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ABSTRACT
This paper investigates the performance of task assignmentpoli-
cies for server farms, as the variability of job sizes (service de-
mands) approaches infinity. Our results reveal that some com-
mon wisdoms regarding task assignment are flawed. The Size-
Interval-Task-Assignment policy (SITA), which assigns each server
a unique size range, was heretofore thought of by some as the
panacea for dealing with high-variability job-size distributions. We
show SITA to be inferior to the much simpler greedy policy, Least-
Work-Left (LWL), for certain common job-size distributions, in-
cluding many modal, hyperexponential, and Pareto distributions.
We also define regimes where SITA’s performance is superior,and
prove simple closed-form bounds on its performance for the above-
mentioned distributions.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures—Distributed
Architectures; C.4 [Performance of Systems]: Design Studies;
D.4.8 [Operating Systems]: Performance—Modeling and Predic-
tion

General Terms
Performance,Design,Algorithms

1. INTRODUCTION
Server farms are ubiquitous, owing to their low cost (it is rela-

tively cheap to pool together several slow servers) and their flexi-
bility (it is easy to adjust capacity by adding and removing servers).
One of the oldest and most fundamental questions arising in server
farms is the question of which dispatching policy should be used
for routing jobs to servers. This policy is known as thetask assign-
ment policy. One goal of the task assignment policy is to minimize
mean response time, where response time is measured from when
a job arrives until it completes.

It is well-known that empirical computer workloads such as Web
file sizes, CPU process lifetimes, IP flow durations, and wireless
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Figure 1: Server farm with 2 server hosts.

call times have very high job-size variability, with job sizes fit-
ting Pareto or other high-variance distributions [2, 8, 15,26, 27].
This paper studies task assignment policies and considers the effect
on response time as job size variability goes to infinity, while the
mean job size stays fixed. To denote job-size variability, weuse the
squared coefficient of variation,C2 = var[X]/E2 [X], whereX
represents the job size (service requirement).

Figure 1 depicts our server farm model, withn = 2 hosts. Jobs
arrive according to a Poisson process with rateλ; the sizes of jobs
are assumed to be i.i.d. from some general distribution. Each in-
coming job is immediately dispatched by a front-end router to one
of then server hosts. Jobs at a host are served in FCFS order, and
preemption is not allowed. This model is common for supercom-
puting farms [13, 26], manufacturing systems [16, 5], data centers,
IO systems, etc., where it is expensive to preempt jobs and thus
even long jobs are typically run to completion.

For our server farm model, there are many common choices of
task assignment policies. TheRound-Robinpolicy assigns the first
job to host 1, the second to host 2, the third to host 3, theith to host
i modn plus1, and so forth. TheJoin-the-Shortest-Queue (JSQ)
policy assigns each incoming job to the host with the fewestnumber
of jobs queued there. TheLeast-Work-Left (LWL)policy assigns
each incoming job to the host with the least total work remaining.
Here “work” is the sum of the remaining size of the job in service
plus the sizes of all the jobs in the queue at the host. TheSITA
(Size-Interval Task Assignment)assigns a size-interval to each host,
so that “short” jobs are sent to the first host, “medium-length” jobs
are sent to the second host, and “long” jobs to the third, etc., where
the cutoffs for differentiating size classes are chosenoptimally, so
as to minimize mean response time.

Importantly, the LWL policy isequivalentto the classical central
FIFO queue, M/GI/n, where there are no queues at the hosts, and a
free host simply takes the next job from the central queue. Specif-
ically, under M/GI/n, jobs go to the same host as they would have
under LWL and are served there at the same time as under LWL
(see [13] for an inductive proof). The response times under M/GI/n
and LWL are thus identical.



While a great many papers have been written comparing the re-
sponse time of different task assignment policies, e.g., [6, 7, 10, 13,
14, 20, 28, 29], all of these papers conclude (via numerical analy-
sis, simulation, or approximation) that, for high job-sizevariability,
the SITA policy is superior to all the other common policies above.
The reason for the superiority of SITA task assignment lies in the
fact that SITA allows short jobs their own “express-line,” thereby
giving them isolation from long jobs. Since most jobs are short
jobs, the resulting mean response time is lowered.

There are several papers which specifically compare the perfor-
mance of SITA to LWL [4, 7, 9, 12, 13, 14, 20, 28, 29]. All of
these find that as job size variability isincreased, SITA becomes
far superior to LWL (for lowC2, SITA may be worse than LWL
because not all servers are utilized; however, this behavior changes
quickly asC2 is increased).

Despite these comparisons showing that SITA outperforms LWL
by orders of magnitude for high job size variability, a proofof this
fact has never materialized. SITA itself is difficult to analyze, even
for Poisson arrivals, because in general there is no closed-form
expression for the optimal size cutoff, and hence the resulting re-
sponse time. Furthermore, LWL cannot be analyzed exactly, since
the M/G/n queue (equivalent to LWL) is in general only approx-
imable. Thus, many of the existing results have used simulation to
assert their claims, or have looked at phase-type job-size distribu-
tions, or heavy-traffic regimes.

In this paper, we show that the common wisdom about task as-
signment for highC2 is wrong: We prove that SITA is not always
superior to LWL asC2 → ∞; in fact SITA can be unbound-
edly worse than LWL. We show that both SITA and LWL can ex-
hibit both convergent and divergent asymptotic behavior, depend-
ing on the load and job-size distribution. By convergent behav-
ior, we mean that the mean response time approaches a constant
asC2 → ∞ and by divergent behavior, we mean that the mean
response time approaches infinity asC2 → ∞. For a server farm
with n servers, system loadρ is defined as:

ρ = λE [X]

Note thatρ = n corresponds to a fully loaded system. Some of our
results require thatρ < n − 1. (It is known – see Section 2 – that
if ρ > n− 1, LWL always diverges asC2 → ∞.)

Specifically, for each box in Table 1, we will illustrate an exam-
ple of a class of distributions that satisfies that box. For example,
looking at Box 4, we will show that there are examples of distribu-
tions where SITA diverges and LWL converges. Importantly, our
examples arenot esotericin nature: We do not presume arcane dis-
tributions or assume very light or heavy load or a very high number
of servers. To illustrate our points, it suffices to assume two server
hosts only. However, in the case of the Pareto job-size distribution,
we have extended our results to a general (finite) number of servers.

The distributions we use to illustrate examples in Table 1 are
very common. Specifically, in Section 3, we show that the Bimodal
can satisfy Boxes 2 and 4 for the 2-server system, depending on
the choice of parameters, and in Section 4 we show that the Tri-
modal can satisfy Boxes 1 and 3. We then show in Section 5 that
the traditional hyperexponential,H2, can satisfy Boxes 2 and 4,
while Section 6 shows that the 3-phase hyperexponential,H3, can
satisfy Boxes 1 and 3, again depending on the choice of parame-
ters. The advantage of the hyperexponential job-size distribution is
that it allows us to exactly analyze the performance of LWL with
matrix-analytic methods [19], rather than just using bounds. Hence
we can see exactly how LWL and SITA compare, including cases
where they both diverge or both converge. We can cover all four
boxes with either the modal distributions (Sections 3 and 4)or the

Hyperexponential distributions (Sections 5 and 6). Finally, in Sec-
tion 7, we consider the Bounded Pareto and Pareto job size distri-
butions, which we find provide examples of Box 4, and also Box 3.
This last result is most surprising, since SITA was specifically de-
signed to work well under the high-variability Pareto distribution,
and appears (via simulation, approximation, and numericalmeth-
ods) to significantly out-perform LWL under Pareto and Bounded
Pareto job size distributions. Our results show that there is how-
ever a cross-over point, at sufficiently highC2, after which SITA
diverges, while LWL might converge (Box 3) or diverge (Box 4)
depending on the parameters of the Pareto. Section 2 explains the
prior work in detail and, in particular, provides some explanation
for why the above behaviors have not been observed until now.

Convergent LWL Divergent LWL
(Section 4 & 6) (Section 3 & 5)

Convergent SITA BOX 1 BOX 2

Divergent SITA BOX 3 BOX 4

Table 1: We show that all four behaviors are common.

In addition to the above results, this paper also provides beauti-
ful, simple, asymptotically-tight upper limits (asC2 → ∞) on the
mean response time under SITA for the case where SITA converges.
A subset of our upper bounds are shown in Table 2 below for the
most common cases (e.g.,H2 with balanced branches), for server
farms with two hosts. No results of this type exist in the prior liter-
ature. Table 2 illustrates these asymptotic limits for the case of the
Bimodal, Trimodal and the hyperexponential distributionsH2 and
H3. As seen in Table 2, the results for the hyperexponential dis-
tributions parallel those for the modal distributions. Importantly,
we see that the limiting behavior asC2 → ∞ depends only on
the mean job size,E [X], and loadρ. Specifically, looking at the
H3 distribution, we recognize the limiting response time as that for
a simple exponential job size distribution, where the mean of this
limiting exponential equals the mean of the original hyperexponen-
tial.

Convergent LWL Divergent LWL

Convergent SITA (Trimodal) (Bimodal)
(Modal Distributions) E[X]

2
+ E[X]

2(1−ρ)
E[X]

2
+ E[X]

2(1− ρ
2
)

(for ρ < 1) (for ρ < 2)

Convergent SITA (H3) (H2)
(Hyperexponential) E[X]

1−ρ
E[X]

1− ρ
2

(for ρ < 1) (for ρ < 2)

Table 2: Subset of typical asymptotic upper bounds on SITA
mean response time proven herein.



It is reassuring to see, from Table 2, that when SITA converges,
its response time can be quite good! Heretofore, there were no
simple bounds on SITA’s performance. Our results also indicate
that when SITA diverges, LWL might converge. This too is good
news since the LWL policy can be implemented as a central FIFO
GI/GI/n queue, thereby obviating the need for known job sizes.

2. PRIOR WORK
The evaluation and comparison of task assignment policies is an

ever-popular area of study, and there is a long list of paperson this
topic. In this section, we restrict ourselves to papers thatdiscuss
either SITA or LWL, or both.

The SITA Policy
It is not clear where the idea of size-based task assignment orig-
inated, since it has been part of the common wisdom for a long
time. Size-based splitting was used in the Cornell Theory Center
[17], and is also mentioned in [5]. The SITA policy was formally
introduced by Harchol-Balter et al. in [14], wherein it was found
that, under high job-size variability (Bounded Pareto withlow α),
with appropriate cutoffs, mean response time under SITA is orders
of magnitude lower than that under other common policies (LWL,
JSQ, RANDOM, Round-Robin). A similar point was made for the
TAGS algorithm (Task Assignment by Guessing Size), introduced
by Harchol-Balter [13], which is similar to SITA but doesn’tre-
quire knowing the size of the job. Harchol-Balter [13] finds that for
job-size distributions with high variability and decreasing failure
rate (again, the Bounded Pareto with lowα), TAGS, like SITA, is
superior to other common policies (LWL, JSQ, etc.). None of the
above papers noticed that SITA could be worse than LWL under
high job-size variability.

Since the introduction of the SITA policy, the SITA and TAGS
algorithms have been studied in a long list of papers, all of which
have touted the benefits of these algorithms under high job-size
variability, but missed the fact that these policies could actually be
worse than LWL under sufficiently high variability and non-heavy
traffic. Thomas [29] analyzes TAGS via the Markovian process
algebra PEVA and finds that TAGS performs well when job size
variability is high. El-Taha and Maddah [9] analyze a variant of
TAGS and prove that asC2 → ∞ this variant is superior to LWL
under heavy traffic. Oida and Shinjo [20] show that SITA is su-
perior to LWL under heavy-traffic using an integer program for-
mulation. Ciardo et al. [7] apply SITA to web server farms, with
cutoffs chosen to equalize the load, and find, via trace-driven sim-
ulation, that when job-size variability is high, the SITA policy is
superior to LWL1. Tari et al. [28] consider a variant of SITA for
heterogeneous hosts with different speeds and again find, via sim-
ulation, that SITA behaves well under high-variability job-size dis-
tributions, and Fu et al. [12] extend this result to allow jobs to
be ordered by priority. Similar results are shown for a variant of
TAGS by Broberg et al. [4]. Bachmat and Sarfati [1] develop a
duality theory for the performance of SITA policies, allowing them
to derive asymptotically-optimal cutoffs for SITA under a Bounded
Pareto job-size distribution with infinite range. Feng et al. [10]
prove the optimality of SITA with respect to mean response time
among all policies which immediately dispatch jobs to hostsbut
don’t know the status of the hosts (this does not include LWL). The
SITA policy has received attention in many systems papers aswell,
e.g. [6] which discusses using SITA for web server farms or [26]
which applies SITA to heavy-tailed supercomputing workloads.

1The paper refers to SITA as EquiLoad and uses a superior variant
of LWL.

The LWL Policy
The LWL policy is equivalent to the classical central-server FIFO
queue, GI/GI/n as explained in Section 1. There are several key
analytical papers which are concerned with the GI/GI/n under high
job-size variability. None of these deal with SITA, or any task as-
signment policy (other than LWL). The papers most relevant to our
work are those of Scheller-Wolf and Sigman [22, 24] which prove
an upper bound on mean delay in a GI/GI/n system where this up-
per bound does not depend on any moment of service time higher
than the3

2
moment, and particularly does not depend on the vari-

ance of job-size. The [24] result requires that system loadρ is less
thanbn/2c, however [22] generalizes the result to allow for higher
load,ρ < n − 1. This result ends up being key in our work, since
we are able to show that for certain common job-size distributions
(modal,Hn, Pareto, etc.), we can raise the variability unbound-
edly (C2 → ∞) while keeping the3

2
moment of the job-size distri-

bution below a fixed value, hence bounding mean delay for LWL.
The converse of the [22, 24] results was presented by Scheller-Wolf
and Vesilo in 2006 [25], for a large class of distributions including
those in this paper. It is known that ifρ > n− 1, then the GI/GI/n
diverges asC2 → ∞ [23], hence LWL diverges too.

Whitt [30] and Foss and Korshunov [11] consider a GI/GI/2 and
study the delay tail behavior when job size is subexponential. They
find that for low load, the delay tail grows like the tail of theequi-
librium distribution squared, whereas for high load the delay tail
grows like the tail of the equilibrium distribution. These results
are consistent with [24] and [25]. The M/GI/2 with heterogeneous
servers has also been looked at by Boxma et al. [3], who study how
high variability in the job-size distribution at one of the servers af-
fects the other. Finally, while all of the above papers involve an-
alytic solutions, the M/GI/n with high job-size variability has also
been studied via simulation by Psounis et al. [21]. Here the au-
thors develop an M/GI/n approximation based on two moments of
the job size distribution and use that approximation to estimate the
optimal number of servers.

Summary of Prior Work & Comparison with this Paper
In summary, although there have been many papers studying SITA,
and quite a few comparing SITA with LWL, all have focused on
the benefits of SITA over LWL for high-variability job size distri-
butions, andnonehave noticed that SITA can be worse than LWL
at high variability. By contrast, in this paper we prove thatfor cer-
tain common job size distributions, SITA can be worse than LWL
under high variability, and in fact there are situations where SITA
diverges asC2 → ∞, whereas LWL converges to a finite bound.

There are several potential reasons why these results have pre-
viously gone unnoticed. First, several of the papers comparing
SITA with LWL concentrate on heavy-traffic, whereas our stud-
ies concentrate on more moderate load (ρ < n − 1). Second,
many of the papers above rely on simulation to evaluate SITA and
LWL. However, simulation becomes problematic at highC2 val-
ues. None of the above papers consider the limiting behaviorof
SITA asC2 → ∞. Finally, and perhaps most important, there
is somewhat of a disconnect between communities like SIGMET-
RICS, which regularly study task assignment policies, and com-
munities like INFORMS, which look at GI/GI/n queues. It is the
mergingof results from these two communities that inspired the
idea for this paper.

3. DIVERGENT LWL VIA BIMODAL
(BOXES 2 & 4)

This section will illustrate that for a class of Bimodal job-size



distributions, mean response time under LWL diverges asC2 → ∞
(see Section 3.1), whereas mean response time under SITA may
converge or diverge (see Section 3.2), depending on the parameters.

The Bimodal distribution with parametersa, b, andp is defined
by the following random variable:

X =

{
a w.p. pa = p
b w.p. pb = 1 − p

We further characterize the distribution as aQ-Bimodalby speci-
fying a weightQ, 0 < Q < 1, such that:

pa = QE [X] and (1 − p) b = (1 −Q)E [X] (1)

We will show in Theorem 1 that a 2-server system serving a
Q-Bimodal workload using an LWL policy has unbounded mean
response time asC2 → ∞. In Theorem 2 we show that when∣∣Q− 1

2

∣∣ < 2−ρ
2ρ

mean response time under SITA is bounded from
above by:

E [T ]SITA ≤ E [X]

2
+

E [X] (1 − 2Q (1 −Q) ρ)

2 (1 − ρ+Q (1 −Q) ρ2)

Outside this region, SITA’s response time diverges asC2 → ∞.
WhenQ = 1

2
(balanced branches),E [T ]SITA = E[X]

2
+ E[X]

2(1− ρ
2 )

.

3.1 Divergent LWL

THEOREM 1. For a 2-server system withQ-Bimodal job-size
distribution under LWL,E [T ]LWL → ∞ asC2 → ∞.

PROOF. Lemma 1 below guarantees that we can find a unique
Bimodal distribution with parametersa < b andp for any given
E [X], C2 > 0, andQ. Lemma 2 below shows that, for fixed
E [X] andQ, asC2 → ∞, p → 1, a → E [X], andb → ∞.
Furthermore:

E

[
X3/2

]
= pa3/2 + (1 − p)b3/2

= QE [X]
√
a+ (1 −Q)E [X] ·

√
b

As C2 → ∞, we see from the above thatE

[
X

3
2

]
→ ∞, since

√
b → ∞, and all the other terms are constant. Scheller-Wolf and

Vesilo [25] proved that for most distributions, including all distri-

butions in this paper,E [T ]LWL → ∞ if E

[
X

3
2

]
→ ∞.

LEMMA 1. For anyE [X],C2 > 0, andQ, we can find unique
parametersa < b andp for aQ-Bimodal:

p =
C2 + 2Q +C

√
C2 + 4Q (1 −Q)

2 (C2 + 1)

a = QE [X] /p

b = (1 −Q)E [X] /(1 − p)

PROOF.

E [X] = pa+ (1 − p) b

E
[
X2

]
= pa2 + (1 − p) b2 =

(
C2 + 1

)
E

2 [X]

C2 + 1 =
pa2 + (1 − p)b2

E2 [X]
=
Q2

p
+

(1 −Q)2

1 − p

p =
C2 + 2Q± C

√
C2 + 4Q(1 −Q)

2(C2 + 1)

Taking the positive root, we see thata < b⇔ QE[X]
p

< (1−Q)E[X]
1−p ⇔

p
Q
> 1−p

1−Q which we can verify from the above equation. Also,

since all the terms ofp are positive,p > 0. We verify 1 − p =
C2+2(1−Q)−C

√
C2+4Q(1−Q)

2(C2+1)
> 0 since

(
C2 + 2 (1 −Q)

)2
>

C2
(
C2 + 4Q(1 −Q)

)
. Thus,0 < p < 1.

LEMMA 2. For the Bimodal with fixedE [X] andQ, asC2 →
∞, p→ 1, a→ QE [X], andb→ ∞.

PROOF. Follows immediately from Lemma 1, after dividing the
numerator and denominator ofp byC2 and taking limits asC2 →
∞.

3.2 Convergent/Divergent SITA
While we saw above that theQ-Bimodal job size distribution

results in divergent mean response time for Least-Work-Left, we
will now show that depending onQ, we can either get convergent
or divergent behavior for SITA.

THEOREM 2. For a 2-server system withQ-Bimodal job-size
distribution with fixedE [X] and fixedQ where

∣∣Q− 1
2

∣∣ < 2−ρ
2ρ

,

mean response time under SITA (for allC2) is bounded from above
by

E [T ]SITA ≤ E [X]

2
+

E [X] (1 − 2Q (1 −Q) ρ)

2 (1 − ρ+Q (1 −Q) ρ2)

WhenQ = 1
2
, E [T ]SITA = E[X]

2
+ E[X]

2(1− ρ
2 )

.

When
∣∣Q− 1

2

∣∣ ≥ 2−ρ
2ρ

, mean response time under SITA diverges

asC2 → ∞.

PROOF. If
∣∣Q− 1

2

∣∣ < 2−ρ
2ρ

then we can always split the jobs of
sizea andb into separate servers, without overloading either server,
allowing the mean response time under SITA to converge. To see
this, observe that:

ρa = λpa = λQE [X] = Qρ

ρb = λ (1 − p) b = λ (1 −Q)E [X] = (1 −Q) ρ

Since
∣∣Q− 1

2

∣∣ < 2−ρ
2ρ

impliesQ < 1
ρ

, the small-job server is not

overloaded. Since the constraint onQ also implies1−Q < 1
ρ

, the
large job server is not overloaded either.

Note that by Lemma 1, givenE [X] andC2, we can always find
aQ-Bimodal for anyQ.

Given that we can separate the jobs with sizesa andb, the mean
response time follows by conditioning and the Pollaczek-Khinchin
(P-K) formula [18], whereλs = pλ andλl = (1 − p)λ are the
arrival rates at the small-job and the large-job servers respectively:

E [T ]SITA ≤ E [X] +
λspa

2

2 (1 − λsa)
+
λl (1 − p) b2

2 (1 − λlb)

= E [X] +
λQ2

E
2 [X]

2 (1 −Qρ)
+
λ (1 −Q)2 E

2 [X]

2 (1 − (1 −Q) ρ)

=
E [X]

2
+

E [X] (1 − 2Q (1 −Q) ρ)

2 (1 − ρ+Q (1 −Q) ρ2)

The above is an upper bound on SITA’s performance under the
optimal partition, which may not necessarily separate jobsof size
a andb. WhenQ = 1

2
, E [T ]SITA = E[X]

2
+ E[X]

2(1− ρ
2 )

.

On the other hand, if
∣∣Q− 1

2

∣∣ ≥ 2−ρ
2ρ

, it is not possible to sepa-
rate the small jobs from the large jobs without overloading aserver.
Therefore, one server must have a mix of small and large jobs.Sup-
pose that we fixε such thatε > Q − 1

ρ
≥ 0. Now the large-job

server must run at leastε a-size jobs and all theb-size jobs. The
contribution to mean delay from the large-job server is simply the



fraction of jobs that go to the large-job server multiplied by delay
at the large-job server. This comes out to:

λ
εa3 + (1 − p) εa2 + (1 −Q)2 E

2 [X] + εa (1 −Q)E [X] b

2 (1 − λ (εa+ (1 −Q)E [X]))

The numerator of this term shows that, ifε = 0 (when jobs can be
split between the servers based on size without overloadingeither
server), the contribution to mean delay of the large-job server is
bounded. However, ifε > 0, the presence ofεb causes divergence
in mean delay. A similar argument holds ifε > 1 − Q − 1

ρ
≥ 0,

overloading the small-job server.

Note thatQ = 1
2

is always within the convergent range and
provides an example of convergent SITA for allρ < 2.

4. CONVERGENT LWL VIA TRIMODAL
(BOXES 1 & 3)

This section will illustrate that for a class of Trimodal distribu-
tions, mean response time under LWL always converges asC2 →
∞ (Section 4.1), while that under SITA may converge or diverge
(Section 4.2). The Trimodal distribution with parametersa < b <
c, andpa, pb, andpc is defined by the following random variable:

X =





a w.p. pa
b w.p. pb
c w.p. pc

We further specify our Trimodal distribution (which we refer to as
ak-Trimodal) with the following relationships:

pa = 1 − pb − pc pb = b−
3
2 pc = b−3k

c = b2k k > 1
2

The free parameters are nowa, b, andk. The structure of this

distribution ensures thatE
[
X

3
2

]
< ∞ for all C2, thus guaran-

teeing convergence of LWL asC2 → ∞. Specifically, observe

that the contribution of the medium and large jobs toE

[
X

3
2

]
is

pbb
3
2 + pcc

3
2 = 2. Furthermore, we will show that, depending

on the value of the parameterk compares to3
2
, we can get either

convergence or divergence of SITA (see Equation (3) below).
In Theorem 3, we show that the mean response time under LWL

for jobs drawn from ak-Trimodal distribution isboundedasC2 →
∞ for ρ < 1. In Theorem 4, we show that, under SITA, mean
response time can converge or diverge: If the jobs are drawn from
a k-Trimodal distribution withk < 3

2
andρ < 1 thenE [T ]SITA =

E[X]
2

+ E[X]
2(1−ρ) , while if k > 3

2
then mean response time is un-

bounded under SITA.

4.1 Convergent LWL

THEOREM 3. For a 2-server system withk-Trimodal job-size
distribution andρ < 1, expected response time under LWL is
bounded asC2 → ∞, and this bound is provided in Equation 2.

PROOF. Lemma 3 below guarantees that we can find ak-Trimodal
distribution with parametersa, b, c, andpa, pb, andpc for any
E [X], large enoughC2, andk. Lemma 4 below shows that, as
C2 → ∞, a→ E [X] andpa → 1. Then
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whereA is a random variable representing inter-arrival times.

LEMMA 3. For any E [X], there existsC∗ such that, for all
C2 > C∗, and k > 1

2
, there exists ak-Trimodal distribution

with unique parameters0 < a < b < c and probabilities0 <
pa, pb, pc < 1.

PROOF. The proof demonstrates thatb is monotonic inC2 above
someC∗, and so a unique value ofb can be found for every such
C2, with the rest of the relationships ensuing from the definition of
ak-Trimodal distribution. See Appendix for details.

LEMMA 4. For a k-Trimodal distribution, asC2 → ∞, we
havepa → 1, pb → 0, pc → 0, a→ E [X], b→ ∞, andc→ ∞.

PROOF. From the proof of Lemma 3, we know thatC2 → ∞
impliesb→ ∞. Also, from the same proof,a→ E [X] asb→ ∞.
The limits forpa, pb, pc, andc follow directly from the definition
of thek-Trimodal asb→ ∞.

4.2 Convergent/Divergent SITA

THEOREM 4. For a 2-server system withk-Trimodal job-size
distribution with meanE [X], parameterk, and ρ < 1, a SITA
policy that sends all small jobs (thea’s) to one server and all other
jobs to the other has the following mean response time asC2 →
∞:
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Any other SITA cutoff performs worse asC2 → ∞.

PROOF. We will useE
[
Xj
i

]
to denote thejth moment of job

size on serveri, ρi to denote the load at serveri, pi to denote the
fraction of jobs assigned to serveri, andWi to denote the waiting
time (delay) at serveri, i ∈ {s, l}, wheres denotes the small-job
server andl denotes the large-job server.

We defineq to be the fraction of medium (b) jobs sent to server
s. The fraction of jobs sent to each server is given by:

ps = pa + q · pb = 1 − (1 − q) b−
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As C2 → ∞, Lemma 3 provides thatb → ∞, and thus,a →
E [X]. Many terms inps · E [Ws] andpl · E [Wl] categorically go
to zero. The remaining expressions are:
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The prior two equations demonstrate that asC2 → ∞, ps·E [Ws]+

pl · E [Wl] < ∞ only whenk < 3
2

andqb
1
2 → r < ∞ (which

impliesq → 0 andqbk−
3
2 → 0 sinceb → ∞). Any system with

qb
1
2 → r > 0 is dominated in the limit byq = 0. Therefore,

response time is minimized when all medium jobs are assignedto
serverl as b → ∞. In a similar manner, we can prove that re-
sponse time is minimized when all small jobs are sent tos, but we
have omitted the proof for lack of space.
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Theorem 4 shows that, under a SITA policy, ak-Trimodal job-
size distribution with1

2
< k ≤ 3

2
has finite delay asC2 → ∞,

assuming nob (or c) jobs are sent to the small server. Intuitively, in
this case, the small jobs receive perfect isolation, and, withk in this
range, the variability in the service times on the large-jobserver,
combined with the small probability of a large job, means that the
contribution to mean response time from the large-job server van-
ishes. On the other hand, under a SITA policy, a Trimodal distribu-
tion with k > 3

2
has unbounded delay asC2 → ∞, even if SITA

gives the small jobs perfect isolation. This results from the larger
variability in job sizes on the large-job server.

5. DIVERGENT LWL VIA H2 (BOXES 2&4)
In Sections 3 and 4, we used theQ-Bimodal andk-Trimodal

job size distributions to illustrate the behavior of SITA and LWL
for the four boxes in Table 1. However, there are more questions
to be answered, because, while we have analytic expressionsfor
the mean response time under SITA, we only have a loose bound
on LWL’s mean response time. Thus in Box 1, where both LWL
and SITA converge, we don’t know whether LWL or SITA is su-
perior. Likewise, for Box 4, where LWL and SITA both diverge,
we don’t know whether LWL or SITA diverges more quickly. To
answer these remaining open questions, we turn to the hyperexpo-
nential job size distribution, which allows us to use matrix-analytic
methods to evaluate the response time of LWL.

Before we can begin to evaluate performance, we first need to
demonstrate that the four different behaviors shown in Table 1 can
be obtained under hyperexponential job size distributions. We do
so in this section and the next. Many of these arguments follow
similar logic to theQ-Bimodal andk-Trimodal reasoning.

In this section, we will use a 2-phase hyperexponential distribu-
tion to illustrate the case of divergent LWL, where SITA willeither
converge or diverge, depending on parameters (Boxes 2 and 4). In
(Section 6), we will use a 3-phase hyperexponential to illustrate the
case of convergent LWL, where SITA will either converge or di-
verge (Boxes 1 and 3), again depending on parameters. Along the
way, we will again prove beautiful asymptotic limits on the mean
response time under SITA, when SITA converges.

The 2-phase Hyperexponential distribution (H2) with parame-
tersµa, µb, andp is defined by the following random variable:

X ∼
{

Exp (µa) w.p. pa = p
Exp (µb) w.p. pb = 1 − p

We again define a further parameterQ, 0 < Q < 1, as the mean
weighting, such thatpa

µa
= QE [X] and pb

µb
= (1 −Q)E [X]. If

Q = 1
2

then the two exponentials are of equal importance. We refer
to theH2 with additional parameterQ as theQ-H2 distribution.

We show in Theorem 5 that a 2-server system serving job sizes
from theQ-H2 distribution using a LWL policy has unbounded ex-
pected response time asC2 → ∞. In Theorem 6 we show that, by
contrast, the mean response time under SITA for theQ-H2 might
converge or diverge: when it converges, it converges to

E [T ]SITA → E [X] (1 − 2Q (1 −Q) ρ)

1 − ρ+Q (1 −Q) ρ2

WhenQ = 1
2
, E [T ]SITA → E[X]

1− ρ
2

.

5.1 Divergent LWL

THEOREM 5. For a 2-server system withQ-H2 job-size distri-
bution under LWL,E [T ]LWL → ∞ asC2 → ∞.

PROOF. Lemma 5 below guarantees that we can find aQ-H2

distribution with parametersµa, µb, andp for anyE [X], C2, and
Q. Lemma 6 provides thatµb → 0 asC2 → ∞. The definition of
theQ-H2 dictates thatpa

µa
= QE [X] and pb

µb
= (1 −Q)E [X].

Lemma 7 provides that:

E

[
X

3
2

]
=

∑

i

pi
3
√
π

8µ
3
2

i

=
3
√
πE [X]

8


 Q

µ
1
2
a

+
1 −Q

µ
1
2

b


 −−−−−→

C2→∞
∞

Applying [25], E [T ]LWL → ∞ sinceE
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3
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]
→ ∞.

LEMMA 5. For anyE [X],C2 > 1, andQ, we can find unique
parametersµa, µb, andp, whereµa > µb (µa is the service rate
for the small jobs), for aQ-H2 distribution which satisfy:
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PROOF. See Appendix.
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PROOF. By substitution.

LEMMA 6. WhenE [X] and Q are constant, asC2 → ∞,
µa → 1

QE[X]
, µb → 0, pa → 1, andpb → 0.

PROOF. See Appendix.

LEMMA 7. For the hyperexponential distribution,

E

[
X

3
2

]
=

3
√
π

8

∑

i

pi

µ
3
2

i



PROOF.
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5.2 Convergent/Divergent SITA
We now investigate convergent and divergent SITA behavior.

Theorem 6 below corresponds to Theorem 2 for theQ-Bimodal
distribution, with one difference: Whereas in theQ-Bimodal dis-
tribution, any cutoff betweena andb was stable, as long as neither
server was overloaded by just jobs of sizea or just jobs of sizeb,
in the case of aQ-H2 distribution, the cutoffψ must be specified
explicitly and depends onC2.

THEOREM 6. Given a 2-server system withQ-H2 job-size dis-
tribution with fixed meanE [X] and fixed parameterQ such that∣∣Q− 1

2

∣∣ < 2−ρ
2ρ

, there exists aψ, which is a function ofC2, such

that, asC2 → ∞, a SITA policy with cutoffψ yields mean response
time:

E [T ]SITA → E [X] (1 − 2Q (1 −Q) ρ)

1 − ρ+Q (1 −Q) ρ2

WhenQ = 1
2
, E [T ]SITA → E[X]

1− ρ
2

. When
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2
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2ρ

, E [T ]SITA →
∞ asC2 → ∞.

PROOF. Typically, under SITA, with anHn hyperexponential
job-size distribution (with parameterspa, . . . , pn, µa, . . . , µn,µi >
µi+1), the small-job server sees jobs drawn from every branch of
the hyperexponential, as does the large-job server. However, this
logic does not necessarily hold asC2 → ∞. We say that the
hyperexponential job size distribution "separates in the limit" as
C2 → ∞ at a cutoffψ

(
C2

)
into small jobs and large jobs if:

1. The arrival rate at the small job server converges topaλ, and
the mean and second moment of job sizes at the small job
server converges to the mean and second moment of job sizes
from anExp(µa).

2. The arrival rate and contribution to the mean and second mo-
ment at the large-job server of jobs drawn from theExp(µa)
branch goes to 0.

We require convergence in the first two moments to guarantee no
effect on delay in the P-K formula.

Suppose that a cutoffψ
(
C2

)
could be identified that achieved

separation in the limit for theH2 distribution. All jobs sent to the
small-job server would be drawn fromExp(µa), and all jobs sent
to the large-job server would be drawn fromExp(µb). Thus,ps,
the proportion of jobs sent to the small server, converges topa,
and, likewise,pl converges topb. Then, since for an exponential
distribution mean response time is given byE [T ]Exp = E[X]

1−ρ , mean
response time for the system is:
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2

yieldsE [T ]SITA → E[X]
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2

.

The load on the small-job server isλQE [X], and the load on
the large-job server isλ (1 −Q)E [X]. Hence, if we are to take
advantage of any separability, we require

∣∣Q− 1
2

∣∣ < 2−ρ
2ρ

so that
neither server has load greater than or equal to 1.

It remains to show that such aψ
(
C2

)
can be found for theH2

distribution. LetXa denote the first branch of theH2 distribution
andXb the second:Xa ∼ Exp(µa) andXb ∼ Exp(µb). In order
for anH2 to be separable in the limit asC2 → ∞, a cutoffψ must
have the property that the following six quantities go to 0, whereI
is an indicator random variable:

1. paE [IXa>ψ] = pae
−µaψ

L’Hôpital’s rule guarantees that for any polynomialP (ψ),
P (ψ) e−µaψ → 0 asC2 → ∞ if ψ → ∞ asC2 → ∞.
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Requirespb → 0 or µbψ → 0 asC2 → ∞.
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1
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)
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)
. Thus, it suffices

thatµbψ → 0 asC2 → ∞.
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Substitutingpb ∼ µb and the Taylor series expansion of
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Thus, we require thatψ
(
C2

)
→ ∞ asC2 → ∞, and, further-

more, thatµ2
bψ

3 → 0 (implying also thatµbψ → 0) asC2 → ∞.
Any suchψ drives all six quantities to 0 whenC2 → ∞ and thus
provides separation in the limit. Now we can analyze our M/H2/2
system as two parallel M/M/1 queues with arrival ratespaλ and
pbλ and service time distributionsExp(µa) andExp(µb).

Good examples ofψ
(
C2

)
with these behaviors areψ

(
C2

)
=

lnC2, which approximates load balancing across a wide range of



C2 whenQ = 1
2
, andψ

(
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)
=

√
C2, which approximates the

optimal cutoff across a wide range ofC2 whenQ = 1
2
. Clearly, in

both cases,ψ → ∞ asC2 → ∞. To see the behavior ofµ2
bψ

3, first
observe that using the Taylor expansion for

√
1 + x in the proof of

Lemma 6 shows thatµb = 1
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. Now µ2
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m < 2
3
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√
C2 meets this criterion, sincem = 1

2
. Likewise,

ψ = lnC2 providesµ2
b

(
lnC2

)3 → 0.
At this point, the proof is complete. While separation in the

limit is an elegant concept, this proof may seem unsatisfying since
it only deals withE [T ]SITA in the limit asC2 → ∞. We now
present an alternative derivation that holds for allC2, yet yields the
same result in the limit, using the P-K formula directly. To aid in
notation, define the following for the hyperexponential distribution:
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For our 2-server system under SITA with cutoffψ:
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= E [X]

+F0,ψ
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In the limit, asC2 → ∞, we simplify using items 1-6 above:

E [T ]SITA → E [X] + paλ

pa

µ2
a

1 − λ
(
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) + pbλ

pb

µ2
b

1 − λ
(
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)

→ E [X] +
λQ2

E
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+

λ (1 −Q)2 E
2 [X]

1 − λ (1 −Q)E [X]

→ E [X] (1 − 2Q (1 −Q) ρ)

1 − ρ+Q (1 −Q) ρ2

Figures 2 and 3 show analytic results for SITA and LWL for aQ-
H2 job size distribution. SITA is analyzed using the closed-form
expressions given above, which are functions of the cutoffψ. We
find the optimalψ by analytically deriving d

dψ

(
E [T ]SITA

)
and us-

ing Newton-Raphson to find theψ where d
dψ

(
E [T ]SITA

)
= 0. The

dashed line indicates the asymptotic limit for SITA asC2 → ∞,
proven above, which is independent of the cutoffψ as long as there
is separation in the limit. LWL is analyzed using matrix-analytic
methods. WhenQ = 1

2
, as in Figure 2, SITA converges for all

loads. WhenQ = 0.7, as in Figure 3, SITA converges for low load,
but diverges for higher load as separation is not possible (Q > 1

ρ
).

LWL always diverges for aQ-H2 distribution. The SITA analysis
is precise and all SITA results that converge match our predicted
values. Although the matrix-analytic method is numerical,we are
guaranteed by Theorem 5 that the mean response time does indeed
diverge for theQ-H2 under LWL.

6. CONVERGENT LWL VIA H3 (BOX 1&3)
The 3-phase Hyperexponential distribution (H3) with parame-

tersµa, µb, µc, pa = 1 − pb − pc. pb, andpc is defined by the
following random variable:

X ∼ H3 ∼





Exp (µa) w.p. pa
Exp (µb) w.p. pb
Exp (µc) w.p. pc

We further specify ourH3 distribution (which we refer to as ak-
H3) with the following relationships:

pa = 1 − pb − pc pb = µ
3
2

b pc = µ3k
b

µc = µ2k
b k > 1

2

The free parameters are nowµa, µb, andk.
In Theorem 7, we show that the mean response time under LWL

for jobs drawn from ak-H3 distribution isboundedasC2 → ∞.
In Theorem 8, we show that, under SITA, mean response time can
converge or diverge, depending onk. If k < 3

2
thenE [T ]SITA →

E[X]
1−ρ . If k > 3

2
then mean response time is unbounded.

6.1 Convergent LWL

THEOREM 7. For a 2-server system withk-H3 job-size distri-
bution, expected response time under LWL is bounded asC2 → ∞
for ρ < 1.

PROOF. Lemma 8 guarantees that we can find ak-H3 distri-
bution with parametersµa, µb, µc, and pa, pb, and pc for any
E [X], large enoughC2, andk. Lemma 9 shows that, asC2 → ∞,
1
µa

→ E [X], andpa → 1. From Lemma 7, we have

E

[
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3
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]
=

∑

i

pi
3
√
π

8µ
3
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i

→ 3
√
π

8

(
(E [X])

3
2 + 2

)
<∞

Using [24], sinceE
[
X

3
2

]
<∞, E [T ]LWL <∞ for ρ < bn

2
c.

LEMMA 8. For any E [X], there existsC∗ such that, for all
C2 > C∗, andk > 1

2
, there exists ak-H3 distribution with unique

parametersµa, µb, andµc, with 0 < 1
µa

< 1
µb

< 1
µc

and proba-
bilities 0 < pa, pb, pc < 1.

PROOF. We proceed analogously to thek-Trimodal existence
proof. See Appendix for details.

LEMMA 9. For thek-H3 distribution, asC2 → ∞, pa → 1,
pb → 0, pc → 0, 1

µa
→ E [X], 1

µb
→ ∞, and 1

µc
→ ∞.

PROOF. Analogous to Theorem 4.
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Figure 2: Expected response time, E [T ], for SITA and LWL vs C2 under a Q-H2 distribution with Q = 1
2

and (a) ρ = 0.8 and (b)
ρ = 1.8. The dashed line shows limC2→∞ E [T ]SITA according to Theorem 6.
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Figure 3: Expected response time, E [T ], for SITA and LWL vs C2 under a Q-H2 distribution with Q = 0.7 and (a) ρ = 0.8 and (b)
ρ = 1.8. The dashed line shows limC2→∞ E [T ]SITA according to Theorem 6.

6.2 Convergent/Divergent SITA
We now analyze a SITA task allocation over two servers with a

k-H3 job-size distribution.

THEOREM 8. For a 2-server system withk-H3 job-size distri-
bution, with fixed meanE [X], parameterk < 3

2
, andρ < 1, there

exists a cutoffψ
(
C2

)
such that, under SITA:

E [T ]SITA −−−−−→
C2→∞






∞ k > 3
2

E[X]
1−ρ + λ k = 3

2
E[X]
1−ρ

1
2
< k < 3

2

PROOF. As in Theorem 6, we seek a cutoffψ
(
C2

)
that sepa-

rates theH3 jobs in the limit asC2 → ∞ such that the small-job
server serves jobs that areExp(µa) and the large-job server serves
jobs that are drawn from anH2 distribution. LetXa denote the
first branch of theH3 distribution andXbc the other two branches.
Namely,Xa ∼ Exp(µa) andXbc ∼ H2

(
µb, µc,

pb

pb+pc
, pc

pb+pc

)
.

In order for thek-H3 to be separable in the limit, the cutoffψ
(which is a function ofC2) must have the property that the follow-
ing six quantities go to 0:

1. paE [IXa>ψ] = pae
−µaψ

2. paE [Xa · IXa>ψ] = pa
(
ψ + 1

µa

)
e−µaψ

3. paE
[
X2
a · IXa>ψ

]
= pa

(
ψ2 + 2ψ

µa
+ 2

µ2
a

)
e−µaψ

4. (pb + pc)E [IXbc<ψ] = pb
(
1 − e−µbψ

)
+pc

(
1 − e−µcψ

)

5. (pb + pc)E [Xbc · IXbc<ψ]

= pb

(
1

µb
−

(
ψ +

1

µb

)
e−µbψ

)

+pc

(
1

µc
−

(
ψ +

1

µc

)
e−µcψ

)

6. (pb + pc)E
[
X2
bc · IXbc<ψ

]

= pb

(
2

µ2
b

−
(
ψ2 +

2ψ

µb
+

2

µ2
b

)
e−µbψ

)

+pc

(
2

µ2
c

−
(
ψ2 +

2ψ

µc
+

2

µ2
c

)
e−µcψ

)

As for theQ-H2 distribution, asC2 → ∞, we needµaψ →
∞, which follows if ψ → ∞. We also needµ2

bψ
3 → 0, ad-

dressed shortly. Finally, we needµ2
cψ

3 → 0, which follows from
µc = µ2k

b whenk > 1
2

andµ2
bψ

3 → 0. The proof of Lemma 8

shows thatµb ∼
(
C2

)− 1
k . Thus, ifψ =

√
C2, thenµ2

bψ
3 ∼

(
C2

)− 2
k

(
C2

) 3
2 =

(
C2

) 3
2
− 2

k . This goes to 0 whenk < 4
3
. If

ψ = lnC2, then L’Hôpital’s rule givesµ2
bψ

3 → 0 for anyk > 0.
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Figure 4: Expected response time, E [T ], for SITA and LWL vs C2 under a k-H3 distribution with ρ = 0.8 for (a) k = 1.0 and (b)
k = 2.0. The dashed line shows limC2→∞ E [T ]SITA according to Theorem 8.

Now we calculate the expected response time as the weighted
average of the response time at the small-job (exponential)server
plus the expected service time and P-K delay at the large-job(H2)
server. To do so, we recall Equations (4)–(7) and further define:

N = paE
[
X2
a · IXa>ψ

]
− (pb + pc)E

[
X2
bc · IXbc<ψ

]

D = paE [Xa · IXa>ψ] − (pb + pc)E [Xbc · IXbc<ψ]

Then,

E [W ]SITA

= F0,ψ

λ0,ψE
[
X2

0,ψ

]

2 (1 − λ0,ψE [X0,ψ ])
+ Fψ,∞

λψ,∞E
[
X2
ψ,∞

]

2 (1 − λψ,∞E [Xψ,∞])

=
λ

2

pa
(

2pa

µ2
a

−N
)

1 − λ
(
pa

µa
−D

) +
λ

2

(pb + pc)
(
N + 2pb

µ2
b

+ 2pc

µ2
c

)

1 − λ
(
D + pb

µb
+ pc

µc

)

In the limit, asC2 → ∞, N → 0 andD → 0 using items 1-6
above. We also substitute forpa

µa
= E [X] − pb

µb
− pc

µc
→ E [X]

since pb

µb
= µ

1
2

b → 0 and pc

µc
= µkb → 0. Then:

E [T ]SITA

→ E [X] +
λ

2

E
2 [X]

1 − λE [X]
+ λ (pb + pc)

(
pb
µ2
b

+
pc
µ2
c

)

→ E [X]

1 − ρ
+ λ

(
µb + µ

3
2
−k

b + µ
3k− 1

2

b + µ2k
b

)

−−−−−→
C2→∞






∞ k > 3
2

E[X]
1−ρ + λ k = 3

2
E[X]
1−ρ

1
2
< k < 3

2

Figure 4 shows analytic results for SITA and LWL for ak-H3

job size distribution. SITA is analyzed using the closed-form ex-
pressions given above, which are functions of the cutoffψ. We
again find the optimalψ by Newton-Raphson. The dashed line in-
dicates the asymptotic limit for SITA asC2 → ∞, proven above,
which is independent of the cutoffψ as long as there is separa-
tion in the limit. LWL is analyzed using matrix-analytic methods.
Whenk = 1, LWL and SITA both converge providedρ < 1. When
k = 2, LWL converges providedρ < 1, but SITA diverges. There
is a possibility of significant error in the results for LWL for larger

C2 because of instability in the numerical solution of the matrix
quadratic equation required for matrix-analytic methods.However,
we are guaranteed by Theorem 7 that the mean response time does
converge for thek-H3 under LWL.

7. PARETO AND BOUNDED PARETO
DISTRIBUTION (BOXES 3 & 4)

We now turn to the Pareto and Bounded Pareto distributions,
which are known to well-model empirical job size distributions for
a wide variety of computing applications [2, 8, 27, 15, 26].

The Bounded Pareto(k, p, α) distribution, where0 < α < 2 and
0 < k < p, has the following density function:

f (x) =

{
αkα

1−
(

k
p

)α x
−α−1 k ≤ x ≤ p

0 otherwise

We refer to the normalizing constant asm = αkα

1−
(

k
p

)α . Asp→ ∞,

the Bounded Pareto distribution converges to the Pareto:

f (x) = αkαx−1−α x ≥ k > 0

For1 < α < 2, the Pareto distribution has finite mean, but infinite
variance.

We will prove that, for the Bounded Pareto and Pareto job-size
distributions, the mean response time under SITA always diverges
(asC2 → ∞), whereas that under LWL may converge or diverge,
depending on theα-parameter of the distribution. We then extend
the Pareto results ton-server systems.

7.1 LWL

THEOREM 9. The mean response time for a 2-server system
with Bounded Pareto job-sizes under LWL is bounded ifα > 3

2

andρ < 1, regardless ofC2, includingC2 → ∞. The response
time is unbounded asC2 → ∞ for α ≤ 3

2
or ρ > 1.

PROOF. Lemma 10 shows that, for anyE [X], C2 andα, there
exists a Bounded Pareto(k, p, α). Lemma 11 shows that, asC2 →
∞, the Bounded Pareto converges to a Pareto

(
α−1
α

E [X] , α
)

(with
p→ ∞). The 3

2
moment is given by:

E

[
X

3
2

]
= m

∫ p

k

x
1
2
−α =

m
3
2
− α

(
p

3
2
−α − k

3
2
−α

)

The above increases withp andC2, but is bounded asC2 → ∞.
Whenρ < 1, we can apply [24] to see that mean response time



0

2000

4000

6000

8000

10000

100 10000 1e+06 1e+08 1e+10

E
[T

]

C
2

SITA

LWL Bound

0

2000

4000

6000

8000

10000

100 10000 1e+06 1e+08 1e+10

E
[T

]

C
2

SITA

LWL Bound

0

2000

4000

6000

8000

10000

1 100 10000 1e+06 1e+08 1e+10

E
[T

]

C
2

SITA

LWL Bound

0

2000

4000

6000

8000

10000

1 100 10000 1e+06 1e+08 1e+10

E
[T

]

C
2

SITA

LWL Bound

0

2000

4000

6000

8000

10000

1 100 10000 1e+06 1e+08 1e+10

E
[T

]

C
2

SITA

LWL Bound

(a)α = 1.4 (b) α = 1.6

Figure 5: Expected response time, E [T ], for SITA and LWL vs C2 under a Bounded Pareto job size distribution with ρ = 0.95 and (a)
α = 1.4 and (b) α = 1.6. The dashed line shows limC2→∞ E [T ]LWL.

under LWL converges. Furthermore, we see thatE

[
X

3
2

]
→ ∞

if α ≤ 3
2
. Hence, ifα ≤ 3

2
, or ρ > 1, we see by [25] that mean

response time under LWL diverges.

COROLLARY 2. The mean response time for a 2-server system
with Pareto job sizes,ρ < 1, and 3

2
< α < 2 under LWL is

bounded.

LEMMA 10. For anyE [X], C2, andα > 1, we can specify a
Bounded Pareto(k, p, α).

PROOF.

E [X] = m

∫ p

k

x−α =
αkα

1 −
(
k
p

)α
1

1 − α

(
p1−α − k1−α)

E
[
X2

]
= m

∫ p

k

x1−α =
αkα

1 −
(
k
p

)α
1

2 − α

(
p2−α − k2−α)

Fork = p = E [X], applying L’Hôpital’s rule toE
[
X2

]
asp→ k

givesE
[
X2

]
→ E

2 [X] and thusC2 = 0. As p → ∞, holding
E [X] constant,C2 → ∞ butk does not. We writek as a function

of p as: k =
(
p1−α − 1−α

m
E [X]

) 2−α
1−α . Now,C2 is a function of

p, k (p), andm (p, k (p)), all continuous forp > 0. Thus, there
exists a value ofp mapping to every value ofC2.

LEMMA 11. KeepingE [X] constant, asC2 → ∞, for the
Bounded Pareto distribution,p → ∞ andk → α−1

α
E [X] (from

above forα > 1).

PROOF. KeepingE [X] constant, the only possibilities for infi-
niteC2 arek = p, which takesm → ∞ andp → ∞. We know
from Lemma 10 thatk = p hasC2 = 0, soC2 → ∞ implies
p → ∞ andk → α−1

α
E [X]. As p increases,k decreases mono-

tonically for α > 1: dk
dp

= (1 − α)
(
k
p

)α (
1 + E[X]

p

)
, and so

convergence is from above.

7.2 SITA

THEOREM 10. The mean response time for a 2-server system
with Bounded Pareto job sizes diverges under SITA asC2 → ∞.

PROOF. Under SITA, with Bounded Pareto job-sizes, the P-K

delay for a given cutoffψ is given by

E [W ] = F (ψ)
λ m

−α+2

(
ψ−α+2 − k−α+2

)

2
(
1 − λ m

−α+1
(ψ−α+1 − k−α+1)

)

+F (ψ)
λ m

−α+2

(
p−α+2 − ψ−α+2

)

2
(
1 − λ m

−α+1
(p−α+1 − ψ−α+1)

)

Lemma 11 shows thatp → ∞ asC2 → ∞. Now we examine
the behavior ofψ

(
C2

)
asC2 → ∞. If ψ

(
C2

)
is bounded, then

the second term is unbounded asC2 → ∞. However, ifψ
(
C2

)
→

∞, then the first term is unbounded. Therefore,E [W ] → ∞, and
thusE [T ] = E [W ] + E [X] → ∞ asC2 → ∞.

THEOREM 11. The mean response time for a 2-server system
with Pareto job sizes and0 < α < 2 is unbounded under SITA.

PROOF. Assumingψ is finite, consider jobs larger thanψ. The
arrival rate of these jobs isλL = λF (ψ) > 0. These jobs see an
M/G/1 queue where G is the conditional distribution[X|X > ψ],
which is still Pareto and therefore has infinite second moment. Since
these large jobs have strictly positive probabilitypL = F (ψ) > 0,

their contribution toE [T ]SITA is pLλL
E[X2|X>ψ]

2(1−λLE[X|X>ψ])
= ∞. If

ψ = ∞, the small-job server sees the full Pareto job-size distribu-
tion and has unboundedE [T ]SITA.

Figure 5 compares the mean response time for Bounded Pareto
workloads under LWL (the bound from Equation (2)) vs. SITA.
The SITA curve is derived using the optimal cutoffψ (determined
numerically) and the above SITA equations. The figure shows that
response time is bounded for LWL forα > 3

2
, while response time

for SITA is unbounded regardless ofα. In the right graph, where
α > 3

2
, asC2 → ∞, SITA diverges while LWL converges. This

behavior may not have been noticed in the past, since SITA’s per-
formance only starts to deteriorate rapidly afterC2 > 105, which
is hard to see in simulation. The practical implication is that SITA
is superior to LWL for realisticC2 in the Bounded Pareto. In the
left graph, whereα < 3

2
, both LWL and SITA diverge.

7.3 n Servers with Pareto Workload
For the Pareto distribution, the results for the 2-server system im-

mediately generalize to then-server system (for finiten). As in the
2-server system, the mean response time under LWL is bounded, if
ρ < n−1 and 3

2
< α < 2, but the mean response time under SITA

is never bounded.



THEOREM 12. The mean response time for ann-server system
with Pareto job sizes,ρ < n − 1, and 3

2
< α < 2 under LWL is

bounded.

PROOF. SinceE

[
X

3
2

]
< ∞, we can apply [22] directly to

show that LWL is bounded.

We define SITA for ann-server system as a policy that immedi-
ately dispatches jobs with sizes betweenψi−1 andψi (with ψ0 = 0
andψn = ∞) to serveri.

THEOREM 13. The mean response time for a n-server system
with Pareto job sizes and0 < α < 2 is unbounded under SITA.

PROOF. Letψi−1 be the largest finite cutoff. Then serveri sees
a Pareto job-size distribution. As in the proof of Theorem 11, the
contribution of these jobs toE [T ]SITA ensuresE [T ]SITA = ∞.

8. CONCLUSION
Finding good task assignment policies for server farms is such

an old, well-studied problem that one believes that all the impor-
tant questions have been answered by now. Certainly that wasthe
belief of the authors. This paper shows that there are still many
things we don’t understand about task assignment, when job size
variability is high. Size-interval task assignment (SITA), which
provides short jobs isolation from long ones, seems so natural for
high-variability job sizes that is hard to imagine that it can be infe-
rior to a much more naive policy, like Least-Work-Left (LWL)that
allows short jobs to queue behind long ones. And yet, we provethat
SITA’s performance can beunboundedlyworse than that of LWL,
and the performance of LWL can be remarkably good. We have
shown that the comparatively poor behavior of SITA can occurin
wide classes of distributions (including Modal, Hyperexponential,
Bounded Pareto, and Pareto) at highC2 over a wide range of load
(except heavy traffic). For some specialized forms of these distri-
butions, SITA performs poorly even for moderateC2 (like 10).

This discovery begs the question: When then exactly does SITA
perform well? This paper answers this question too, definingthe
regimes under which SITA’s response time converges with respect
to increasingC2, and proving the first asymptotic upper bounds on
SITA’s response time for certain common distributions. Thus, the
message isnot that one should discard SITA, but rather that one
should carefully consider the operating regime before presuming
that SITA is the best solution. To paraphrase an old nursery rhyme:

When SITA is good, it is very very good,
But when it is bad, it is horrid.
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APPENDIX
LEMMA 3. For any E [X], there existsC∗ such that, for all

C2 > C∗, and k > 1
2
, there exists ak-Trimodal distribution

with unique parameters0 < a < b < c and probabilities0 <
pa, pb, pc < 1.

PROOF. Note that sincek > 1
2

andc = b2k, c > b requires

b > 1. Settingb > 2
2
3 guarantees that0 < pa, pb, pc < 1. We

need to prove the existence of0 < a < b satisfying the desired
E [X] andC2. Our first constraint fora andb comes fromE [X]:

E [X] = pa · a+ pb · b+ pc · c (8)

= a ·
(
1 − b−

3
2 − b−3k

)
+ b−

1
2 + b−k

a =
E [X] − b−

1
2 − b−k

1 − b−
3
2 − b−3k

(9)

Since we requirea > 0, and since the denominator ofa is simply
pa which is positive, we need the numerator of (9) to be positive.
This is satisfied ifb > 4

E2[X]
. For convenience, we defineblb =

max
{
2

2
3 , 4

E2[X]

}
, where we seekb > blb.

Our second constraint comes fromC2, substituting fora from
(9) (where∼ denotes asymptotic convergence):

C2 =
pa · a2 + pb · b2 + pc · c2

E2 [X]
− 1 (10)

=
a2 ·

(
1 − b−

3
2 − b−3k

)
+ b

1
2 + bk

E2 [X]
− 1 (11)

∼ C̃2 =
b

1
2 + bk

E2 [X]
(asb → ∞) (12)

At this point, after substituting fora, (11) specifiesC2 as a function
of b. Throughout the rest of the proof, we will writeC2 (b) to make
explicit the dependence ofC2 on b. We will now show that for
C2 (b) sufficiently high, there exists ab sufficiently large, which
satisfies (11). We will also show that there exists ab∗ andC∗ =
C2 (b∗) + 1 such thatC2 (b) increases monotonically with respect
to b for all b ≥ b∗, guaranteeing a one-to-one relationship between
C2 (b) andb for all b ≥ b∗. We will do this by demonstrating that
the derivative d

db

[
C2(b)

]
is positive for allb > b∗. If C2 (b) =

f
g

, then d
db

[
C2(b)

]
= gf ′−fg′

g2
= N

D
. The denominatorD of

d
db

[
C2(b)

]
is positive. We now seek a region where the numerator

of the derivative,N , is positive as well:

N

E2 [X]
=

(
1 − b−

3
2 − b−3k

)




E [X] b−
3
2 + 2kE [X] b−k−1

− (2k + 1) b−k−
3
2 −

(
k − 3

2

)
bk−

5
2

+
(
3k − 1

2

)
b−3k− 1

2

+ 1
2
b−

1
2 + kbk−1




−

(
3

2
b−

5
2 + 3kb−3k−1

)



E
2 [X] − 2E [X] b−

1
2

−2E [X] b−k + 2b−k−
1
2

−bk−
3
2 − b−3k+ 1

2 + b
1
2 + bk




We expandN and group and collect its terms intoN = N1 +
N2 +N3 +N4 as follows:

1. If the term is positive and the exponent ofb is ≤ −1 for all
k > 1

2
, we group the term intoN1.

2. If the term is negative and the exponent ofb is ≤ −1 for all
k > 1

2
, we group the term intoN2.

3. If the exponent ofb in the term can be either positive or neg-
ative, we group the term intoN3.

4. The one remaining term we group intoN4.

N1

E2 [X]
= E [X] b−

3
2 + 2kE [X] b−k−1 +

(
3k −

1

2

)
b−3k− 1

2

+ (2k + 1) b−k−3 + (2k + 1) b−4k− 3
2 + 3E [X] b−3

+3E [X] b−k−
5
2 +

3

2
b−3k−2 + 6kE [X] b−3k− 3

2

+6kE [X] b−4k−1 +

(
4k −

3

2

)
b−2k− 5

2 + 3kb−6k− 1
2

N2

E2 [X]
= − (2k + 1) b−k−

3
2 − E [X] b−3 − 2kE [X] b−k−

5
2

−

(
3k −

1

2

)
b−3k−2 − 2b−2 − E [X] b−3k− 3

2

−2kE [X] b−4k−1 −

(
3k −

1

2

)
b−6k− 1

2 −
1

2
b−3k− 1

2

−kb−2k−1 −
3

2
E

2 [X] b−
5
2 − 3b−k−3

−3kE2 [X] b−3k−1 − 6kb−4k− 3
2

−3kb−3k− 1
2 − 3kb−2k−1

N3

E2 [X]
= kbk−1 + kbk−4 − 2kbk−

5
2

N4

E2 [X]
=

1

2
b−

1
2

We now derive a lower bound forN , denoted byN∗. If we can
guaranteeN∗ > 0 then clearlyN > 0.

• N1 > 0, so we omit those terms fromN∗.

• Sinceb > 1, we replace the exponent ofb in the terms ofN2

with −1, which makesN2 more negative andN∗ smaller.
Define the modified term asN∗

2 :

N∗
2

E2 [X]
= −

(
21k + 11

2
+ (2 + 4k)E [X]

+
(
3k + 3

2

)
E

2 [X]

)
b−1

• N3 > 0, so we omit those terms fromN∗. To see this, ob-
serve that:

bk−1 + bk−4 > 2bk−
5
2

b
3
2 + b−

3
2 > 2

Sinceb > 2
2
3 , this is evidently true.

• N4 is unchanged inN∗.

N∗

E2 [X]
= N∗

2 b
−1 +

1

2
b−

1
2

To ensureN∗ > 0, we require that

1

2
b−

1
2 > N∗

2 b
−1

b > (2N∗
2 )

2

b∗ = max
{
E [X] , blb, (2N

∗
2 )

2
}

Observe thatE [X] > a for k > 1
2

becausea is the smallest
value that the distribution takes on and becausec > b > b∗ >
E [X] > a. Henceb > a.

Thus, for all b > b∗, C2 (b) increases monotonically withb.
Since0 < C̃2 (b)−C2 (b) < 1 for b > 1 andC̃2 (b) is monotonic



in b for b > 1, no b < b∗ hasC2 (b) > C∗. Thus, for anyC2 >
C∗ = C2 (b∗) + 1, a unique value ofb > a exists.

LEMMA 5. For anyE [X],C2 > 1, andQ, we can find unique
parametersµa, µb, andp, whereµa > µb (µa is the service rate
for the small jobs), for aQ-H2 distribution which satisfy:

p =
C2 + 4Q− 1 +

√
(C2 − 1)2 + 8 (C2 − 1)Q (1 −Q)

2 (C2 + 1)

µa =
p

QE [X]

µb =
1 − p

(1 −Q)E [X]

PROOF.

E [X] =
pa
µa

+
pb
µb

=
p

µa
+

1 − p

µb

E
[
X2

]
=

2pa
µ2
a

+
2pb
µ2
b

=
2p

µ2
a

+
2 (1 − p)

µ2
b

=
(
C2 + 1

)
E

2 [X]

From the definition ofQ-H2, we have p
µa

= QE [X] and 1−p
µb

=

(1 −Q)E [X].

C2 + 1 =
2Q2

p
+

2 (1 − Q)2

1 − p

0 = p2
(
C2 + 1

)
− p

(
C2 − 1 + 4Q

)
+ 2Q2

p =
C2 + 4Q − 1 ±

√
(C2 − 1)2 + 8 (C2 − 1) Q (1 − Q)

2 (C2 + 1)

As in Lemma 1, but withC2 > 1, we take the positive root so that
µa > µb and verify0 < p < 1.

LEMMA 6. WhenE [X] and Q are constant, asC2 → ∞,
µa → 1

QE[X]
, µb → 0, pa → 1, andpb → 0.

PROOF. From applying L’Hôpital’s rule to the equation forp in
Lemma 5,pa = p → 1 asC2 → ∞. Thus,pb = 1 − p → 0,
µa = pa

QE[X]
→ 1

QE[X]
, andµb = pb

(1−Q)E[X]
→ 0 asC2 → ∞.

We will also use the following transformation ofµb in Theorem 6:

µb =
C2 + 4 (1 − Q) − 1 −

√
(C2 − 1)2 + 8 (C2 − 1) Q (1 − Q)

2 (1 − Q) (C2 + 1)E [X]

=

1 −

√
1 +

8(C2−1)Q(1−Q)−4C2

(C2+1)2

2 (1 − Q)E [X]

+
2 (1 − Q) − 1

(1 − Q) (C2 + 1)E [X]
(13)

And the rest follows. Note the correspondence between the proof
of Lemma 6 and Lemma 2, where1

µa
in Lemma 6 corresponds toa

in Lemma 2, and1
µb

in Lemma 6 corresponds tob in Lemma 2.

LEMMA 8. For any E [X], there existsC∗ such that, for all
C2 > C∗, andk > 1

2
, there exists ak-H3 distribution with unique

parametersµa, µb, andµc, with 0 < 1
µa

< 1
µb

< 1
µc

and proba-
bilities 0 < pa, pb, pc < 1.

PROOF. We proceed analogously to thek-Trimodal existence
proof. Shortly, we will see that thek-H3 case is almost identical to
that case.

Note that sincek > 1
2

and 1
µc

=
(

1
µb

)2k

, setting 1
µb

> 1

guarantees1
µc

> 1
µb

. We will start by setting 1
µb

> 2
2
3 , which

guarantees that0 < pa, pb, pc < 1. What remains is to prove the
existence of0 < 1

µa
< 1

µb
satisfying the desiredE [X] andC2.

Our first constraint forµa andµb comes fromE [X]:

E [X] = pa ·
1

µa
+ pb ·

1

µb
+ pc ·

1

µc
(14)

1

µa
=

E [X] −
(

1
µb

)− 1
2 −

(
1
µb

)−k

1 −
(

1
µb

)− 3
2 −

(
1
µb

)−3k
(15)

Since we require1
µa

> 0, and since the denominator of1
µa

is
simply pa which is positive, we need the numerator of (15) to be
positive. This is satisfied if1

µb
> 4

E2[X]
. For convenience, we

define
(

1

µb

)

lb

= max

{
2

2
3 ,

4

E2 [X]

}

where we seek1
µb
>

(
1
µb

)

lb
.

Our second constraint comes fromC2, substituting for 1
µa

from
(15):

C2 =
pa · 2

µ2
a

+ pb · 2
µ2

b

+ pc · 2
µ2

c

E2 [X]
− 1 (16)

∼ 2

(
1
µb

) 1
2

+
(

1
µb

)k

E2 [X]
+ 1

(
as

(
1

µb

)
→ ∞

)
(17)

At this point Equation (16), after straightforward substitution,

gives us an equation specifying
(

1
µb

)
. Note that this equation,

however, is a near replica of equation (10), except for a factor of 2
on one of the terms, andb replaced with 1

µb
. The factor of 2 in the

derivation ofC∗ and
(

1
µb

)∗
do not affect the sign of the derivative

of C2 (µb), thus the derivative will again be positive, provided that
1
µb
>

(
1
µb

)∗
, given by

(
1

µb

)∗
= max

{
E [X] ,

(
1

µb

)

lb

, (2N∗
2 )

2

}

Observe thatE [X] > 1
µa

for k > 1
2

because1
µa

is the smallest
mean of the component exponential distribution, andpa < 1, and

because1
µc
> 1

µb
>

(
1
µb

)∗
> E [X] > 1

µa
. Hence 1

µb
> 1

µa
.

Thus, for all 1
µb

>
(

1
µb

)∗
, C2 (µb) increases monotonically

with 1
µb

, and for anyC2 > C∗ = C2 (µ∗
b ), a unique value of

1
µb
> 1

µa
exists.


