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Abstract—The scale and complexity of Advanced Metering
Infrastructure (AMI) networks requires careful planning for the
deployment of security solutions. In particular, the large number
of AMI devices and the volume and diversity of communication
expected to take place on the various AMI networks make the role
of intrusion detection systems (IDSes) critical. Understanding the
tradeoffs for a scalable and comprehensive IDS is key to investing
in the right technology and deploying sensors at optimal locations.

This paper reviews the benefits and costs associated with
different IDS deployment options, including either centralized or
distributed solution. A general cost-model framework is proposed
to help utilities (AMI asset owners) make more informed deci-
sions when selecting IDS deployment architectures and managing
their security investments. We illustrate how the framework can
be applied through case studies, and highlight the interesting
cost/benefit trade-offs that emerge.

Index Terms—AMI, threat model, intrusion detection, archi-
tecture.

I. INTRODUCTION

The protection of power grid infrastructures against com-
puter attacks is a matter of national security, public safety, and
economic stability, but in many countries, the majority of these
critical assets are owned and operated by private companies
with pressing operational requirements, tight security budgets,
and aversion to regulatory oversight. For most of these private
stakeholders, creating a business case for improving computer
security and supporting long-term security research is a dif-
ficult task, partly because cybersecurity risk is challenging to
quantify. As stated in the Roadmap to Achieve Energy Deliv-
ery Systems Cybersecurity released by the U.S. Department of
Energy (DoE) [1], “Quantifying risk is problematic when the
energy sector faces rapidly changing threats that are difficult to
predict and have consequences that are hard to demonstrate.”

In order to help utilities better manage their cyber-security
risks, DoE, in cooperation with the National Institute of
Standards and Technology (NIST) and the North American
Electric Reliability Corporation (NERC), has developed a
cyber-security Risk Management Process (RMP) tailored to
smart grids [2]. In this paper we leverage information from
RMP and other security-risk management frameworks for
Intrusion Detection Systems (IDSes) [3] and apply them to
the specific case of AMI networks in which asset owners are
evaluating the use of an IDS as part of their security controls.

We focus on AMI networks because security investments
in this field need to consider multiple potential threats. Smart
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meters are low-cost commodity devices, operating in phys-
ically insecure locations and with an estimated lifetime of
several decades [4]. Therefore, while some basic protective
measures have been developed (tamper-evident seals, secure
link communications), they may not be enough to prevent
successful attacks during the lifespan of smart meters. As
the scope of applications using AMI networks increases, it
has become critical to design and deploy efficient security
monitoring solutions.

Although there has been a great deal of work on intrusion
detection, including distributed IDSes, for wireless networks
(e.g., [5] and references therein), there has been little work
studying the practicality of deploying distributed IDS devices,
and in comparing the possible architectures for this deploy-
ment.

We consider the point of view of a utility company that
needs to create a business case for improving their security
posture by introducing an IDS in their AMI network. We
formulate the problem with the following sequence of steps:

1) First, the threat to AMI systems has to be understood.
This has been well-explored in the literature in [5], [6],
[7], [8], and [9].

2) We offer the first consideration of the trade-offs asso-
ciated with centralized and distributed IDS, which we
further subdivide into IDS sensors embedded in smart
meters, and IDS sensors based on dedicated devices. We
then analyze the practical advantages and disadvantages
of each possible IDS deployment.

3) Finally, we construct a decision framework cast as a
risk-assessment problem. We first evaluate the cost-
effectiveness of each possible deployment relative to
AMI network density and coverage area. Those general
conclusions do not rely on specific values. We end our
analysis by considering specific case studies of attacks
and estimated costs.

We find that while a centralized IDS architecture provides
sufficient protection against some security threats, a distributed
IDS is essential for some AMI applications. In addition, a
distributed IDS is an effective tool for timely discovery and
thus rapid and low-cost recovery from attacks.

This paper is structured as follows. Section II provides an
overview of AMI. Section III discusses related work. We de-
scribe three different IDS architectures for AMIs in Section IV,
and discuss the network visibility they provide as well as their
deployment costs. Section V then describes a risk-assessment
framework that can help utilities make well-informed decisions
when choosing an IDS architecture to install. Section VI
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illustrates use of the framework. Conclusions and future work
are summarized in Section VII.

II. AMI OVERVIEW

The role of an AMI is to enable communication between
utility companies and electricity meters, including remote
electricity usage readings (on-demand and periodic), electricity
price information, alerts about outages, and upgrades of me-
ter firmware, among other communications. Some messages
require real-time delivery, while others can be buffered and
delayed without negative consequences. In addition, AMIs
have security and privacy requirements, since sensitive cus-
tomer information is frequently exchanged, and some of them
provide a remote disconnect feature. To accommodate the
aforementioned requirements and also a wide range of meter
deployment topologies, e.g., from dense urban settings to
sparse rural environments, meter manufacturers have designed
highly flexible network architectures that can include different
communication media. Those architectures usually follow the
same network hierarchy, with a wide area network (WAN)
connecting utilities to a set of gateways in the field, and
then neighborhood area networks (NANs), also called field
area networks (FANs), connecting gateways to meters. Meters
themselves can be used as gateways to access the home
area network (HAN) deployed within customer premises to
connect to thermostats and smart appliances. A WAN uses
long-range and high-bandwidth communication technologies,
such as long-range wireless (e.g., WiMAX), cellular (e.g., 3G,
EVDO, EDGE, GPRS, or CDMA), satellite, or Power Line
Communication (PLC). NANs typically have shorter range
requirements and can be deployed using wireless (e.g., IEEE
802.11, IEEE 802.15, or proprietary communication stacks) or
PLC-based technologies. In some cases, meters can directly
include cellular capabilities or even use the customer’s home
Internet connection to bypass the need for separate WANs and
LANs. In this paper, we focus on NANs that use a wireless
mesh network. The mesh topology brings robustness to the
network, since communication routes can automatically adapt
when failures occur. However, they also represent a challenge
for the deployment of an efficient security monitoring solution,
due to their distributed nature, and their use of wireless
communication technologies.

III. RELATED WORK

The continuously growing threat landscape of AMI has
attracted research on threat characterization and mitigation.
[10] presents the design of a firewall to secure wireless
communication in energy delivery systems. [8] examines at-
tacks targeting energy theft in AMIs; the authors later used
that analysis to motivate a new methodology for penetration
testing in AMIs [7]. [5] identifies a set of IDS requirements
for AMI and briefly mentions different sensor deployment
locations, including dedicated and meter-level sensors. [6]
expands on that work to develop a specification-based IDS
specifically targeting attacks in HANs. Faisal et.al. [11] studied
the effectiveness of stream mining algorithms for intrusion
detection in the context of the limited resources available in

smart meters (memory and space). Their main objective was
to evaluate stream mining in an embedded architecture. They
did not consider a dedicated or a centralized architecture in
their approach, nor did they study the cost-benefit tradeoffs
between these different architectures.

Zhang et al. [12] proposed a hierarchical IDS framework,
consisting of detection modules placed strategically throughout
the smart grid to monitor HAN, NAN, and WAN communi-
cations. Lower-level modules would first attempt to mitigate
detected attacks before elevating alerts to a high-level nodes,
which could be more effective having increased awareness
over the network. In Mohammadi et al. [13], the authors
discussed smart grid communication requirements and security
concerns in regards to the unique aspects of smart grid archi-
tectures. They also proposed a hierarchical IDS solution for
NANs that utilized a combination of anomaly and signature-
based approaches to intrusion detection. Unlike the previous
work, their architecture relied on a central IDS to make
decisions when malicious activity is detected. However, both
of these works also did not consider cost in their analysis, and
while they do both present a possible solution to intrusion de-
tection in AMI, they fail to consider other deployment options.
In this paper, we build on the contributions from [9], which
covers threats prevalent in the AMI mesh network, along
with several sensor deployment ideas, suggesting that a hybrid
approach would provide the widest monitoring coverage.

This paper relates also to the concept of cost model for
selecting different IDS architectures depending on the deploy-
ment characteristics. [3] proposes a methodology for analyzing
the cost benefit trade-offs in network IDSes. Their cost model,
however, is implemented on a specific cooperative principle-
based network IDS, and does not consider different sensor
deployment locations. Some characteristics that are important
to the AMI, like the coverage area, are also not considered.
[14] introduces a cost model for AMI in the context of
automated response and recovery actions. The model focuses
on converting impacts of attacks and responses on the integrity,
availability, and confidentiality attributes into financial values
through the analysis of service level agreements. The main
difference with our work is on the level of granularity of our
cost model. [14] looks at system-wide costs while we focus on
detailed attack steps and we study detection time. While these
efforts have been important in shedding light on the security
issues and solutions surrounding wireless mesh networks and
AMIs, to the best of our knowledge, there has not been a
detailed and extensive guide to the design of a comprehensive
security monitoring solution.

IV. IDS DEPLOYMENT SCHEMES

A. Information Required for Detection

An understanding of the kind of information required for
detecting intrusions is crucial to the design of a comprehensive
and cost-efficient monitoring and intrusion detection solution
as the type and placement of sensors is dependent on this.
In [5], Berthier et al. organize the information required for
detecting attacks against AMIs into the following three cate-
gories:
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• System information: health reports from meters, and gate-
ways (CPU, battery consumption), firmware and software
integrity of AMI devices, clock synchronization.

• Network information: NAN collision rate, packet loss,
node response time, traffic rate, health and integrity of
routing table, associations between physical addresses
and node identity.

• Policy information: Authorized AMI protocols, autho-
rized AMI devices, authorized traffic patterns, authorized
route updates, authorized firmware updates.

The above categorization reveals that different types of
data must be collected and from different locations in the
infrastructure. For example, the need for information on health
and integrity of routing tables requires routers (in this case,
meters) to be instrumented so that they can send periodic
health reports or at least be remotely queried for health and
integrity checks. However, instrumentation of all routers in the
network may be too expensive, and it could more cost-effective
to rely on attack manifestations at other locations in the system
instead of routers for detection. In the rest of this section
we will discuss different intrusion detection architectures that
result from trade-offs among the types and placement of
sensors based on information needed for detection.

B. Centralized IDS Trade-Offs

A centralized monitoring architecture can be located at the
utility data center, where smart meter data are processed and
stored. In that type of deployment, the IDS scheme will only be
able to analyze network traffic to and from the AMI network;
peer-to-peer traffic between nodes in the AMI network will
not be visible to it. This architecture is in line with typical
enterprise security controls, in which data transmitted between
two different networks (Intranet-Intranet or Intranet-Internet)
can be monitored at a central location, since communication
typically has to go through a small number of routers that
serve as points of traffic aggregation in the network.

While a centralized architecture will capture most of the
traffic in the network, and has the potential to detect attacks
originating from the AMI network and going towards the
utility servers (or vice versa), it will not be able to detect
attacks within the AMI network, such as attacks against the
routing protocol of the mesh network, MAC or PHY layer
attacks, and end-to-end application layer attacks between peer
to peer AMI nodes. A more distributed way of monitoring is
necessary to detect those network level attacks. A sufficient
number of IDS sensors would have to be deployed in various
places in AMI networks – in a way that every network traffic
and every network device integrity can be measured and
monitored. In the next two sections, we explain two such
distributed monitoring architectures and discuss their trade-
offs.

C. Embedded Sensing Infrastructure Trade-Offs

In an embedded sensing infrastructure, every smart meter
node is instrumented with intrusion detection capabilities.

There are a number of trade-offs to consider with such an
architecture. On the one hand, with an embedded architecture

it is not necessary to acquire permits in order to install the
infrastructure (beyond whatever was needed to install the AMI
network itself), and no specialized staff is required, beyond the
meter installers (already needed to install the AMI network).
Thus there are savings in terms of time, cost, and installation
complexity. On the other hand, smart meters have limited
processing, storage, and communication capabilities. Limited
processing capabilities at each meter would cause gaps in
security coverage, as meters that are busy with their regular
functions would not be able to spare the CPU cycles to perform
IDS operations.

While meter vendors can sell more powerful meters that can
handle intrusion detection functions, utilities might be unwill-
ing to pay the additional price. Most utilities need to purchase
millions of smart meters, so a small increment in price for
each meter (e.g., a few dollars) would result in an additional
investment of millions of dollars. In addition, meters have to
abide by power consumption constraints specified by ANSI
Standard C12.1 and IEC 62053-61, which limit the maximum
energy consumption of a meter to 5W. Increased computational
requirements due to additional security processing lead to
difficulties in maintaining the meter’s energy consumption
within the overall power budget [15]. Thermal constraints
impose additional constraints on the hardware components
that can be included in each meter as well as their level of
utilization during processing.

D. Dedicated Sensing Infrastructure Trade-Offs
In a dedicated sensing infrastructure additional devices (in

addition to smart meters and other communication-relaying
hardware) are deployed throughout the network for the purpose
of monitoring the infrastructure. These dedicated intrusion
detection systems can be used to monitor not only security
events, but also the health of the network (e.g., routing
topology of an AMI network).

The most important benefit of a dedicated sensing infras-
tructure is the availability of processing and storage to perform
complex monitoring and processing functions, as the dedicated
devices will be more powerful than smart meters (although
there will also be fewer dedicated devices, when compared
to smart meters). On the other hand, there are a number of
challenges to deploying this kind of infrastructure, related to
the cost and complexity of installation and maintenance.

In particular, while the meters have reserved sockets where
they are installed, the dedicated sensor equipment has to be
sited elsewhere, e.g., on light poles or rooftops. That kind
of installation would typically require a site survey, obtaining
of permits, renting of installation sites, and hiring of highly
specialized personnel, especially when the installations are
in places that are difficult to reach. Similarly, maintenance
of the dedicated sensors would require the dreaded truck
roll, whereby specialized personnel and equipment are needed
to gain physical access to the IDS sensor. For example, a
deployment guide for residential wireless broadband networks
puts the cost of a basic truck roll in the neighborhood of $300
per household [16]. More complex installations which require
mounting equipment on light polls or roofs would incur costs
that are several times higher.
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c Centralized Architecture
d Dedicated Devices Architecture
e Embedded Architecture
Ci Capital expense for architecture i
ni Number of devices needed for architecture i
si Marginal cost for devices in architecture i
R Risk = likelihood * cost
pi Likelihood of attack i on AMI network
dij Probability of architecture j detecting attack i

Ai
j Cost of attack i before it is detected by architecture j

Ai
m Cost of attack i if it goes undetected

TABLE I
LIST OF SYMBOLS

In addition, in multi-channel networks, different sets of
nodes or even different pairs of nodes may communicate
simultaneously on different channels, and channel selection
may even change on a per-packet basis. That would require
that the sensor be able to decode traffic on multiple channels
simultaneously. Off-the-shelf hardware with that kind of func-
tionality is not currently available for all PHY/MAC layers
in use in smart grid networks, increasing the cost of the IDS
sensor.

V. DECISION-MAKING FRAMEWORK

As explained above, owners and operators have several
options for deploying an IDS in AMI mesh networks. Creating
the business case for each of those options, however, is not
straightforward. Now, we provide a risk-assessment formula-
tion that would help AMI asset owners make more informed
decisions when faced with the question: which IDS deployment
is best-suited to my network?

Despite the difficulties associated with estimating prob-
abilities and cost, risk-assessment models are arguably the
most useful tools that currently exist for making investment
decisions. The common alternative is to make decisions based
on intuition, in which case assumptions are not explicitly
discussed or analyzed. By leveraging the risk-assessment
framework, we are able to analyze decisions based on clear
assumptions: assumptions that can be discussed, critiqued, and
improved by future researchers. Thus, this paper takes the
first step in creating a more systematic way of evaluating IDS
deployment options in AMI networks.

Furthermore, while describing the framework, we also
demonstrate some basic principles of IDS deployment that
are independent of specific probability and cost values; for
instance, in rural and small AMI deployments, having an
embedded IDS sensor is the most cost-effective solution,
whereas in large, high-density deployments, dedicated IDS
sensors are the best approach. These examples validate our
risk-assessment formulation.

A. Risk Assessment and Cost Model

In this section we use the notation defined in Table I. We
assume that utilities want to minimize their risk by studying
which technology is best for their AMI deployment:

argi∈{c,d,e}minRi, (1)

Distributed Centralized Attack 
Undetected

Attack 
Detected

Start

dd

1 � dd

dc

1 � dc

Fig. 1. The joint probability distribution between the probability of detection
of a centralized architecture and a distributed architecture is modeled as
a Markov chain. With probability one the process starts in the distributed
state, and the only two absorbing states are the Detection state or the Attack
Undetected state. A similar joint distribution can be used for the embedded
architecture.

where c indicates a centralized monitoring architecture, d is a
dedicated architecture, e is an embedded architecture, and Ri

represents the traditional notion of risk (
∑

likelihood×cost).
We can decompose the risk into a static investment cost to
deploy the monitoring architecture (with a probability of 1)
and a dynamic event cost that changes over time with respect
to the threat environment and the detection capabilities of the
IDS sensors deployed.

The capital expense Cc for a utility that is considering
deploying a centralized monitoring solution would include
the fixed cost of deploying security monitoring appliances in
the utility network. In the case of a dedicated architecture in
the field, the investment Cd would depend on the number of
dedicated sensors nd and the cost of each sensor sd (including
compound operational cost, like the rental of new places to
install these devices), so Cd = nd ∗sd. Finally, the investment
Ce of instrumented meters with IDS sensors would depend on
the number of meters nm and the per-unit extra cost sm, so
Ce = nm ∗ sm.

The risk related to dynamic events depends on the likelihood
of attacks and their cost if successfully detected or not. Let
pi be the likelihood of an attack i on the AMI network. The
cost of an attack depends on how soon the attack is detected:
the longer it takes to detect an attack, the more expensive it is
to undo or fix the damage. Given that centralized, dedicated,
and embedded IDS deployments will likely detect an attack at
different points in its lifecycle, we differentiate Ai

c, Ai
d, and

Ai
e as the costs of attack i incurred by the utility before it is

detected by the centralized, dedicated, and embedded IDSes,
respectively. If the attack is left undetected, its cost would
reach a value Ai

m larger than any of the costs of detected
attacks (i.e., Ai

m > Ai
c, Ai

d, and Ai
e). We then name dic,

did, and die as the probabilities of detection of this attack
i by a centralized IDS deployed at the head-end, by a set
of dedicated sensors, and by an embedded IDS deployment,
respectively. Distributed sensors have more information on
attacks, and might be able to detect attacks earlier and with
higher probability than centralized detectors. Therefore we
assume Ai

c ≥ Ai
d, A

i
e and dic < did, d

i
e.

Based on those properties, we present three equations that
can be used by utilities to calculate the risks associated
with different IDS deployment architectures. First, the risk of
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investing in a centralized solution can be calculated by:

Rc = Cc +
∑
i

pi(d
i
cA

i
c + (1− dic)A

i
m), (2)

which says that if a utility relies on a centralized IDS that
costs Cc to deploy, the risk to the utility is the likelihood
of an intrusion times the cost of such an intrusion summed
over all intrusions considered by the threat model. The cost
of a specific intrusion has two components, corresponding to
detection of the intrusion and failure to detect the intrusion.

Even if a utility invests in a distributed IDS infrastructure, it
would still require a central point for receiving and managing
alerts. We note that the distributed infrastructure refers to
intrusion detection sensors deployed within the AMI. The
alerts reported by those sensors, however, would be managed
in a centralized fashion; therefore, in our framework, we
assume that investments in distributed sensors also require a
basic investment in a centralized solution. Being mindful of
those properties, we present the second equation, which can be
used to calculate the costs expected when a utility invests in
a dedicated distributed IDS (in addition to a centralized IDS):

Rd = Cc + ndsd+∑
i

pi(d
i
dA

i
d + (1− did)d

i
cA

i
c + (1− did)(1− dic)A

i
m),

(3)

where the risk of an intrusion is reduced by the probability of
detection did by the dedicated infrastructure, assuming that the
cost Ai

d is much lower than Ai
c, which is in turn lower than

Ai
m. We assume that the joint probability distribution among

the alerts generated by the centralized detector dc and the
distributed detector dd are such that those detections precede
the detection by a centralized IDS, therefore, for the Ad (and
Ae below) case, we assume did(1−dic) = did (and die(1−dic) =
die). This is exemplified in figure

Similarly, if a utility invests in an embedded distributed IDS
(in addition to the centralized IDS), the risk can be calculated
using:

Re = Cc + nmsm+∑
i

pi(d
i
eA

i
e + (1− die)d

i
cA

i
c + (1− die)(1− dic)A

i
m),

(4)

VI. FRAMEWORK APPLICATION

A. Coverage Area Analytical Study

Comparison of the trade-offs between the two distributed
architectures (embedded vs. dedicated) will depend on the net-
work topology and the type of deployment (urban, suburban, or
rural AMI), as described in the NIST Guidelines for Assessing
Wireless Standards for Smart Grid Applications [17]. We
now detail how to incorporate that information into the risk
equations to enable calculation of risks for a variety of network
deployments.

Among the various inputs required by the risk assessment
equations, Cc, sd, and sm are easy to estimate, since utilities
can obtain the prices of security appliances and sensors from

Area

Cc + pi(d
i
dA

i
d + (1 � di

d)d
i
cA

i
c

+(1 � di
d)(1 � di

c)A
i
m)

Cc + pi(d
i
eA

i
e + (1 � di

e)d
i
cA

i
c+

(1 � di
e)(1 � di

c)A
i
m)

RUrban
e RSuburban

e

RRural
e

Rd

Fig. 2. The network density determines the cost effectiveness of dedicated
sensors. In rural AMI deployments and in small areas, having an embedded
sensor minimizes the risk, whereas in large, high-density deployments, it
becomes cost-effective to deploy dedicated sensors instead.

vendors. However, the number of dedicated sensors nd re-
quires study of the notion of coverage. Coverage of a wireless
network by dedicated sensors requires that the sensors be
deployed such that they can overhear any packet sent by a
smart meter within the AMI network area. A typical density
used as a guideline for the deployment of Wi-Fi access points
is in the range of 50-60 nodes per square mile, given a
range of 300 feet per node [18]. We adopt this guideline for
our dedicated sensor evaluation and express the number of
dedicated nodes in terms of the area that needs to be covered,
as follows:

nd = Area ∗ Sensor Density = Area ∗ 50 (5)

The number of meters nm is well-known by utilities,
since it matches their customer base. We can express the
number of smart meters in terms of area through the use of
several basic meter densities derived from U.S. Census data on
household densities [19], assuming one meter per household.
In particular, the densities for urban, suburban, and rural en-
vironments are 972.5, 128.7, and 7.5, respectively. Therefore,
ne = Area∗972.5 for urban environments, ne = Area∗128.7
for suburban environments, and ne = Area ∗ 7.5 for rural
environments.

Substituting those values (nd and ne) in the corresponding
risk equations (Rd and Re), we can identify the trends for
coverage area depending on the type of deployment, as shown
in Fig. 2. By analyzing how Rd and Re change as a function
of the area covered by the AMI deployment, we find that
the slope of the risk equations for embedded deployments
will depend on the density of meters. Therefore, the slope for
RUrban

e (972.5) is larger than the slope for RSuburban
e (128.7),

which in turn is larger than the slope for RRural
e (7.5). In

addition, we can compare each of the AMI deployments with
the deployment requirements of the dedicated infrastructure.
Because the deployment of dedicated IDS sensors does not
differ significantly among different types of AMI network, the
slope of Rd is fixed (50). From those results, we can conclude
that as the area covered by the AMI network increases, the
cost for deploying embedded IDS sensors will be higher than
that of a dedicated IDS-sensing infrastructure for urban and
suburban environments; however, for rural deployments, the
cost of a dedicated IDS infrastructure would be too expensive
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relative to that of embedding IDS sensors in the smart meters
themselves.

Those results are confirmed by our experience in deploying
AMI networks. Some rural AMI networks consist of a large
chain of smart meters forming a line. (Each smart meter only
has two neighbors in its routing table; one neighbor relays
packets towards the collection unit, and the other relays pack-
ets away from the collection unit.) Deployment of dedicated
IDS devices to monitor this network would require at least one
dedicated IDS sensor for every two smart meters, if not one for
every smart meter. In contrast, in urban deployments, several
hundred (or even a thousand) smart meters fall within the same
wireless communication range; therefore, a single dedicated
IDS device can potentially monitor hundreds of smart meters,
making a dedicated infrastructure a cost-effective alternative
to an embedded solution in large, high-density deployments.

The framework allows utilities to make use of information
about the network topologies and deployment types that are
relevant to their AMIs. Such information, as shown above,
would improve the accuracy of the cost and risk values being
computed.

B. Likelihood of Attack Analytical Study

A similar study can be done to consider the impact of the
likelihood of attack pi on the cost-effectiveness of each IDS
deployment option. If a utility is certain that it will not be
attacked at all (

∑
pi = 0), then Rc = Cc < Rd = Cc+ndsd <

Re = Cc + nmsm. (The last equation holds if we assume a
large, dense area as depicted in Fig. 2 with nm > nd such that
nmsm > ndsd.) As the likelihood of attack

∑
pi increases

(any of the possible attacks the model considers becomes
more likely), then we need to consider the right-hand side
of equations (2), (3), and (4).

We look at the cost of an attack i in equations (2), (3), (4).
First, we show how the cost of an attack i in the centralized
model is greater than in the dedicated model:

dcAc + (1− dc)Am >

ddAd + (1− dd)dcAc + (1− dd)(1− dc)Am (6)

After some algebraic manipulations, we observe that the
previous inequality holds if and only if

dcAcdd + (1− dc)ddAm > ddAd. (7)

Assuming dd > 0, we only need to show that dcAc+Am(1−
dc) > Ad, but this relation holds because

dcAc +Am(1− dc) > dcAc +Ac(1− dc) = Ac > Ad, (8)

since under our model assumptions Am > Ac > Ad.
A similar analysis can be done for the comparison between

an embedded sensor and a dedicated sensor. In general, we
assume that the probability of detecting an attack with an
embedded sensor is higher than with a dedicated sensor, and
that the damage done when an attack is detected through a
dedicated sensor is similar to, or higher than, the damage
done when it is detected through an embedded sensor (i.e.,

Rc Rd Re

Cc

Cc + ndsd

Cc + nmsm

pi0

Fig. 3. In a large, and dense (e.g. urban) area, as the likelihood of an
attack increases, the most cost-effective IDS deployment option changes from
a centralized deployment, to a dedicated sensor deployment, and finally when
attacks are very likely, to an embedded intrusion detection deployment.

Ad ≥ Ae). That implies:

ddAd + (1− dd)dcAc + (1− dd)(1− dc)Am ≥
deAe + (1− de)dcAc + (1− de)(1− dc)Am (9)

The final result can be seen in Fig. 3.
The likelihood of attack will increase with the longevity of

the AMI deployment (i.e., if all other variables are equal, a
device deployed for only one year is less likely to be attacked
during its lifetime than the same device deployed for 30
years). Based on those observations, we argue that distributed
IDS architectures will be more cost-effective in a long-lived
deployment, and that the risks associated with each type of
deployment scheme will converge to the trends shown in Fig. 3
when a more extensive set of attacks are taken into account,
along with the lifespan of each deployment. If a utility finds
it hard to estimate the likelihood of attacks, our framework
recommends using the AMI deployment lifespan to choose a
suitable IDS architecture.

C. Leveraging Historical Data

One of the main challenges, in applying a risk assessment
framework is in the estimation of the parameters required
to compute quantitative results. In this subsection and the
next, we present two different approaches to illustrate how
utilities can leverage our framework, whether they have access
to estimated parameters or not. A first set of two examples
describes the case when parameter values can be extracted
from empirical data; a second example shows how to conduct
a sensitivity analysis to enable informed decisions even when
some important parameter values are not available.

1) Denial-of-service against data collection unit: In this
scenario, we assume that a utility is interested in investing in
an IDS to monitor its AMI after experiencing a cyber incident
that disrupted the communication network between meters and
a data collection unit (DCU). In particular, this utility was the
victim of a DDoS attack against one of the core DCU that
affected some demand response applications and distribution
automation devices. Such attacks can lead to demand supply
imbalances in the grid, which could cause brownouts or
blackouts. In addition to investing in new protective measures
to prevent recurrence of such incidents, security administrators
are interested in deploying a comprehensive IDS that could
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Fig. 4. Estimated cost of a DDoS attack against a DCU as it progresses
without being detected.

have alerted them when this incident occurred. The question
is, which IDS architecture would be the best investment from
both cost and security perspectives. We first review the attack
process in detail. We assume that the utility conducted a
detailed forensics investigation that led to the following under-
standing. Adversaries proceeded in three sequential steps: 1)
they compromised 50 meters over the course of 20 hours by
exploiting a vulnerability in the optical communication port; 2)
they coordinated communications among those compromised
meters in order to create a botnet within the AMI; and 3)
they synchronized the launch of a massive number of attack
payloads against the DCU. Those attack payloads were C12.22
requests sent at a high frequency and crafted to maximize the
computational power required by the DCU to process them.

The first step in applying the risk assessment framework
consists in assigning attack cost over time for each attack step.
For the first step, we assume that the damage cost increased
linearly with the number of meters compromised. In particular,
50 meters were compromised over the course of 20 hours.
Based on vendor information, we estimate the cost of a meter
device to be $100, the cost of replacing it $500, and finally the
cost of losing measurements from compromised meters $50.
As a result, each compromised meter cost a total of $650 for
the utility; after 20 hours, the cost added up to $32,500 for the
50 meters. The second step had no impact on the infrastructure,
so the cost of the attack stayed at $32,500 between hour 21
and hour 25. At hour 26, the distributed denial of service
attack commenced and prevented core AMI applications (e.g.,
demand response and distribution automation) from working.
Based on financial losses due to failure to execute demand
response curtailments, the utility estimated that the cost of
this attack phase was $10,000 per hour. As a result, the total
cost of such an attack, if it is not detected, adds up to $82,500
(5 hours of denial of service in addition to the attack cost at
hour 25). The evolution of this cost over time is shown in
Fig. 4.

The next step is to estimate the detection probability. Table
II shows the ability of the different monitoring architectures to
detect each attack step. For example, the first step that involves
compromise of meters is a host-based attack that would be out
of the reach of network-based monitoring solutions, so only
the embedded IDS could detect it. However, the second step,
which involves coordination of compromised meters, requires
some command-and-control communications in the mesh, so
it could be detected by both the embedded and distributed
IDSes, but would likely be invisible to a central monitoring
solution. Finally, in flooding the network and preventing the

TABLE II
COVERAGE OF THE DIFFERENT IDS ARCHITECTURES TO DETECT THE

VARIOUS STEPS REQUIRED FOR A DDOS ATTACK

Attack steps for DDoS Centralized Distributed Embedded
1. Meter compromise X
2. Meter coordination X X
3. Attack payload X X X

DCU from properly responding, the third step would be visible
in all three of the IDS architectures.

Based on the detection capabilities of each architecture and
knowledge about the true and false positive rates of each IDS
architecture, we estimate the probabilities of detection to be
de = 90% for the embedded IDS, dd = 80% for the dedicated
IDS, and dc = 70% for the centralized IDS. (Different value
ranges are explored for those three parameters in the next
subsection.) We then estimate that it would take 8 hours for
the embedded IDS to detect the first step of the attack, which
leads to an attack cost before detection of Ae = $13, 000. (20
meters would be affected during the first 8 hours, and the cost
of each is $650.) The cost for the second step of the attack that
can be detected by the dedicated IDS is fixed: Ae = $32, 500.
We also estimate that it would take 2 hours for the centralized
IDS to detect the third step of the attack, so Ac = $52, 500
(the cost of the second step of the attack along with $10,000
per hour for the third step of the attack). Finally, the cost if
the attack is never detected adds up to Am = $82, 500 (cost
after step 3 along with 2 additional hours of denial of service
at $10,000 each).

The final phase of our approach is to factor in the cost
associated with each infrastructure. As the AMI under con-
sideration is a suburban environment covering 500 square
miles, we can estimate the total number of meters to be
ne = 500 ∗ 128.7 = 64, 350. The total number of dedicated
sensors would be nd = 500∗2 = 1, 000. Finally, if we assume
that the investment and management cost of the centralized
monitoring system is Cc = 200, 000, the cost of a dedicated
sensor is $50, and the cost of an embedded sensor is $1.
Figure 5 show the risks associated with the three deployment
architectures as the probability of the DDoS attack varies
from 0 to 1. The resulting risk indicates that the centralized
architecture is the most cost-efficient infrastructure to deploy
for this attack. However, one must keep in mind that the attack
would last longer in the case of a centralized IDS than for a
distributed IDS. It is interesting to see from Figure 5 that if the
attack has a high probability of occurrence, the dedicated IDS
architecture becomes more cost-efficient than the embedded
IDS architecture.

2) Abuse of a Distribution Automation System: The goal of
distribution automation (DA) application is real-time monitor-
ing and maintenance of electricity grid health (e.g., by man-
aging voltage levels at various points in the grid). Distribution
automation elements can leverage an AMI for their communi-
cation needs, allowing a utility to have a single communication
infrastructure that enables many applications [20]. Having a
multi-purpose communication infrastructure significantly re-
duces the cost of enabling communication across all smart grid
applications, but also makes the AMI network more attractive
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Fig. 5. Risks for the three different architectures when considering a DDoS
attack on the DCU.

to adversaries interested in disrupting the energy delivery sys-
tem. In particular, failure to deliver the right commands at the
right time to one or more distribution system elements (e.g.,
voltage regulators, transformers, switches, feeders, reclosers,
or capacitors) could affect voltage levels in parts of the grid,
causing damage to the elements themselves and also to end
user devices, and even leading to outages [21]. These goals
could be achieved by tampering with DA packets, e.g., by
dropping, delaying, or replaying them. As an example, the
cost of damaging a large 33kv transformer is on the order of
a hundred thousand dollars [22] and smaller transformers cost
several hundred to thousands of dollars. This does not include
installation costs and typically distribution networks have a lot
of transformers.

Another important function of DA devices is the detection
and isolation of component failures in order to prevent or
limit the extent of outages. The isolation is accomplished by
configuration of switches/feeders around the failure such that
electricity would be re-routed around it. Tampering with that
functionality can lead to false alarms and unnecessary outages,
or to missed failure notifications accompanied by outages, both
of which would disrupt service and be expensive to resolve.

We assume an attack scenario with four steps: 1) col-
lection of cryptographic keys via compromise of a set of
meters, 2) man-in-the-middle attacks in a few neighborhood
area networks (NANs) to re-route AMI traffic through a
computer controlled by attackers, 3) a reconnaissance phase
during which DA traffic flowing in the NANs is collected
and analyzed, and 4) injection of malicious DA traffic and
tampering with control commands to cause distribution device
failures and, potentially, outages. Following the cost model-
ing approach presented earlier, we assign cost and detection
probability distributions for each attack step and for each
monitoring architecture. The cost of attack until detection is
set to $100,000 for step 1, $50,000 for steps 2 and 3, and
$200,000 for step 4. Probabilities of detection are set to 90%
for the embedded sensors, and 80% for both the dedicated and
centralized sensors. Finally the total cost of the attack if left
undetected is set to $1,000,000. The resulting risk is shown
on Figure 6.

This time, we observe that the centralized architecture is the
best choice until the probability of attack goes beyond 40%.

Fig. 6. Risks for the three different architectures when considering an attack
against the distribution automation system.

After this threshold, the dedicated architecture becomes the
most cost-efficient solution.

D. Conducting a Sensitivity Analysis

In the previous subsection, historical and evaluation data
could be accessed in order to estimate the different parameters
required by the risk assessment framework. When such data
is not available, utilities can still follow a rigorous approach
to gain insights into the type of monitoring architecture that
would be best for them. The goal is to separate parameters
into two groups, known and unknown, and then to conduct
a sensitivity analysis on the unknown parameters in order to
understand their impact. In the case of a utility, known param-
eters are the cost of deploying the different IDS architectures,
the number and costs of AMI devices (meters, relays, DCUs),
and the cost of interventions (e.g., rolling a truck or replacing a
compromised device). Unknown parameters are the probability
of occurrence of an attack and the probability of successful
detection for a given time period.

To illustrate the benefits of conducting a sensitivity analysis,
we revisit the denial-of-attack scenario against a DCU that
was presented in the previous subsection, but this time we
explore ranges of values for the following three unknown
parameters: the probabilities of detection of the DDoS attack
by the centralized (Dc), dedicated (Dd), and embedded (De)
architectures. We vary the values for those 3 parameters from
0 to 1 by increment of 0.1 and analyze the results. Figure
7 shows a 3-dimensional plot that reveals the most cost-
efficient architecture (yellow diamond for centralized, green
circles for dedicated, and black squares for embedded) for
each possible combination of Dc, Dd, and De. Given those
results, security administrators can make an informed decision
according to the region in this 3-dimensional space in which
their threat model and environment fit the best. The analysis
clearly indicates that a centralized architecture is the most
cost-efficient solution, because the embedded and dedicated
architectures are only worth the investment when they offer
perfect detection accuracies (De or Dd equal to 100%). This
is due to the small number of meters affected by the attack
under consideration, which leads to the most expensive phase
of the attack being the denial of service against the DCU
(most likely detectable by the centralized IDS) rather than
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Fig. 7. Selection of the most cost-efficient architecture when exploring
different probabilities of detection for the three architectures. The values for
Dc, Dd, and De vary between 0 and 1 by increment of 0.1. Points in the
3D space represent which architecture is the most cost-efficient for each of
the 1,331 combinations explored.

meter compromises (most likely detectable by the embedded
or dedicated IDS).

To see when the other architectural option might become
more viable we ran the sensitivity analysis a second time
by changing the number of affected meters from 50 to 500,
which leads to an increase in the costs of the attack if not
detected by one order of magnitude. Figure 8 shows that
this time, for most combinations of Dc, Dd, and De, the
optimal architecture is no longer the centralized IDS. Indeed,
for 45.3% of the combinations, the embedded architecture is
more cost-efficient, compared to 38.4% for the centralized
architecture, and 16.3% for the dedicated architecture. Ideally
one would like to design the IDS system to deal with the
worst attack scenario possible within cost constraints, and
ultimately a utility has to choose an architectural option based
on their cost constraints and worst perceived threat. The
examples presented were meant to illustrate the application of
the framework and not to recommend one architecture over
the other as choice of the architecture clearly depends on
many factors. However, as was evident in the previous section,
the framework does indicate that certain IDS architectures are
inherently more suitable for certain AMI deployments.

VII. DISCUSSION AND CONCLUSION

In this paper we presented a comprehensive study of a
problem faced by many utilities interested in improving their
security posture in a cost-effective way: How to choose among
multiple deployment options for intrusion detection systems in
AMI networks?

We started by describing the possible ways we could deploy
monitoring architectures and we then created a risk-assessment
framework that considered the attack threats (and conse-
quences of successful attacks) and the possible deployment
options, and used it to select the best option for a given
network deployment.

The biggest challenge in applying our risk-assessment for-
mulation in practical scenarios is the difficulty of estimating
some of the probabilities and costs used as model inputs.

Fig. 8. Selection of the most cost-efficient architecture when exploring dif-
ferent probabilities of detection for the three architecture. The only difference
with the previous figure consists in the number of meters affected by the
attack (500 instead of 50).

However, we were able to show that there are some basic
principles inherent to each deployment option that hold true
irrespective of the specific values used. In addition, while our
model might not be applicable in all possible use-cases or
when the risk uncertainty is large enough to be unquantifiable,
with our model we are able to analyze decisions based on clear
assumptions that can be discussed, critiqued, and improved by
future researchers. Our hope in this paper is to provide the first
steps towards creating a better, systematic way of evaluating
IDS deployment options in AMI networks and improve over
the current heuristics.

A thorough and realistic risk assessment needs to account
for all possible attacks within the threat model under con-
sideration and also the deployment’s life cycle, as attacks
are likely to occur multiple times over the lifetime of the
infrastructure. In our future work, we plan to conduct this
kind of study using advanced stochastic modeling frameworks
such as ADVISE [23], [24].
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