX=20. In general, this obligation can be discharged by
induction on n. It is also obvious that the CCS processes
comprising of the types transmit the file blocks in sequence.

7. RELATED WORK

Since the work of Nielson and Nielson [25], behavioral type
systems have received increasing attention. Recent work in-
cludes [13, 19, 5, 26, 28, 31, 11, 12, 18]. In distinction to
traditional type systems, which focus on data abstraction,
behavioral type systems focus on abstracting control struc-
tures of concurrent programs. For behavioral type systems,
it is therefore natural to attempt integrating techniques from
model checking into the type checker. Model checking has
a long history, for which we refer the reader to [8].

The core rules of our type system are inspired by two
previous lines of work. One is the effect type system for
the m-calculus by Gordon and Jeffrey [13] and the other is
the generic type system for the w-calculus by Igarashi and
Kobayashi [19]. A novel feature of our system in compari-
son to [13] is that our effects are ” computationally active”,
whereas effects in [13] are not. In comparison to [19], we use
channel types with latent effects as processes and symmet-
ric type signatures to leverage programmer input, and auto-
mate model extraction and compositional reasoning. On the
downside, our system is not able to type as many processes
as the system in [19], because a channel can only have one
type in our system.

Whereas [19] uses the v-free fragment of CCS in their
models, our system uses full CCS. In particular, we exploit
hiding via name restriction at the CCS level to support com-
positional model checking via assume-guarantee principles.
Together with our previous work [27], our system appears
to be the first attempt to exploit these ideas in the setting
of behavioral type systems.

Our notion of subtyping-as-simulation allows us to work
with standard CCS reaction semantics for our CCS models.
In the system of [19], CCS semantics is dependent upon
subtyping, which is an abstract relation defined by an axiom
system.

The present paper continues our work [27] on defining be-

c?.if (n = MAX) then d![n] .
else EV b: ch) < Sender{c,d;n)
(d![n].b! | Sender(b,d; (n + 1)))

Figure 13: Subtyping obligation for webserver

havioral module systems for message-passing programming
languages. In comparison to [27], the present paper has
a different focus— automating abstraction and decompo-
sition using source level type information provided by the
programmer. Our new type-and-effect system incorporat-
ing an assume-guarantee rule for open simulation (rather
than trace containment) serves this purpose. Finally, we
have implemented a new tool, PIPER, based on the theory
presented in this paper, and we have applied it to model
check a number of systems and protocols.

Assume-guarantee rules that allow apparently circular as-
sumptions about operating contexts can be traced back to
[24, 1, 2]. Recent work has used such techniques to model
check large hardware circuits [3, 22, 10, 14]. All these
rules are based on trace containment, require a nonblock-
ing assumption on the process calculus, and are not directly
applicable to CCS. In this paper we prove a new assume-
guarantee rule for CCS with respect to open simulation, in
order to integrate it with the subtyping logic of the type sys-
tem. The proof technique for establishing the soundness of
our assume-guarantee rule builds on ideas from our earlier
work in [27] and [15]. An alternative approach to reason
with context-sensitive abstractions is given in [20]. We are
aware of two model checkers [4, 22] that provide tool sup-
port for assume-guarantee reasoning. Both these systems do
not support dynamic channel creation and channel passing,
which are important features in distributed software. In ad-
dition, the novel aspects of this paper are the integration
of assume-guarantee reasoning into the subtyping logic of
a type system, and the use of type signatures to guide the
decomposition.

Model checking full CCS is undecidable in general. Decid-
able fragments include the finite control fragment and the
v-free fragment [7]. We use the SPIN model checker [17] to
discharge finite state model checking obligations.

Open simulation was studied by Sangiorgi [30], only here
we consider simulation with respect to observations on re-
ductions. Our symmetric signatures take advantage of the
properties of wI [29] on a per-channel basis, without restric-
tion to a subcalculus.

8. CONCLUSION

We have proposed new techniques for automating abstrac-
tion and decomposition using source level type information
provided by the programmer. Type checking is used to ex-
tract a model from the program, and model checking is used
on the extracted model. User annotations in the form of
type signatures guide both model extraction and compo-
sitional model checking. Our type-and-effect system and
assume-guarantee rule are both novel and required nontriv-
ial soundness proofs. We have implemented a tool PIPER
that interfaces with the SPIN model checker to discharge the
model checking obligations. We have presented the experi-
ence of using PIPER on two real-life examples



APPENDIX

This appendix contains Figure 14 through Figure 17, which
are placed at the end of the paper. These definitions are
discussed in Section 2.
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P=P[0 P|Q=Q|P P|QIR)=(P|QIR
(vz:C)P|Q)=P|(ve:C)Q (if z & fn(P))
(vz:0)0=0 (vz:C)(vy:CYP=(vy:C)(vz:C)P

*P=P |+P

Structural congruence is the congruence relation on 7w-calculus terms induced by the following axioms, together with
renaming of bound variables and reordering of terms in a summation.

Figure 14: Structural congruence for 7
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Figure 15: w-calculus reaction semantics

T=T|0 To|Ti=Ty|Tg To|(T:|T2)=(To|T1)|Ts
(vz)(To | T1) =To | (v2)T1 (if @ & fn(To))
wz)0=0  (vz)(vy)T = (vy)(vz)T
paT =T{a — paT}

Structural congruence is the congruence relation on CCS terms induced by the following axioms, together with renaming
of bound variables and reordering of terms in a summation.

Figure 16: Structural congruence for CCS
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In the rules above, £ ranges over actions of the form z!*,27¢, 2?1-%2 or 712,

Figure 17: CCS semantics



