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ABSTRACT

This paper investigates the performance of task assignpait
cies for server farms, as the variability of job sizes (smrvile-
mands) approaches infinity. Our results reveal that some com

mon wisdoms regarding task assignment are flawed. The Size-

Interval-Task-Assignment policy (SITA), which assignsleaerver

a unique size range, was heretofore thought of by some as the

panacea for dealing with high-variability job-size dibtriions. We
show SITA to be inferior to the much simpler greedy policyake
Work-Left (LWL), for certain common job-size distributienin-
cluding many modal, hyperexponential, and Pareto disiohs.
We also define regimes where SITA's performance is supexiat,
prove simple closed-form bounds on its performance for bove-
mentioned distributions.

Categories and Subject Descriptors

C.1.4 Processor Architectures]: Parallel Architectures-Bistributed
Architectures C.4 [Performance of Systems]: Design Studies;
D.4.8 [Operating Systems]: Performance-Modeling and Predic-
tion

General Terms
Performance,Design,Algorithms

1. INTRODUCTION

Server farms are ubiquitous, owing to their low cost (it iRre
tively cheap to pool together several slow servers) and fresii-
bility (itis easy to adjust capacity by adding and removiagssrs).
One of the oldest and most fundamental questions arisingrires
farms is the question of which dispatching policy should bedu
for routing jobs to servers. This policy is known as thsk assign-
ment policy One goal of the task assignment policy is to minimize
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Figure 1. Server farm with 2 server hosts.

DISPATCH

call times have very high job-size variability, with job s fit-
ting Pareto or other high-variance distributions [2, 8, 26, 27].
This paper studies task assignment policies and consiteeffect
on response time as job size variability goes to infinity, levithe
mean job size stays fixed. To denote job-size variabilitypeethe
squared coefficient of variatio;*> = var[X]/E? [X], where X

represents the job size (service requirement).

Figure 1 depicts our server farm model, with= 2 hosts. Jobs
arrive according to a Poisson process with ratéhe sizes of jobs
are assumed to be i.i.d. from some general distribution.h Bac
coming job is immediately dispatched by a front-end roubesrie

of then server hosts. Jobs at a host are served in FCFS order, and

preemption is not allowed. This model is common for supercom
puting farms [13, 26], manufacturing systems [16, 5], dataters,
10 systems, etc., where it is expensive to preempt jobs ansl th
even long jobs are typically run to completion.

For our server farm model, there are many common choices of
task assignment policies. TiRound-Robirpolicy assigns the first
job to host 1, the second to host 2, the third to host 3;tthéo host
i modn plus1, and so forth. Thdoin-the-Shortest-Queue (JSQ)
policy assigns each incoming job to the host with the fewastber
of jobs queued there. Theeast-Work-Left (LWLpolicy assigns

mean response time, where response time is measured from whe each incoming job to the host with the least total work renmagn

a job arrives until it completes.
It is well-known that empirical computer workloads such asbV
file sizes, CPU process lifetimes, IP flow durations, and leg®
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Here “work” is the sum of the remaining size of the job in seevi
plus the sizes of all the jobs in the queue at the host. SIHA
(Size-Interval Task Assignmengsigns a size-interval to each host,
so that “short” jobs are sent to the first host, “medium-lahgnbs
are sent to the second host, and “long” jobs to the third, eteere
the cutoffs for differentiating size classes are chazgtimally, so
as to minimize mean response time.

Importantly, the LWL policy issquivalento the classical central
FIFO queue, M/GI/n, where there are no queues at the host® an
free host simply takes the next job from the central queueci®p
ically, under M/Gl/n, jobs go to the same host as they wouktha
under LWL and are served there at the same time as under LWL
(see [13] for an inductive proof). The response times undi€ i
and LWL are thus identical.



While a great many papers have been written comparing the re- Hyperexponential distributions (Sections 5 and 6). Finatfi Sec-

sponse time of different task assignment policies, e.g7,[60, 13,
14, 20, 28, 29], all of these papers conclude (via numericalya
sis, simulation, or approximation) that, for high job-sizgiability,
the SITA policy is superior to all the other common policié®wee.
The reason for the superiority of SITA task assignment lethe
fact that SITA allows short jobs their own “express-lineheteby
giving them isolation from long jobs. Since most jobs arersho
jobs, the resulting mean response time is lowered.

There are several papers which specifically compare themperf
mance of SITA to LWL [4, 7, 9, 12, 13, 14, 20, 28, 29]. All of
these find that as job size variability iiscreased SITA becomes
far superior to LWL (for lowC?, SITA may be worse than LWL
because not all servers are utilized; however, this behati@nges
quickly asC? is increased).

Despite these comparisons showing that SITA outperformk LW
by orders of magnitude for high job size variability, a probthis
fact has never materialized. SITA itself is difficult to aymd, even
for Poisson arrivals, because in general there is no climed-
expression for the optimal size cutoff, and hence the riesute-
sponse time. Furthermore, LWL cannot be analyzed exaatiyes
the M/G/n queue (equivalent to LWL) is in general only approx
imable. Thus, many of the existing results have used sinoul&d
assert their claims, or have looked at phase-type job-d&tetul-
tions, or heavy-traffic regimes.

In this paper, we show that the common wisdom about task as-

signment for highC'? is wrong: We prove that SITA is not always
superior to LWL asC? — oo; in fact SITA can be unbound-
edly worse than LWL. We show that both SITA and LWL can ex-
hibit both convergent and divergent asymptotic behaviepead-
ing on the load and job-size distribution. By convergentaweh

ior, we mean that the mean response time approaches a donstal

asC? — oo and by divergent behavior, we mean that the mean
response time approaches infinity@$ — oco. For a server farm
with n servers, system loadlis defined as:

p = AE[X]

Note thatp = n corresponds to a fully loaded system. Some of our
results require that < n — 1. (It is known — see Section 2 — that
if p > n — 1, LWL always diverges a€” — oc.)
Specifically, for each box in Table 1, we will illustrate areex-
ple of a class of distributions that satisfies that box. Femgxe,
looking at Box 4, we will show that there are examples of distr
tions where SITA diverges and LWL converges. Importantly; o
examples areot esoteridn nature: We do not presume arcane dis-
tributions or assume very light or heavy load or a very higimber
of servers. To illustrate our points, it suffices to assume gerver
hosts only. However, in the case of the Pareto job-sizeilligion,
we have extended our results to a general (finite) numbereése
The distributions we use to illustrate examples in Tabled ar
very common. Specifically, in Section 3, we show that the Riaio
can satisfy Boxes 2 and 4 for the 2-server system, depending o
the choice of parameters, and in Section 4 we show that the Tri

modal can satisfy Boxes 1 and 3. We then show in Section 5 that

the traditional hyperexponential{2, can satisfy Boxes 2 and 4,
while Section 6 shows that the 3-phase hyperexponetfial,can

satisfy Boxes 1 and 3, again depending on the choice of parame

ters. The advantage of the hyperexponential job-sizeiloligion is
that it allows us to exactly analyze the performance of LWlIthwi
matrix-analytic methods [19], rather than just using bauridence

tion 7, we consider the Bounded Pareto and Pareto job sige dis
butions, which we find provide examples of Box 4, and also Box 3
This last result is most surprising, since SITA was spedifiae-
signed to work well under the high-variability Pareto distition,
and appears (via simulation, approximation, and numerneth-
ods) to significantly out-perform LWL under Pareto and Boeohd
Pareto job size distributions. Our results show that thereoiv-
ever a cross-over point, at sufficiently higt, after which SITA
diverges, while LWL might converge (Box 3) or diverge (Box 4)
depending on the parameters of the Pareto. Section 2 egilen
prior work in detail and, in particular, provides some exiton
for whythe above behaviors have not been observed until now.

Convergent LWL | Divergent LWL

(Section 4 & 6) | (Section 3 & 5)
Convergent SITA BOX 1 BOX 2
Divergent SITA BOX 3 BOX 4

Table 1: We show that all four behaviors are common.

In addition to the above results, this paper also providesitbe
ful, simple, asymptotically-tight upper limits (&%* — oc) on the
mean response time under SITA for the case where SITA coeserg

" subset of our upper bounds are shown in Table 2 below for the

most common cases (e.dZ, with balanced branches), for server
farms with two hosts. No results of this type exist in the pliir-
ature. Table 2 illustrates these asymptotic limits for thsecof the
Bimodal, Trimodal and the hyperexponential distributidiis and
Hs. As seen in Table 2, the results for the hyperexponential dis
tributions parallel those for the modal distributions. brantly,
we see that the limiting behavior @& — oo depends only on
the mean job sizelt [X], and loadp. Specifically, looking at the
H distribution, we recognize the limiting response time a4 for

a simple exponential job size distribution, where the mefathie
limiting exponential equals the mean of the original hygpomen-
tial.

Convergent LWL| Divergent LWL
Convergent SITA (Trimodal) (Bimodal)
(Modal Distributions)| 20Xl + EIXL | B 4 gL
(forp < 1) (for p < 2)
Convergent SITA (Hs) (H2)
(Hyperexponential) ]?[T)i] ﬂxg]
(forp < 1) (for p < 2)

we can see exactly how LWL and SITA compare, including cases ] ]
where they both diverge or both converge. We can cover afl fou Table 2: Subset of typical asymptotic upper bounds on SITA
boxes with either the modal distributions (Sections 3 andr4he mean response time proven herein.



It is reassuring to see, from Table 2, that when SITA convgrge
its response time can be quite good! Heretofore, there were n
simple bounds on SITA's performance. Our results also atdic
that when SITA diverges, LWL might converge. This too is good

news since the LWL policy can be implemented as a central FIFO

GI/Gl/n queue, thereby obviating the need for known jobsize

2. PRIOR WORK

The evaluation and comparison of task assignment polisias i
ever-popular area of study, and there is a long list of paperthis
topic. In this section, we restrict ourselves to papers dstuss
either SITA or LWL, or both.

The SITA Policy

It is not clear where the idea of size-based task assignnrégt o
inated, since it has been part of the common wisdom for a long
time. Size-based splitting was used in the Cornell Theonyté€re
[17], and is also mentioned in [5]. The SITA policy was forigal
introduced by Harchol-Balter et al. in [14], wherein it wasihd
that, under high job-size variability (Bounded Pareto viitlv «),

with appropriate cutoffs, mean response time under SITAdsrs

of magnitude lower than that under other common policiesl{| W
JSQ, RANDOM, Round-Robin). A similar point was made for the
TAGS algorithm (Task Assignment by Guessing Size), intoedu

by Harchol-Balter [13], which is similar to SITA but doesmé-
quire knowing the size of the job. Harchol-Balter [13] fintattfor
job-size distributions with high variability and decreasifailure
rate (again, the Bounded Pareto with lay, TAGS, like SITA, is
superior to other common policies (LWL, JSQ, etc.). Nonehef t
above papers noticed that SITA could be worse than LWL under
high job-size variability.

Since the introduction of the SITA policy, the SITA and TAGS
algorithms have been studied in a long list of papers, all lnictv
have touted the benefits of these algorithms under high iggb-s
variability, but missed the fact that these policies cowtlially be
worse than LWL under sufficiently high variability and noeavy
traffic. Thomas [29] analyzes TAGS via the Markovian process
algebra PEVA and finds that TAGS performs well when job size
variability is high. El-Taha and Maddah [9] analyze a vatiah
TAGS and prove that a§”? — oo this variant is superior to LWL
under heavy traffic. Oida and Shinjo [20] show that SITA is su-
perior to LWL under heavy-traffic using an integer program fo
mulation. Ciardo et al. [7] apply SITA to web server farmsthwi
cutoffs chosen to equalize the load, and find, via traceedrsim-
ulation, that when job-size variability is high, the SITAlioy is
superior to LWL, Tari et al. [28] consider a variant of SITA for
heterogeneous hosts with different speeds and again fiadimi-
ulation, that SITA behaves well under high-variability jetze dis-
tributions, and Fu et al. [12] extend this result to allowgdi
be ordered by priority. Similar results are shown for a vatriaf
TAGS by Broberg et al. [4]. Bachmat and Sarfati [1] develop a
duality theory for the performance of SITA policies, allogithem
to derive asymptotically-optimal cutoffs for SITA under auhded
Pareto job-size distribution with infinite range. Feng et HIO]
prove the optimality of SITA with respect to mean responseeti
among all policies which immediately dispatch jobs to hdsis
don’t know the status of the hosts (this does not include \The
SITA policy has received attention in many systems papevsds
e.g. [6] which discusses using SITA for web server farms 6t [2
which applies SITA to heavy-tailed supercomputing worklma

1The paper refers to SITA as EquiLoad and uses a superiomnvaria
of LWL.

The LWL Policy

The LWL policy is equivalent to the classical central-seriv&é-O
queue, GI/Gl/n as explained in Section 1. There are sevesal k
analytical papers which are concerned with the GI/GI/n ahigh
job-size variability. None of these deal with SITA, or angkaas-
signment policy (other than LWL). The papers most relevariLir
work are those of Scheller-Wolf and Sigman [22, 24] whichvero
an upper bound on mean delay in a GI/Gl/n system where this up-
per bound does not depend on any moment of service time higher
than the% moment, and particularly does not depend on the vari-
ance of job-size. The [24] result requires that system jodless
than|n /2], however [22] generalizes the result to allow for higher
load,p < n — 1. This result ends up being key in our work, since
we are able to show that for certain common job-size distiiims
(modal, H,,, Pareto, etc.), we can raise the variability unbound-
edly (C? — oo) while keeping th§ moment of the job-size distri-
bution below a fixed value, hence bounding mean delay for LWL.
The converse of the [22, 24] results was presented by Sciveth
and Vesilo in 2006 [25], for a large class of distributionsliing
those in this paper. It is known thatgf> n — 1, then the GI/Gl/n
diverges ag’? — oo [23], hence LWL diverges too.

Whitt [30] and Foss and Korshunov [11] consider a GI/GI/2 and
study the delay tail behavior when job size is subexponkerittzey
find that for low load, the delay tail grows like the tail of tequi-
librium distribution squared, whereas for high load theagidail
grows like the tail of the equilibrium distribution. Thesesults
are consistent with [24] and [25]. The M/GI/2 with heterogeuas
servers has also been looked at by Boxma et al. [3], who stody h
high variability in the job-size distribution at one of thergers af-
fects the other. Finally, while all of the above papers imechn-
alytic solutions, the M/GI/n with high job-size variabjlihas also
been studied via simulation by Psounis et al. [21]. Here the a
thors develop an M/GI/n approximation based on two momeints o
the job size distribution and use that approximation toneste the
optimal number of servers.

Summary of Prior Work & Comparison with this Paper

In summary, although there have been many papers studyiig Sl
and quite a few comparing SITA with LWL, all have focused on
the benefits of SITA over LWL for high-variability job sizedtii-
butions, anchonehave noticed that SITA can be worse than LWL
at high variability. By contrast, in this paper we prove tfatcer-
tain common job size distributions, SITA can be worse tharLLW
under high variability, and in fact there are situations weh8ITA
diverges a€'? — oo, whereas LWL converges to a finite bound.

There are several potential reasons why these results heve p
viously gone unnoticed. First, several of the papers comgar
SITA with LWL concentrate on heavy-traffic, whereas our stud
ies concentrate on more moderate load<¢ n — 1). Second,
many of the papers above rely on simulation to evaluate SHA a
LWL. However, simulation becomes problematic at high val-
ues. None of the above papers consider the limiting behafior
SITA asC? — oo. Finally, and perhaps most important, there
is somewhat of a disconnect between communities like SIGMET
RICS, which regularly study task assignment policies, amah-c
munities like INFORMS, which look at GI/Gl/n queues. It ith
merging of results from these two communities that inspired the
idea for this paper.

3. DIVERGENT LWL VIA BIMODAL
(BOXES2 & 4)

This section will illustrate that for a class of Bimodal jsize



distributions, mean response time under LWL diverge§as- co

(see Section 3.1), whereas mean response time under SITA mayc?+2(1-Q)-C/C2+4Q(1-Q)

converge or diverge (see Section 3.2), depending on thengdess.
The Bimodal distribution with parametess b, andp is defined
by the following random variable:

|

We further characterize the distribution ag)aBimodalby speci-
fying a weight@, 0 < @ < 1, such that:

pa = QE[X] (1-p)b=(1-Q)E[X] @)

We will show in Theorem 1 that a 2-server system serving a
@Q-Bimodal workload using an LWL policy has unbounded mean
response time a€? — oo. In Theorem 2 we show that when

a WP.p.=p
b wp.py=1-p

and

|Q — 1| < %2 mean response time under SITA is bounded from
above by:
E[T]SITA < E[X] E[X] (1_2Q (1—Q)P)

2 20,1 Q0-Q)p)

Outside this region, SITA's response time diverge<’ds— oo.

WhenQ = 1 (balanced brancheslf; [775™ = ELX |- (El[fé)

3.1 Divergent LWL

THEOREM 1. For a 2-server system witfp-Bimodal job-size
distribution under LWLE [T]"** — oo asC? — oo.

PrROOF Lemma 1 below guarantees that we can find a unique
Bimodal distribution with parameters < b andp for any given
E[X], C? > 0, andQ. Lemma 2 below shows that, for fixed
E[X] andQ, asC? — oo, p — 1, a — E[X], andb — oo.
Furthermore:

E [Xs/z}

pa®? + (1 - p)b*/?
QE[X]Va+(1-QE[X] Vb

As C? — oo, we see from the above thEt [X%] — 00, Since

Vb — oo, and all the other terms are constant. Scheller-Wolf and
Vesilo [25] proved that for most distributions, includinty distri-

butions in this pape® [T]™" — o if E [X%} S oo, O

LEMMA 1. ForanyE [X], C? > 0, andQ, we can find unique
parameters: < b andp for a Q-Bimodal:

C?+2Q+C\/C?2+4Q (1 - Q)

2(C? +1)
a = QE[X]/p
b = (1-QE[X]/(1-p)
PROOF
E[X] = pa+(1—-p)b
E [X?] pa’ + (1 —p)b* = (C* +1) E*[X]
2 _ opdd+(1-p? Q2 (1-Q)
= Tex i
. CP42Q+0/C?+4Q(1- Q)
b= 2(C%+ 1)

X]<:>

Taking the positive root, we see thak b <
p

Q

QE[X] _ (1-Q)B]
P 1-p

since all the terms op are positivepp > 0. We verify1l — p =
> 0 since (C? +2(1-Q))* >
O

2(C2+1)
C?(C*4+4Q(1—Q)). Thus,0 < p < 1.

LEMMA 2. For the Bimodal with fixed® [X] andQ, asC? —
0o, p — 1,a — QE [X], andb — oo.

PrRooF Follows immediately from Lemma 1, after dividing the
numerator and denominator pby C? and taking limits ag£? —
co. O

3.2 Convergent/Divergent SITA

While we saw above that th@-Bimodal job size distribution
results in divergent mean response time for Least-Work; Lveé
will now show that depending o, we can either get convergent
or divergent behavior for SITA.

THEOREM 2. For a 2-server system witfp-Bimodal job-size
distribution with fixedE [X] and fixedQ where|Q — 3| < %2,
mean response time under SITA (for@H) is bounded from above
by

EX] EX](1-200-0Q)p)
E T SITA <
e I Y e I ) )
When@ = §, B [T = 21X 4 2710,
When\Q — %\ > ; , mean response time under SITA diverges
asC? — oo.
PROOF If |@ — 3| < 222 then we can always split the jobs of

sizea andb into separate servers without overloading either server,
allowing the mean response time under SITA to converge. &o se
this, observe that:

pa = Apa=XQE[X]=Qp
ppo= A1=-pb=A1-QE[X]=(1-Q)p
Since|Q — 1| < 2; implies@ < -, the small-job server is not

overloaded. Slnce the constramt@ralso impliesl — Q <3 L the
large job server is not overloaded either.

Note that by Lemma 1, giveR [X] andC?, we can always find
a@Q-Bimodal for any@.

Given that we can separate the jobs with sizesdb, the mean
response time follows by conditioning and the Pollaczelwihin
(P-K) formula [18], whereA, = pX and\; = (1 —p) A are the
arrival rates at the small-job and the large-job servengaetsely:

SITA )\spa2 A (1—p) b2
E[T] < E[X]+ 50— ) + (L= Ab)
_ A@Eﬂ] A1-Q)P’E’[X]
= BRI T2 a0
E[X] E[X](1-20(1-Q)p)

T T2 200+ Q01-Q)
The above is an upper bound on SITA's performance under the
optimal partition, which may not necessarily separate jofbsize
aandb. WhenQ = 1, E[1]°™ = BLX]  PBIX]

2(1-%)
On the other hand, ifQ — 3| > 222, itis not possible to sepa-
rate the small jobs from the large 1068 without overloadisgiver.
Therefore, one server must have a mix of small and large piyg-
pose that we fix such that > @Q — % > 0. Now the large-job
server must run at leasta-size jobs and all thé-size jobs. The

contribution to mean delay from the large-job server is $intipe



fraction of jobs that go to the large-job server multipligddelay
at the large-job server. This comes out to:

ea®+(1-plea® +(1- Q)P E?[X]+ea(1-Q)E
2(1=X(ea+ (1 - Q)E[X]))

The numerator of this term shows that¢ if= 0 (when jobs can be
split between the servers based on size without overloaglthgr
server), the contribution to mean delay of the large-jolveseis
bounded. However, i > 0, the presence af causes divergence
in mean delay. A similar argument holdscif> 1 — Q — = > 0,
overloading the small-job server[]

[X]b

A

Note that@Q = % is always within the convergent range and

provides an example of convergent SITA for alk 2.

4. CONVERGENT LWL VIA TRIMODAL
(BOXES1& 3)

This section will illustrate that for a class of Trimodal wiibu-
tions, mean response time under LWL always converges®as»
oo (Section 4.1), while that under SITA may converge or diverge
(Section 4.2). The Trimodal distribution with parameters. b <
¢, andpa, py, andp. is defined by the following random variable:

a W.P.Dpg
b w.p.ps
¢ W.P.pe

We further specify our Trimodal distribution (which we refe as
a k-Trimodal) with the following relationships:

X =

Py = b7% Pe = b*fik

k>3

Pa=1—py —pe

c= b2k
The free parameters are naw b, and k. The structure of this
distribution ensures thdt [X%] < oo for all C?, thus guaran-
teeing convergence of LWL a8? — oo. Specifically, observe
that the contribution of the medium and large jobsEJéX%] is
pbb% + pcc% = 2. Furthermore, we will show that, depending

on the value of the parametércompares tdzi, we can get either
convergence or divergence of SITA (see Equation (3) below).

(@)

whereA is a random variable representing inter-arrival timels]

LEMMA 3. For anyE[ ], there existC™ such that, for all
C? > C*, andk > 2, there exists &-Trimodal distribution
with unique parameter§ < a < b < ¢ and probabilities0 <
Pa; Pb;Pe < 1.

PROOF. The proof demonstrates tHais monotonic inC? above
someC™, and so a unique value éfcan be found for every such
C?, with the rest of the relationships ensuing from the debnitf
a k-Trimodal distribution. See Appendix for details[]

LEMMA 4. For a k-Trimodal distribution, asC? — oo, we
havep, — 1,p, — 0,pc — 0,a — E[X],b — oo, andc — oc.

PROOF From the proof of Lemma 3, we know théf — oo
impliesb — oo. Also, from the same proof, — E [X] asb — oc.
The limits for pa, ps, p., andc follow directly from the definition
of thek-Trimodal ash — co. [

4.2 Convergent/Divergent SITA

THEOREM 4. For a 2-server system with-Trimodal job-size
distribution with mearE [X], parameterk, andp < 1, a SITA
policy that sends all small jobs (thes) to one server and all other
jobs to the other has the following mean response timé€“as—
00!

o0 k> %

E[X] E[X] | A _ 3

E [T]SITA = [X] + 2(1[X,])) +5 k=3
—00 E E 1 3
5 T 2(1—p) 3 < k< 2

Any other SITA cutoff performs worse @ — oo.

PrROOF. We will useE [X7] to denote theith moment of job
size on servet, p; to denote the load at serverp; to denote the
fraction of jobs assigned to servigrand; to denote the waiting

In Theorem 3, we show that the mean response time under LWL time (delay) at servet, i € {s, [}, wheres denotes the small-job

for jobs drawn from &-Trimodal distribution issoundedasC? —

oo for p < 1. In Theorem 4, we show that, under SITA, mean
response time can converge or diverge: If the jobs are dreovn f
ak- Trimodal distribution withk < 2 andp < 1thenE [T]"™ =
E[X] + 2<1 p) while if & > 3 then mean response time is un-
bounded under SITA.

4.1 Convergent LWL

THEOREM 3. For a 2-server system with-Trimodal job-size
distribution andp < 1, expected response time under LWL is
bounded a£? — oo, and this bound is provided in Equation 2.

PrROOF Lemma 3 below guarantees that we can findEimodal
distribution with parameters, b, ¢, andp., p», andp. for any
E [X], large enoughC?, andk. Lemma 4 below shows that, as
C* — 00, a — E[X] andp, — 1. Then

Nl

E [Xz] = pua® +pb? +pect ——— (B[X))’
SinceE [X%] < oo is bounded ag’® — oo andp < [ 2], [24]

tells us that [T]"** is bounded as follows:

server and denotes the large-job server.
We defineqg to be the fraction of mediunb) jobs sent to server
s. The fraction of jobs sent to each server is given by:

Ps = Patq-pp=1-(1- )7_—63]“
po= l-ps=(1—qb 2+b>

E[Xg} = p%( P+ qu;)

e[xf] = L(v-anrleon)

oL i 203k
_pl((1 Q)b+ )

As C? — oo, Lemma 3 provides thadi — oo, and thusa —
E [X]. Many terms irp, - E [W,] andp; - E [W;] categorically go
to zero. The remaining expressions are:
A <E2 [X] + qb%>
2(1-p)
A(1—q)bt3
2

ps - E[Ws] ~ (asb — o)

p-EW] ~ (asb — o)

©)



The prior two equations demonstrate thafds— oo, ps-E [Ws]+

pi - E[W;] < oo only whenk < % andqb% — r < oo (which
impliesq — 0 andqbk*% — 0 sinceb — o). Any system with
qb% — r > 0 is dominated in the limit byy = 0. Therefore,
response time is minimized when all medium jobs are assigmed
serverl asb — oo. In a similar manner, we can prove that re-
sponse time is minimized when all small jobs are sent, taut we
have omitted the proof for lack of space.

ETP™ =  E[X|+p. E[W]+p-EW]
o0 k>%
E[X] E[X] A _ 3
- 1 3
2 +2(17p) 2 k<§
|

Theorem 4 shows that, under a SITA policyk-drimodal job-
size distribution with} < k < 2 has finite delay ag’* — oo,
assuming na (or c¢) jobs are sent to the small server. Intuitively,
this case, the small jobs receive perfect isolation, antth kvin this
range, the variability in the service times on the largegebver,
combined with the small probability of a large job, meang tha
contribution to mean response time from the large-job seras-
ishes. On the other hand, under a SITA policy, a Trimodaltifist
tion with & > 2 has unbounded delay &8’ — oo, even if SITA
gives the small jobs perfect isolation. This results from ldrger
variability in job sizes on the large-job server.

n

5. DIVERGENT LWL VIA H, (BOXES 2& 4)

In Sections 3 and 4, we used tligBimodal andk-Trimodal
job size distributions to illustrate the behavior of SITAdabWL
for the four boxes in Table 1. However, there are more questio
to be answered, because, while we have analytic expres&ions

the mean response time under SITA, we only have a loose bound

on LWL's mean response time. Thus in Box 1, where both LWL
and SITA converge, we don’'t know whether LWL or SITA is su-
perior. Likewise, for Box 4, where LWL and SITA both diverge,
we don’t know whether LWL or SITA diverges more quickly. To
answer these remaining open questions, we turn to the hypere
nential job size distribution, which allows us to use matnalytic
methods to evaluate the response time of LWL.

Before we can begin to evaluate performance, we first need to

demonstrate that the four different behaviors shown indaltan
be obtained under hyperexponential job size distributidie do
so in this section and the next. Many of these argumentswollo
similar logic to theQ-Bimodal andk-Trimodal reasoning.

In this section, we will use a 2-phase hyperexponentiatidist
tion to illustrate the case of divergent LWL, where SITA véither
converge or diverge, depending on parameters (Boxes 2 arid 4)
(Section 6), we will use a 3-phase hyperexponential totilhis the
case of convergent LWL, where SITA will either converge or di
verge (Boxes 1 and 3), again depending on parameters. Afteng t
way, we will again prove beautiful asymptotic limits on theam
response time under SITA, when SITA converges.

The 2-phase Hyperexponential distributiafz) with parame-
tersuq, s, andp is defined by the following random variable:

|

We again define a further parametgr0 < @ < 1, as the mean
weighting, such thag* = QE [X] andZ—Z =(1-QE[X]. If

Exp (Ka) W.p.pa = p
Exp (up) W.p.pp =1—p

Q= % then the two exponentials are of equal importance. We refer
to the H» with additional paramete® as theQ-H- distribution.

We show in Theorem 5 that a 2-server system serving job sizes

from theQ-H, distribution using a LWL policy has unbounded ex-
pected response time &€ — oo. In Theorem 6 we show that, by
contrast, the mean response time under SITA for@h&l> might
converge or diverge: when it converges, it converges to

EX](1-20(1-Q)p)
1-p+Q(1—-Q)p
WhenQ = L, E 179" — E&].

2
1 2

E [T]SITA _

5.1 Divergent LWL

THEOREM 5. For a 2-server system wit- H- job-size distri-
bution under LWLE [T]"" — oo asC? — oo.

PROOF Lemma 5 below guarantees that we can fin@-d/»
distribution with parameterg,,, 1, andp for anyE [X], C?, and
Q. Lemma 6 provides that, — 0 asC? — co. The definition of
the Q-H; dictates that’s = QE[X]andft = (1 - Q)E[X].
Lemma 7 provides that:

3 3V
E[X} _ ZpiL;
N 8 2
t i
_osAEN (e 1)
8 N/% /’L% C2—o0
a b

Applying [25], E [T]"" — oo sinceE [X%] oo, O

LEMMA 5. ForanyE [X], C? > 1, and@, we can find unique
parametersuq, wy, andp, wherep, > us (uq is the service rate
for the small jobs), for &@-H> distribution which satisfy:

C?4+4Q - 14+\/(C* — 1 +8(C* —1)Q(1-Q)

2(C2 +1)
_ p

e QE[X]
_ 1-»

= 0-QENX]

PROOF. See Appendix. [

COROLLARY 1. When@ = 1,

c2-1 c2-1
L+ \ ¢Z11 1= \ ¢Z11
2 ’ 2
/c2—1 /c2—1
1+ 241 C2+1
E [X]

C 1=
x] 7 EX]

(pmpb) =

(Ha7 ;U'b) =

PROOF By substitution. [J

LEMMA 6. WhenE [X] and Q are constant, a’? — oo,
fa — QE;[X]'Mb — 0, pa — 1, andp, — 0.

PROOF See Appendix. [

LEMMA 7. For the hyperexponential distribution,

B[xi] -5y 2

3
2

k3



PROOFR

‘Lizdflf

E[X%] :Zpi/ x%u167
p 0

Evaluating the integral (integrating twice by parts andeosgbsti-
1

tutingy = (ﬁ) *) gives:

O

5.2 Convergent/Divergent SITA

We now investigate convergent and divergent SITA behavior.
Theorem 6 below corresponds to Theorem 2 for ¢hdBimodal
distribution, with one difference: Whereas in t@eBimodal dis-
tribution, any cutoff between andb was stable, as long as neither
server was overloaded by just jobs of sizer just jobs of sizé,
in the case of &)- H distribution, the cutoffy must be specified
explicitly and depends 06.

THEOREM 6. Given a 2-server system wifp- H, job-size dis-
tribution with fixed mearE [X] and fixed paramete® such that
|Q — 4| < 222, there exists a), which is a function of?, such

that, a302 — oo, a SITA policy with cutoff) yields mean response

time:

EX](1-20(1-Q)p)
1-p+Q(1-Q)p?

E[X] 1 2—
- When@Q — 3| > £, E

E [T]SITA N

WhenQ = 1, E [T]"™ —

o0 asC? — .

[T]SITA _

PrROOF Typically, under SITA, with anH,, hyperexponential
job-size distribution (with parameteps, . . ., pn, flay - - - 5 fny fi >

wit+1), the small-job server sees jobs drawn from every branch of

the hyperexponential, as does the large-job server. Hawthis
logic does not necessarily hold 8¢ — oco. We say that the
hyperexponential job size distribution "separates in thet'l as
C? — oo at a cutoffy (C?) into small jobs and large jobs if:

1. The arrival rate at the small job server converges.to, and

the mean and second moment of job sizes at the small job
server converges to the mean and second moment of job sizes

from anExp(ta).

2. The arrival rate and contribution to the mean and secord mo

ment at the large-job server of jobs drawn from Hiep (1)
branch goes to 0.

We require convergence in the first two moments to guarargee n

effect on delay in the P-K formula.

Suppose that a cutoff (C*) could be identified that achieved
separation in the limit for théf, distribution. All jobs sent to the
small-job server would be drawn frofixp(u..), and all jobs sent
to the large-job server would be drawn frdfixp(us). Thus,ps,
the proportion of jobs sent to the small server, converges,to
and, likewisep; converges tg,. Then, since for an exponential
distribution mean response time is givenlby7T'|™® = E[X] , mean
response time for the system is:

E [X]
1—ps

E[X
E[T]°™ Pa 8 E pl}

SubstltutlngE [Xs] = 4= = ;-QE[X],

[Xl] o M_b = ﬁ(l ) [X] As = )\pa, pPs = QP, AN =
App, andp; = (1 — Q) p:
SITA QE [X] (1 _Q)E[X]
e 1=Qp " T-(-Q)p
EX](1-20(1-Q)p)
1-p+Q(1-Q)p?
Substituting® = 1 yieldsE [T]°™ — [X]

The load on the small-job server )GQE [X] and the load on
the large-job server i3 (1 — Q) E [X]. Hence if we are to take
advantage of any separability, we requi@ — 3| < 2 %2 so that
neither server has load greater than or equal to 1.

It remains to show that suchia(C?) can be found for the,
distribution. LetX, denote the first branch of thi, distribution
and X, the secondX, ~ Exp(ue) and X, ~ Exp(us). In order
for an Hy to be separable in the limit & — oo, a cutoffy) must
have the property that the following six quantities go to Gevel
is an indicator random variable:

L. paE [Ix,>y] = pae™ ¥
L'Hopital’s rule guarantees that for any polynomi&l(v),
P () e ¥ — 0asC? — oo if 1) — oo asC? — oo.

2 paB [Xa - Lxyou] = po (04 ) ¥
Same condition as 1.

3. B [X2 - Ix,ou] = pa (V2 + 22 4 ) e
Same condition as 1.

4. pE [Ix,<p] = py (1 — e %)
Requiregy, — 0 or ) — 0 asC? — co.

5. poE[Xo - Ix,<u] = po (fb - (w + fb) 6””’”’)
Substitutingp, = (1 — Q) E [X] s gives
(1-Q)E[X] (1 —e ¥ — uape *¥). Thus, it suffices
that v — 0 asC? — oo.

o pobi b o (3113 4 )
Substitutingp, ~ u, and the Taylor 'series expansion of
e MY — 1 — L) + (l»"bd’) + ZZ s (— ) (Hbil’) gives:

2 2 _
(32 3))
Hy s
2= — 21/) — 2t g + 20
4
~ - +A&W‘ﬂw
_ ;)03( 1)1 I»Lb P +2puy ,L?/] +2# ’¢’
3,4 > 22
Ky i el i e + 21 + 2
B e LR
1=3
= O(uv?)

Thus, we require thap (C?) — oo asC? — oo, and, further-
more, thafu21® — 0 (implying also that,y — 0) asC? — co.
Any suchy drives all six quantities to 0 whefi? — oo and thus
provides separation in the limit. Now we can analyze ouHM2
system as two parallel M/M/1 queues with arrival rages\ and
pupA and service time distributiorixp(ua) andExp(us).

Good examples ofy (C*) with these behaviors ang (C?) =
In C, which approximates load balancing across a wide range of



C? when@ = 3, andy (C?) = v/C2, which approximates the
optimal cutoff across a wide range 6 when@ = % Clearly, in
both cases) — oo asC? — oo. To see the behavior gf 43, first
observe that using the Taylor expansion§t + x in the proof of
Lemma 6 shows that, = ﬁ. Now 12 ((C?)™)® — o for
m < 2. ¢ = v/C2 meets this criterion, since. = 1. Likewise,
¢ = In C? providesy? (In C?)* — 0.

At this point, the proof is complete. While separation in the
limit is an elegant concept, this proof may seem unsatigfgince
it only deals withE [T]*™ in the limit asC? — oco. We now
present an alternative derivation that holds foGl yet yields the
same result in the limit, using the P-K formula directly. Tid an
notation, define the following for the hyperexponentiatriiition:

Fu,'u = Pr {U < X < 'U} = / Zpi,uieimzdm

— E pie*#iu_E pie*#i”

(4)

1 (v o
E[Xu,] = EXju<z<v]= m/u priuie Hi¥dy
= pz u + —> eiﬂiu
Fupw 2 ( I
1 Cw
o e D1 (OO ®
E[X.,] = E[X’lu<z<v]
1 s 2u 2 ) i
= pilu+—+—=]e ™
Fuw 2 ( I
1 2 2\ .
- Zpi(v2+—v+?)6 Ky (6)
)\u,v = AFu,v (7)
For our 2-server system under SITA with cutgff
E [T]SITA
= E[X]
iF Aoy E [ X3 4] L F Ap,oo B [XT o]
2= NowEXowl) V20— Ap B Xy o])
= E[X]
Ao 25—3“ —paB X7 Ix,>u] + PoE [ X7 - Ix,<y]

2 1A (2 = paB X Ix,sul + BE (X Ix, <))

Moo PeB XD Ixsu] — E[X] - Ixycu] + 2

21— (paE [(Xa - Ixg>w] = poB [Xo - Ix,<p] + Z-’;)

In the limit, asC? — oo, we simplify using items 1-6 above:

E[T]"™ — E[X]+ p.A T4 + DA H
S T
MPET[X] | A (1- Q) E’[X]
- BN T R T T - 0B

EX]1-20(1-Q)p)
l—=p+Q(1-Q)p?

Figures 2 and 3 show analytic results for SITA and LWL fapa
H- job size distribution. SITA is analyzed using the closerd¥fo
expressions given above, which are functions of the cutofiVe
find the optimalky by analytically deriving;; (E [7]°™) and us-
ing Newton-Raphson to find the where & (E [T]°™) = 0. The

dashed line indicates the asymptotic limit for SITA@S — oo,
proven above, which is independent of the cutpfis long as there
is separation in the limit. LWL is analyzed using matrix-gtia
methods. Wher) = % as in Figure 2, SITA converges for all
loads. Wher) = 0.7, as in Figure 3, SITA converges for low load,
but diverges for higher load as separation is not possible-(2).
LWL always diverges for &)- H» distribution. The SITA anafysis
is precise and all SITA results that converge match our ptedi
values. Although the matrix-analytic method is numeriea, are
guaranteed by Theorem 5 that the mean response time doeslinde
diverge for theQ- H> under LWL.

6. CONVERGENT LWL VIA H5 (BOX 1&3)

The 3-phase Hyperexponential distributiafs) with parame-
ters tia, b, ties Pa = 1 — Po — Pe- Pb, aNdp,. is defined by the
following random variable:

Exp (fta) W.P. pa
Exp (p15) W.p. po
Exp (pe) W.P. pe

We further specify ouids distribution (which we refer to as &
H3) with the following relationships:

X ~ Hg ~

Ico

po=pZ  Pe=pp"

k>3

Pa=1—pp—pc
fie = pi*
The free parameters are n@w, u,, andk.
In Theorem 7, we show that the mean response time under LWL
for jobs drawn from &-Hs distribution isboundedasC? — oo.
In Theorem 8, we show that, under SITA, mean response time can
converge or diverge, depending énlf k < 2 thenE [T]°™ —

BXLif k > £ then mean response time is unbounded.

6.1 Convergent LWL

THEOREM 7. For a 2-server system with- H3 job-size distri-
bution, expected response time under LWL is boundetfas> oo
forp < 1.

PROOF Lemma 8 guarantees that we can finéd-&/s distri-
bution with parameterg.,, s, e, andpq, ps, andp. for any
E [X], large enoughC’?, andk. Lemma 9 shows that, &&° — co,

HLQ — E[X], andp, — 1. From Lemma 7, we have

E[X%] ;pi3‘/§—>¥((m}(])3+2)<m

8u?

Using [24], sinceE [X%] < oo, E[T" <ooforp< [2]. O

LEMMA 8. For any E [X], there existaC* such that, for all
C? > C*, andk > 3, there exists &-H3 distribution with unique
parametersua, yi, andyc, with0 < - < L < -+ and proba-
bilities 0 < pa, py, pc < 1.

PROOF We proceed analogously to tieTrimodal existence
proof. See Appendix for details.]

LEMMA 9. For the k-H3 distribution, asC? — oo, p, — 1,
pb—>0,pc—>0,ﬂia —>E[X],H—1b —>oo,andi — 00.

PROOF Analogous to Theorem 4.[]
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Figure 2: Expected response time, E [T7], for SITA and LWL vs C? under a Q-H- distribution with Q@ = % and (a) p = 0.8 and (b)
p = 1.8. Thedashed line showslimg2_, ., E [T]7%™ according to Theorem 6.
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Figure 3: Expected response time, E [T, for SITA and LWL vs C? under a Q-H- distribution with @ = 0.7 and (a) p = 0.8 and (b)
p = 1.8. Thedashed line showslimg2_, . E [T]®™ according to Theorem 6.

6.2 Convergent/Divergent SITA

We now analyze a SITA task allocation over two servers with a
k-Hs job-size distribution.

THEOREM 8. For a 2-server system with- H3 job-size distri-
bution, with fixed mealt [ X], parameterk < 2, andp < 1, there
exists a cutoff) (C?) such that, under SITA:

o0 k:>%

E[T]SITAW Egg +)\ k) :%
- 1 3
=y 3 <k< 3

PROOF. As in Theorem 6, we seek a cutaff(C?) that sepa-
rates theHs jobs in the limit asC’? — oo such that the small-job
server serves jobs that afp (1. ) and the large-job server serves
jobs that are drawn from af/, distribution. LetX, denote the
first branch of theffs distribution andX,. the other two branches.

Namely, X, ~ Exp(uq) and Xp. ~ Ho (p;,,pc, pbi—bpc, pbfj:pc .

In order for thek-Hs to be separable in the limit, the cutaff
(which is a function ofC?) must have the property that the follow-
ing six quantities go to O:

L. paE [Ix,>y] = pae™ ¥

2. PuE[Xa - Ix,>0] = pa (¥4 ) e

3. B [X2 - Lx,ou] = pa (07 + 22 4 5) erev

4. (pp+pc) E [IXbc<qp] = (1 — 6*”[;’![)) +pe (1 _ e*Mo’lZJ)

5. (po + pe) E [Xope - Ix, <]
1 1 _
= - _ + e #bdf)
m (=)
1 1 _
(= (v ) )
He He

6. (pb +pc) E [Xl?c : IXbc<1/)]

2 2 2 -
= pb(_2_<1/)2+—w+—2)6 “”’)
Hp Ho My

2 2 2\
+pc(—2—<¢2+—w+—2)e“°”)
u? pe | p2

As for the Q-H-, distribution, asC? — oo, we needu,y) —
oo, which follows if ¢y — oco. We also neediZy®> — 0, ad-
dressed shortly. Finally, we need«> — 0, which follows from
pe = pi* whenk > 3 anduzy® — 0. The proof of Lemma 8
shows thatu, ~ (C?)”*. Thus, ifyy = VC?, thenpjyy® ~
(02)7% (02)% = (C?) . This goes to 0 whek < 3. If
1 = In C?, then L’Hépital’s rule givesiZy®> — 0 for anyk > 0.

vl T
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Figure 4: Expected response time, E [T, for SITA and LWL vs C? under a k-H3 distribution with p = 0.8 for (@) &k = 1.0 and (b)

k = 2.0. Thedashed lineshowslimg2_, ., E

[T]5™ according to Theorem 8.

Now we calculate the expected response time as the weightedC? because of instability in the numerical solution of the rixatr

average of the response time at the small-job (exponestaljer
plus the expected service time and P-K delay at the largé#tbh
server. To do so, we recall Equations (4)—(7) and furthendefi

N = pE[X] Ix,>y] — (oo +pe) E[Xi  Ix, <y

D = poE[Xa-Ix,>u] = (po + pe) E [Xee - Ix, . <]
Then,
E[W]SITA

_ Mo B [X3 4] Ao B [X] ]

= FO " Fl[;,oo

2(1 = XowE[Xou]) 2(1 = Ay, B [Xy,o0])
ENCRIRSIE
T 2] 2 p .
1= (2= - D) 1=A (D 2o 2e)

In the limit, asC? — oo, N — 0 andD — 0 using items 1-6

above. We also substitute fé¢ = E[X] — Z—b — L — E[X]

1
sinceft = u? — 0and2e = i — 0. Then:

E[T]SITA
A E2 [X] Do Pe
X — 4+ )l =+ =
- PR A (g
E[X 3 _k 1 )
- %;Jﬂ(uwuf e 2+u§")
00 k> %
E[X] _ 3
C?2—o0 ]-Ellr)é)] A ]f_ : 3
ey 5 < k< 5
([l

Figure 4 shows analytic results for SITA and LWL forkaH3
job size distribution. SITA is analyzed using the closed¥fex-
pressions given above, which are functions of the cufoffWe
again find the optimad by Newton-Raphson. The dashed line in-
dicates the asymptotic limit for SITA a8? — oo, proven above,
which is independent of the cutoff as long as there is separa-
tion in the limit. LWL is analyzed using matrix-analytic nheids.
Whenk = 1, LWL and SITA both converge providgsl< 1. When
k = 2, LWL converges provide@ < 1, but SITA diverges. There
is a possibility of significant error in the results for LWLrflarger

quadratic equation required for matrix-analytic methddiswever,
we are guaranteed by Theorem 7 that the mean response time doe
converge for thé- Hs under LWL.

7. PARETO AND BOUNDED PARETO
DISTRIBUTION (BOXES3 & 4)

We now turn to the Pareto and Bounded Pareto distributions,
which are known to well-model empirical job size distritmunts for
a wide variety of computing applications [2, 8, 27, 15, 26].

The Bounded Pareté, p, «) distribution, wherd) < o < 2 and
0 < k < p, has the following density function:

ak® —a—1

=X

k<z<p
otherwise

We refer to the normalizing constantias= % Asp — oo,

the Bounded Pareto distribution converges topthe Pareto:
f(z) = ak®zs™ 7" x>k>0

For1l < a < 2, the Pareto distribution has finite mean, but infinite
variance.

We will prove that, for the Bounded Pareto and Pareto job-siz
distributions, the mean response time under SITA alwaysrges
(asC? — o), whereas that under LWL may converge or diverge,
depending on the--parameter of the distribution. We then extend
the Pareto results te-server systems.

7.1 LWL

THEOREM 9. The mean response time for a 2-server system
with Bounded Pareto job-sizes under LWL is bounded i 3
andp < 1, regardless olC?, including C? — oco. The response
time is unbounded a8* — oo for a < 2 or p > 1.

PROOF Lemma 10 shows that, for afy [X], C* andc, there
exists a Bounded Paréfa p, o). Lemma 11 shows that, &> —
oo, the Bounded Pareto converges to a P4rete-E [X], a) (with
p — 00). The§ moment is given by:

— k%*a)

The above increases withand 02, but is bounded a6 — .
Whenp < 1, we can apply [24] to see that mean response time

EX2 :m/aﬂa
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Figure 5. Expected response time, E [17], for SITA and LWL vs C? under a Bounded Pareto job size distribution with p = 0.95 and (a)

a = 1.4 and (b) « = 1.6. Thedashed line showslim2_, ., E [T]™"".

under LWL converges. Furthermore, we see ﬂﬁa[tX%} — 00

if « < 2. Hence, ifa < 2, orp > 1, we see by [25] that mean
response time under LWL diverges[]

COROLLARY 2. The mean response time for a 2-server system
with Pareto job sizesp < 1, and 3 < a < 2 under LWL is
bounded.

LEMMA 10. For anyE [X], C?, anda > 1, we can specify a
Bounded Paret(, p, «).

PROOF
E[X] = m/ i) ﬁ(plf _k17a)
B[x7] = m [Tat afa) e (P )

Fork = p = E [X], applying L'Hopital’s rule toE [ X*] asp — k

givesE [X?] — E* [X] and thusC® = 0. Asp — oo, holding

E [X] constantC? — oo butk does not We writé as a function
ofpasik = (p'~* — =2E [X]) . Now, C? is a function of
p, k(p), andm (p, k (p )) all contlnuous forp > 0. Thus, there
exists a value op mapping to every value af?. [

LEMMA 11. KeepingE [X] constant, asC? — oo, for the
Bounded Pareto distributioyy — oo andk — <2 E [X] (from
above fora > 1).

PrRoOOF KeepingE [X] constant, the only possibilities for infi-
nite C2 arek = p, which takesn — oo andp — co. We know
from Lemma 10 thak = p hasC? = 0, soC? — oo implies
p — oo andk — 2=LE[X]. As p increasesk decreases mono-

tonically fora > 1: 4 = (1-a) <f)> (1 + Em) and so
convergence is from above ]

7.2 SITA

THEOREM 10. The mean response time for a 2-server system
with Bounded Pareto job sizes diverges under SITAas— co.

PrROOF Under SITA, with Bounded Pareto job-sizes, the P-K

delay for a given cutoff) is given by
)\7(7;12 (w7a+2 _ k7a+2)
2 <1 — )‘,L (w7(¥+1 _ k*@{»l))

m —a+2 —a+2
) )\7@4»2 * —1/} * )

(p
2(1—&

E[W] F(4)

+F (¢

T (p7a+l _ w7a+l)>

Lemma 11 shows that — co asC? — co. Now we examine
the behavior ofy (C?) asC? — oo. If ¢ (C?) is bounded, then
the second term is unbounded(@$ — co. However, ify (C?) —
oo, then the first term is unbounded. Therefdg W] — oo, and
thusE [T] = E[W]+ E [X] —» cocasC? — co. [

THEOREM 11. The mean response time for a 2-server system
with Pareto job sizes andl < o < 2 is unbounded under SITA.

PrROOF Assumingy is finite, consider jobs larger thair The
arrival rate of these jobs 5, = AF (¢) > 0. These jobs see an
M/G/1 queue where G is the conditional distributio¥i| X > 1],
which is still Pareto and therefore has infinite second mantince
these large jobs have strictly positive probability = F (1) > 0,

E[X2|X >
their contribution taE [T]°™ is pr AL W =00, If
1) = oo, the small-job server sees the full Pareto job-size distrib

tion and has unbounddd [77°™. O

Figure 5 compares the mean response time for Bounded Pareto
workloads under LWL (the bound from Equation (2)) vs. SITA.
The SITA curve is derived using the optimal cutgff(determined
numerically) and the above SITA equations. The figure shtwat t
response time is bounded for LWL for > g while response time
for SITA is unbounded regardless af In the right graph, where
o > % asC? — oo, SITA diverges while LWL converges. This
behavior may not have been noticed in the past, since SI'E¥s p
formance only starts to deteriorate rapidly aff& > 10°, which
is hard to see in simulation. The practical implication iattBITA
is superior to LWL for realisticC? in the Bounded Pareto. In the
left graph, wherex < 2, both LWL and SITA diverge.

7.3 N Serverswith Pareto Wor kload

For the Pareto distribution, the results for the 2-servstesy im-
mediately generalize to theserver system (for finite). As in the
2-server system, the mean response time under LWL is bouifded
p<n—1 and% < a < 2, but the mean response time under SITA
is never bounded.

= oo. If



THEOREM 12. The mean response time for arserver system
with Pareto job sizesp < n — 1, and 3 < o < 2 under LWL is
bounded.

PROOF SinceE [X3| < oo, we can apply [22] directly to
show that LWL is bounded. (J

We define SITA for am-server system as a policy that immedi-

ately dispatches jobs with sizes betweign; andy; (with ¢y = 0
and,, = oo) to server.

THEOREM 13. The mean response time for a n-server system

with Pareto job sizes andl < a < 2 is unbounded under SITA.

PROOF Lett;_; be the largest finite cutoff. Then seniesees
a Pareto job-size distribution. As in the proof of Theorem the
contribution of these jobs tB [T]°™ ensure® [T]°™ = co. O

8. CONCLUSION

Finding good task assignment policies for server farms éhsu

an old, well-studied problem that one believes that all thpar-
tant questions have been answered by now. Certainly thatheas
belief of the authors. This paper shows that there are stihiyn

things we don't understand about task assignment, wheniieb s

variability is high. Size-interval task assignment (SITAyhich
provides short jobs isolation from long ones, seems so alafioir
high-variability job sizes that is hard to imagine that ihdze infe-
rior to a much more naive policy, like Least-Work-Left (LWthat
allows short jobs to queue behind long ones. And yet, we pittate
SITA's performance can benboundedlyworse than that of LWL,

and the performance of LWL can be remarkably good. We have

shown that the comparatively poor behavior of SITA can odaur
wide classes of distributions (including Modal, Hyperemential,
Bounded Pareto, and Pareto) at high over a wide range of load
(except heavy traffic). For some specialized forms of théstei-d
butions, SITA performs poorly even for moderat@ (like 10).

This discovery begs the question: When then exactly doe& SIT

perform well? This paper answers this question too, defittieg
regimes under which SITA'S response time converges withaes

to increasingC?, and proving the first asymptotic upper bounds on

SITAs response time for certain common distributions. §hhe

message isot that one should discard SITA, but rather that one

should carefully consider the operating regime before prisg
that SITA is the best solution. To paraphrase an old nurdgme:

When SITA is good, it is very very good,
But when it is bad, it is horrid.
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APPENDIX

LEMMA 3. For any E [X], there existaC™ such that, for all
C* > C*, andk > 1, there exists a-Trimodal distribution
with unique parameter§ < a < b < ¢ and probabilities0 <
Pa, Db, Pe < 1.

PROOF Note that since: > % andc = b**, ¢ > b requires

b > 1. Settingb > 23 guarantees thdt < pa,pp, pe < 1. We
need to prove the existence @f< a < b satisfying the desired
E [X] andC?. Our first constraint for andb comes from [X]:

E(X] = para+py-b+pc-c (8)
= a.(l—b*%—b*“)w*%m*k
1
E[X]—-b"z—-b""
o = 2P (©)

1—-b"2 — b3k
Since we require > 0, and since the denominator @fis simply
pe Which is positive, we need the numerator of (9) to be positive
This is satisfied ib > E;‘ For convenience, we defirtg, =
2

max {2 3, ﬁ

Our second constraint comes fraf, substituting fora from
(9) (where~ denotes asymptotic convergence):

}, where we seek > by,

Pa-a’+py b2 +pe-

2 — —
C B TX] 1 (10)
- (1 b3 —b*Sk) +b2 4 bF
- 1)
E? [X]
1
~o b2 4+ bF
v O ) (2

Atthis point, after substituting far, (11) specifie$” as a function
of b. Throughout the rest of the proof, we will wri@® (b) to make
explicit the dependence @ on b. We will now show that for

C? (b) sufficiently high, there exists @ sufficiently large, which
satisfies (11). We will also show that there exists'andC* =

C? (b*) + 1 such thaC* (b) increases monotonically with respect
tob forall b > b*, guaranteeing a one-to-one relationship between

C? (b) andb for all b > b*. We will do this by demonstrating that
the derivative [C?(b)] is positive for allb > b*. If C* (b) =

L, then & [C*(b)] % = X. The denominatoD of

4 [C?(b)] is positive. We now seek a region where the numerator
of the derivative N, is positive as well:

N —_—
E?[X]
E[X]b" 2 +2kE[X]b k-1
k—3 k—3
(1—b7%—b*3k) —(2k+1)b~ —(k—3)bF 2
+(3k 1y p3k3
+1ip72 +kbk !

E? [X] - 2E[X]b~ 2
—2B[X]b" k4 oph-
bk 3kt 4y

3 5 .
- (517*5 + 3kb’3k’1>

We expandVN and group and collect its terms infé = N; +
N> + N3 + N4 as follows:

1. If the term is positive and the exponenttois < —1 for all
k > %, we group the term intoV; .

2. If the term is negative and the exponenta$ < —1 for all
k > £, we group the term intdV,.

Nl tol»-A

+ bk

3. If the exponent ob in the term can be either positive or neg-
ative, we group the term intd's.

4. The one remaining term we group ima.

Ny _3 —— < ) sk—1
E [X]b™2 4+ 2kE[X]b 3 — = )b
E2? [X] (X] + (X] 5
+(2k+1) bk 4 (2k+1) p—4k—3 + 3E[X] p—3
3 _a o
+3E [X]b™ k77 5177319*2 + 6kE [X] b7‘3k7%
+OKE[X]o7 1 <4k - g) b2k 5 4 3Ky Ok 3
EEACE k=3 -3 k5
= —(2k+1)bF 2 —E[X]b 3 —2kE[X]b F2
B? [X] (2k +1) [X] X]
1 . .
- <3k - 5) p3k=2 _9p=2 _ R (X] b—skfg
—ak—1 P S A
—2kE [X]b (30— 2Z)p 11, 1
2 2
—kb 2L gEQ [(X]b~3 —3phk—3
—3KE2 [X]b3k—1 _ gpb4k—3
—3kb™ 3k—% _ 3kp—2k-1
N3 k—1 k—4 k—5
= kb kbF—t —okbFT 2
E2 [X] *
Mo L
E? [X] 2

We now derive a lower bound fav, denoted byV*. If we can
guaranteéV* > 0 then clearlyN > 0.

e N > 0, so we omit those terms froW ™.

e Sinceb > 1, we replace the exponent bin the terms ofiV,
with —1, which makesN> more negative andv* smaller.
Define the modified term a¥’; :

N: o _ _(2lk+3+(2+4)E[X] ),
E2[X] + (3k + 2) E* [X]
e N3 > 0, so we omit those terms frolv*. To see this, ob-
serve that:
P pEt s ophd
bE b > 2

Sinceb > 2%, this is evidently true.
e N, is unchanged ilV*.

N* *x3—1 1, _1
—— = Njb —b 2
E2 [X] 20 Ty
To ensureN* > 0, we require that

1.1 kg —1

—-b 2 N5b

2 - %
b > (2N3)?
b= max{E[X],b“,,@Nz*)Q}

Observe thaE [X] > a for k > 1 because: is the smallest
value that the distribution takes on and because b > b* >
E [X] > a. Henceb > a.

Thus, for allb > b*, C? (b) increases monotonically with.

Since0 < C? (b) — C? (b) < 1forb > 1 andC? (b) is monotonic



inbforb > 1, nob < b* hasC? (b) > C*. Thus, for anyC? >
C* = C? (b*) + 1, a unique value ob > a exists. O

LEMMA 5. ForanyE [X], C? > 1, andQ, we can find unique
parametersuq, py, andp, wherep, > pp, (ua is the service rate
for the small jobs), for &)- H distribution which satisfy:

C?4+4Q - 14+\/(C* — 1) +8(C* —1)Q(1-Q)
b= 2(C? +1)
_ p
fe T QE[N]
_ l—p
T - QER]
PrRoOOFR
a 1_
Elx] = Lo B0 P 7P
Ha Hb Ha Hb
2pa  2py _ 2p  2(1—p)
P = gttt Ty S rE

From the definition of)-H>, we have.>- = QE [X] and 72 =
(1-Q)E[X].

c?24+1 = E_FM
D 1-p
0 = p?(C?+1) —p(C? —1+4Q) +2Q°
- 02+4Q—1:t\/ 1)’ +8(C2-1)Q(1-Q)
= 2(C2 +1)

As in Lemma 1, but withC? > 1, we take the positive root so that
e > up and verify0 < p < 1. [

LEMMA 6. WhenE [X] and Q are constant, a’?> — oo,

Yo — QE;[X]’IH‘Z’ — 0, pa — 1,andp, — 0.

PrROOF From applying L'Hdpital’s rule to the equation fprin

Lemma5,p, = p — 1asC? — . ThuSpb =1-p—0,
a 2

He = ofsy — gep: ANdus = =gl — 08sC” — oo

We will also use the following transformation pf, in Theorem 6:

C2Ha(1-Q) —1- /(21> +8(C2-1)QU-Q)

py =

2(1-Q)(C2+1)E[X]
8(C2-1)Q(1—-Q)—4C?
3 1—\/1+ ( ()C2+1)2
B 2(1-Q)E[X]
PR Gl bl (13)

(1-Q)(C?+1)E[X]
And the rest follows. Note the correspondence between thef pr
of Lemma 6 and Lemma 2, wheﬁ% in Lemma 6 corresponds to
inLemma 2, an% in Lemma 6 corresponds tdn Lemma 2. [

LEMMA 8. For any E [X], there existaC* such that, for all
C? > C*, andk > % there exists &- H3 distribution with unique
parametersuq, i, andpe, with0 < - < - < - and proba-
bilities 0 < pa, py, pe < 1.

PROOF We proceed analogously to thkeTrimodal existence
proof. Shortly, we will see that thie- H5 case is almost identical to

that case. ok
i 1 1o (L ing L
Note that sincet > 5 and - = (#b) , setting =~ > 1
. . 2 .
. We will start by settlngﬂib > 23, which

1 1
guaranteesﬂ—c > i

guarantees thdt < pq, ps, pc < 1. What remains is to prove the
existence of) < ;- < -\ satisfying the desirei [X] andC*.
Our first constraint fop:, andu, comes fromE [X]:

E[X] (14)

|
bS]
S

— = 2 (15)

Since we requweu— > 0, and since the denominator dL is
simply p. which is positive, we need the numerator of (15) to be
positive. This is satisfied n;—b > For convenience, we
define

4
B2[X]

R G

where we seek— > ( )

W

lb
Our second constraint comes frafff, substituting forl from

(15):

, Par +Do 7z +pe gz
o = ] CR (16)
B (L))

At this point Equation (16), after straightforward suhsiin,
gives us an equation specifyinfg= ). Note that this equation,
however, is a near replica of equation (10), except for afeamft 2
on one of the terms, aridreplaced withﬁ. The factor of 2 in the
derivation ofC* and (;le) ) do not affect the sign of the derivative
of C? (us), thus the derivative will again be positive, provided that

Lo (;le) given by

(L) =mox{mix1. (L) em)

Observe thak [X] > ‘} fork > 2 becauseu— is the smallest
mean of the component exponentlal distribution, ppd 1, and

because:- > L > (i) >E[X]> L.Hencel > L.
He Hb Hb Ha Hp Ha

Thus for all L > (fb) C? () increases monotonically
with -, and for anyC2 > C* =

H—b > H—a exists. [

C? (1), a unique value of



