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Abstract – Effective communication between people and 
interactive robots will benefit if they have a common ground of 
understanding. I discuss how the common ground principle of 
least collective effort can be used to predict and design human 
robot interactions. Social cues lead people to create a mental 
model of a robot and estimates of its knowledge. People’s 
mental model and knowledge estimate will, in turn, influence 
the effort they expend to communicate with the robot. People 
will explain their message in less detail to a knowledgeable 
robot with which they have more common ground. This 
process can be leveraged to design interactions that have an 
appropriate style of robot direction and that accommodate to 
differences among people. 

 
Index Terms – human-robot interaction, social robots, 

humanoids, perception, dialogue, common ground, knowledge 
estimation, speech communication 

 

INTRODUCTION 

Imagine a future situation in which robots at the 
Nashville USA airport perform as security guards and 
guides, directing people to their terminal and gate. How 
should these robots explain routes through the airport to 
locals and strangers, to young and old, to people in a hurry 
and to people with time to fill? The answers to these 
questions are not just a matter of whether the robot should 
use speech or should distribute printed maps—classic HCI 
questions. Since there will be little time for learning, the 
robots’ appearance and initial behavior must create in 
visitors an appropriate mental model of the robots’ abilities 
and intentions. The robots must be able to repair inevitable 
misunderstandings, and they must adapt to the needs of 
different travellers. For example, the robots may need to 
change their interaction style depending on travellers’ age. 

Thus far, we typically make these design choices using 
hunch, and trial and error. We might improve this approach 
by applying social psychological and cognitive theories to 
the human-robot interaction (HRI) design space. Theory can 
generate testable hypotheses about HRI design choices.  
Experiments to test these hypotheses could lead to advances 
in practice and in the science of human robot-interaction.  

In this paper I explore the application of the theory of 
common ground to human robot interaction. The theory of 
common ground was developed to understand 
communication between people. Its main assumption is that 
communication between people requires coordination to 
reach mutual understanding, just as ballroom dancers and 
basketball teams do. The process of coordination relies on a 
large amount of shared knowledge between the parties, that 
is, common ground [1]. We take common ground for 
granted in many person-to-person interactions. For example, 

if you approach a human security guard at the Nashville 
airport, both the guard and you know the appropriate topics 
of conversation to initiate, who has authority and legitimacy 
for making different requests, and approximately who has 
knowledge about what. (You know where you want to go; 
the guard knows the security rules and where the exits are 
located.) Common ground makes it possible for you to 
approach the guard—a total stranger—and say, “which 
direction for U.S. Air?” and the guard will know how to 
answer, “That way” [points].”  

In the following sections of this paper, I show how 
common ground applies to human-robot interaction in 
situations where robots interact with people in public 
spaces. In these situations, as in the Nashville airport, the 
robot, and the people who interact with it, usually are 
strangers. To form common ground, they must develop 
compatible mental models of one another. I discuss research 
demonstrating the tendency for people to attribute knowledge 
to a strange robot based on their beliefs about the robot's 
origin, the tendency for people to communicate with a 
strange robot differently based on the robot’s physical 
characteristics, and the ways that a robot could speak to a 
person depending on the expertise level of the person. I call 
on these lines of evidence to support the argument that the 
common ground principle is an important factor in human-
robot interactions. 

 
COMMON GROUND WITH A ROBOT 

 
One of the key postulates of the theory of common 

ground is least collaborative effort, that is, people in 
conversation minimize their collective effort to gain 
understanding [2].  For instance, the security guard might 
well gesture silently in the direction you are supposed to 
walk, and you, in turn, might say “thanks” to confirm you 
understand. Thus, in an efficient few seconds, with a single 
word, you and the guard assert and acknowledge common 
ground.  

Achieving least collective effort should be an ultimate 
goal of successful human robot interaction. If you ask a 
robot guard for directions to “Gate 10,” you do not want to 
listen to your help options or to a long recitation of 
directions to each gate in turn. You want a quick pointer to 
Gate 10. Many of today’s dialogue systems lack common 
ground, that is, little understanding of callers’ needs, and 
they cause no end of frustration. If eventually robots can 
conform to the principle of least collective effort, people 
will have to work less hard to communicate with them than 
they do today, and they are likely to feel the interaction is 
more satisfying.  



 
Mental Model of a Robot 
Ideally, a robot should not have to enumerate its 

functions and knowledge domains to people before they can 
interact with it. We want these functions and domains to be 
obvious. The solution for achieving this most basic form of 
common ground is to create in people’s minds an 
appropriate mental model of the robot automatically. In 
particular, the robot should prompt people to make an 
appropriate estimate of the robot’s role and what the robot 
knows.  

Interactive robots have a start on this estimation process 
because they are, by virtue of their interactivity, somewhat 
humanlike. Interactivity in the form of speech or gesture, 
especially, will prompt observers to anthropomorphize 
automatically, without any intent or thoughtful processing 
(http://www.anthorpomorphism.org). Anthropomorphism 
also is likely when people see an animal or object that 
displays humanlike movements [3] or appears to act 
intentionally [4]. People are likely to assume these robots 
have humanlike roles and capabilities too. 

Nass and his colleagues have argued that people apply 
stereotypes and social heuristics, and enact social habits 
with interactive systems automatically and mindlessly [e.g., 
5, 6].  There is considerable evidence for automaticity in 
some aspects of social behavior [7]. However, automaticity 
does not preclude the influence of mental models. We argue 
that people who interact with a system create an implicit 
mental model of the system. The mental model reflects any 
anthropomorphism that has occurred, and it leads to 
expectations of the behavior of the system.   

Consider an experiment we once ran in which subjects 
played a Prisoner’s Dilemma game for real money with a 
real person or with a computer agent displayed on a screen 
[8]. (In this Prisoner’s Dilemma game, if both partners 
cooperated and put up their money [$3.00 each], then they 
both gained $6.00. If one defected and kept his money, then 
that partner won $9.00 and the cooperator got nothing. If 
both defected, then they both got nothing.)  

The results showed that when the agent looked like the 
person, people cooperated with the person-like agent at the 
same level as they did with the real person. When the agent 
acted exactly the same way, but looked like a dog instead of 
a person, on average, people’s cooperation declined 
markedly. Yet, as shown in Figure 1, dog owners behaved 
differently than nonowners. The dog owners cooperated as 
much with the dog-like agent as with the person and person-
like agent. Post-test questionnaire data suggested that the 
dog owners had more confidence that the dog-like agents 
would respond to their cooperative behavior with 
cooperation. More trust was associated with higher levels of 
cooperation. 

These results suggest that the subjects in this 
experiment responded not just mindlessly to the system’s 
appearance and behavior, but also to their mental model of 
what the system represented. We think dog owners and 
nonowners carried different expectations of what the dog 
agent would do. That is, they had different mental models of 
the dog agent, based not just on what they saw of the agent 
but also on their experience with dogs.  

 
 

 Level of 
Cooperation with a 
Person and Person-

like Agent 

Level of 
Cooperation with 
Dog-like Agents 

 Dog 
Owners 
(n=18) 

Non-
Owners 
(n=30) 

Dog 
Owners 
(n=16) 

Non-
Owners 
(n=32) 

Round 1     
% of 
Subjects 
who 
Cooperated 

89% 87% 81% 53% 

All 6 
Rounds* 

    

% Subjects 
who 
Cooperated 

78% 69% 67% 52% 

Fig. 1. Cooperation among dog owners and non-owners.  
*In prisoner dilemma games, cooperation typically is higher 
on the early rounds and drops on the last round because the 
subjects can defect without the possibility of retaliation. 
 

Why are these data relevant to common ground with 
robots? I believe they are relevant because they suggest that 
people’s mental model of a robot will influence their 
expectations of the robot and therefore whether the robot is 
likely to achieve common ground and interact efficiently 
with them. In the experiment described above, whether or 
not subjects had a mental model of the dog agent as 
cooperative influenced whether the agent was able to form a 
cooperative agreement with them. Similarly, in interactions 
with a robot, people’s mental model of a robot will 
influence whether or not the robot can reach mutual 
understanding with them. 

The results of the experiment also suggest that mental 
models are not just general beliefs (e.g., this robot is nice, 
funny, or respectful). Mental models also comprise a set of 
task-specific expectations of process, that is, how the system 
will work. For example, a guard robot might be expected to 
know about airport gates and to point them out but it would 
not be expected to know locations in Nashville. In the 
Prisoner’s Dilemma experiment, the subjects thought the 
dog-like agent was more attractive and charming than the 
person-like agent, but they cooperated with the person-like 
agent more than they did with the dog-like agent. This 
pattern happened because, even though they liked the dog-
agent more, they expected the person-like agent to be more 
likely to understand their own cooperative strategy and to 
cooperate as a person would. 

I also argue that mental models are situation specific, 
that is, that expectations of process can change depending 
on the situation. Thus, people might have similar 
expectations of a human guard and a robot guard in one task 
domain such as pointing out gates but different mental 
models of a human guard and robot guard in another task 
domain such as remembering retail landmarks at the airport 
(where is the closest Starbucks) [9, 10]. Further, people are 
likely to have different mental models of the same robot 
when it is enacting one task versus another, such as when it 
is being serious or playful [11]. 

 



How People Estimate a Robot’s Knowledge 
I have suggested that social cues, humanlike movement, 

and anthropomorphism, among other things, will influence 
people’s mental model of a robot. We have begun to study 
one aspect of the mental models that people hold of robots, 
that is, their estimates of a robot’s knowledge. 

Knowledge estimation is an important part of grounding 
in communication. When we meet other people, we go 
through a knowledge estimation process in which we 
exchange information such as names, intentions, and so 
forth. To exchange information successfully, we estimate 
others’ shared common knowledge and formulate our 
messages in respect to this shared knowledge [12]. For 
example, when a stranger asks you for directions to a local 
restaurant, you estimate or determine where the stranger 
lives. If you perceive that he lives in the local area, you also 
infer he knows the names of local landmarks, and you use 
these names to tell the person about the route to the 
restaurant. If you think the person is not local, you will not 
use the names of local landmarks in referring to the route. 

Clark and his associates, e.g., [13], proposed that people 
use observable physical and linguistic cues, as well as 
information they have about each others’ group 
memberships, educational background, or professional 
identities, to estimate each others’ knowledge. People are 
highly accurate in their estimates of the distribution of 
mundane knowledge in a particular population. For 
example, students were able to estimate the proportion of 
other students who knew the names of public figures [14] 
and landmarks [15]. 

 If people are unfamiliar with a robot, how can they 
make estimates of its knowledge? The previous work on 
social cues suggests that physical, linguistic, and social 
context cues will guide these estimates.  

Sau-lai Lee and students in our lab conducted two 
controlled experiments to test the hypothesis that people’s 
representation of a robot’s knowledge would change when 
the origin of the robot changed [16]. Lee et al. proposed that 
a robot’s origin, such as whether it is made in America or 
Asia, could be used as a cue to guide knowledge 
estimations. Thus, an American-made, English-speaking 
robot might be assumed to know better where the Empire 
State building is than a Hong Kong-made, Cantonese-
speaking robot.  

The subjects in the experiments were Chinese university 
students from Hong Kong who saw a video of a robot 
interacting with the experimenter. Half of the subjects were 
randomly assigned to a condition in which they saw the 
robot speak Cantonese with the experimenter (who was 
Chinese). They were told the robot was built at a robotics 
institute in Hong Kong. The rest of the subjects saw the 
robot speaking English with the experimenter, and they were 
told the robot was built at a robotics institute in New York.  

Subjects in both conditions completed the knowledge 
estimation tasks. First they viewed a set of 14 Chinese and 
American landmarks. Next they were asked to view the 
landmarks one by one, and to identify the landmarks 
themselves. Finally, they were asked to estimate the 
likelihood using a rating scale from 0% likelihood to 100% 
likelihood that the robot could identify each landmark.   

  

 
Fig. 2. Experimenter with robot, as seen by participants. 

 
Lee et al. compared subjects’ estimations of the robot’s 

knowledge when the robot originated either in Hong Kong 
and spoke Cantonese or New York and spoke English. They 
hypothesized that the origin of the robot and language it 
used would create different mental models of the robot in 
the minds of subjects. Subjects should infer that both robots 
would have greater knowledge of famous landmarks than 
obscure landmarks. But also, subjects should believe the 
robot built in Hong Kong had knowledge of Hong Kong 
tourist landmarks, and that the robot built in New York had 
knowledge of New York tourist landmarks. 

The results of this study, summarized in Figure 3, 
showed that subjects estimated the knowledge of the robot 
based in part on their assumptions about people, 
extrapolated to the robot. They expected the robot to know 
more of the landmarks that are famous in both countries 
(such as the Great Wall of China) and less likely to know 
the landmarks that are unfamiliar to people in both 
countries. Also, the origin of the robot influenced their 
estimations. The Chinese robot was perceived as more likely 
to know famous Hong Kong landmarks than the American 
robot. The American robot was perceived to know about 
New York landmarks only as well as the Chinese robot (an 
in-group bias). 

 

Fig. 3. Mean estimates of a person’s or a robot’s knowledge of 
landmarks. (Landmarks varied in their familiarity to residents of New York 
and Hong Kong.) The solid lines represent data from a human-human study 
[16]. The dashed lines are from a human-robot study [17]. 

 Lee et al. also found the results to be highly 
correlated with the results of people’s estimates of other 



people’s knowledge,  r = .85 in the HK condition and r = .76 
in the NY condition. These correlations strongly suggest 
that subjects in the experiments used their knowledge of 
people as an anchor for estimating the robot’s knowledge. 

The results of this study suggest that given minimal 
information about a robot (languages it speaks; where it was 
created), people generalize to construct a rudimentary 
mental model of the robot’s knowledge in a specific domain 
(tourist landmarks). 

 The data do not tell us how subjects justified these 
extrapolations. Did they believe that the Hong Kong (or 
New York) engineers who built the robot also put 
information about tourist landmarks into a database 
accessible to the robot? Did they believe the robot in Hong 
Kong (or New York) had direct experience with landmarks? 
Or did they believe that when the robot learned languages it 
also learned about names and places? Research suggests that 
any or all of these could be true. When considering other 
people and animals, we humans reflect on hidden causes of 
observed behavior, make attributions as to the traits, 
experiences, or reasons for this behavior, and extrapolate to 
new situations and competencies [18]. These tendencies are 
well established neurologically, and are likely triggered 
automatically by our observation of machines that have 
human attributes and move and speak purposefully, that is, 
by our anthropomorphism. If so, then knowledge estimates 
can co-exist with an assortment of post hoc meta-reasoning 
about these aspects of mental models. In other words, we 
may strongly believe, “this robot knows all about New 
York,” with a few weak hypotheses about how the robot 
could have attained this state. 

With or Without Common Ground, How People Talk 
with a Robot 

Research has shown that people’s estimates of others’ 
knowledge significantly influences how they construct their 
communications. In one study, when subjects described 
public figures to another person, they provided descriptive 
information about the public figures in inverse proportion to 
their estimates that the other person could identify the public 
figure [14]. 

This work points to the strong possibility that when 
people interact with a robot, their estimates of the robot’s 
knowledge will influence how they talk with the robot. For 
instance, if you need to send a robot to a location and you 
assume the robot is familiar with the terrain (that is, has 
common ground with you), your estimate of its knowledge 
should cause you to (a) use local landmarks to direct the 
robot, and (b) reduce the amount of information you give the 
robot because you assume the robot already knows the area.    

To investigate this process, Aaron Powers and students 
in our lab conducted an experiment to study how a robot’s 
persona and subjects’ consequent estimates of the robot’s 
knowledge would influence their assumption of common 
ground with the robot and their communication with it [19]. 
Subjects talked with the robot shown in Figure 2 through an 
interface like that of Instant Messaging (IM). The robot 
spoke aloud and displayed what it said on the IM display. 
The robot’s persona was presented as either female 
(feminine voice, pink lips) or male (male voice, grey lips). 
Powers et al. used these two simple cues intentionally, to 
demonstrate that differences in robot persona could be 

accomplished through minimal variation of a robot’s 
appearance and voice.  

In the experiment, the robot was to be a dating 
counsellor in the future, and asked each subject about 
romantic dating practices, ostensibly to build its own store 
of knowledge. In human populations, women are far more 
knowledgeable about dating norms and social practices, and 
they have more social skills than men do [20]. Therefore, 
subjects should assume a “female” robot would know more 
about dating practices and norms than a “male” robot would, 
and, in reality, female subjects would know more about 
dating practices than male subjects. 

According to common ground theory, subjects should 
describe and explain dating norms briefly (with fewer words 
and with linguistic shortcuts and jargon) to a female robot 
than to a male robot because the female robot would be 
assumed to share their dating knowledge. Further, women 
should assume more overlapping knowledge with a female 
robot than men, so should be particularly brief with a female 
robot. Finally, during the experiment, the robot asked the 
subjects about dating practices for a hypothetical couple, 
John and Jill. Since women in general have more dating 
knowledge than men, and female robots have more dating 
knowledge than male robots, the least elaborate 
communication should be found when women explain 
dating norms for women to a female robot.   

 The results of the study showed that both women and 
men, answering questions from the robot about dating, 
spoke most briefly with the female robot and at greatest 
length and detail with the male robot, especially about 
dating norms for John. Also, women said more to the female 
robot about John than about Jill, whereas men said more to 
the female robot about Jill than about John. The results 
support our thesis: people explain less to a robot they think 
already knows the subject matter, that is, to the robot with 
whom they share common ground. 

 
DESIGNING HRI FOR COMMON GROUND 

 
 If our characterization of how people could interact 

with a robot is correct, then a straightforward design 
implication for the security guard robot at the Nashville 
airport is clear: Make the robot anthropomorphic, and make 
it look somewhat machinelike, mature, stern, and male [11]. 
Put it in uniform, or use a clear sign, to provide an instant 
assessment of its job. Airport visitors should be able to see 
that the robot’s job is to guard, and that it probably knows 
where security lines are located in the airport. If we wanted 
this robot to have minimal and efficient conversation with 
visitors about airport security locations, then the robot 
should conform to the stereotype of guards. People will 
assume common ground with the robot (on location and 
security topics), and speak directly on point to the robot.
 Suppose instead we wanted visitors to provide more 
detail, to speak slowly, to be redundant. Such a design goal 
might exist if the robot were not just a guard, but also 
functioned as a guide. Or perhaps we want people to 
elaborate to support a robot’s poor speech understanding. 
Then we might want to consider a different interface, one 
that did not create such a strong impression of a security 
guard. For example, we could create a broader model in 
visitors of what the robot knew about airport locations by 



making it look more feminine and youthful, characteristics 
associated with jobs like docent, teacher, or nurse rather 
than security guard [11]. Since to achieve common ground 
people adapt their speech to the perceived needs of the 
other, they should adjust their speech to the needs of this 
robot. They are likely to speak more clearly and patiently to 
the more childish robot guard. 

 
The Robot’s Mental Model 
The theory of common ground can provide guidance for 

a mixed initiative design approach in which a robot takes 
some responsibility for achieving common ground with 
people. Indeed, the mixed initiative approach is consistent 
with the common ground assumption that both partners in 
an exchange must cooperate to achieve common ground. For 
a robot to help achieve common ground in public places, it 
would need to detect people and differences among people. 
For instance, the robot might detect who, in a group of 
pedestrians, is attending to the robot and wants help. It 
might detect whether the person is in a wheelchair, is 
carrying luggage, is headed for the gates, and other 
information that would be helpful in constructing an 
appropriate message. The more the robot can adapt to the 
person, the less the person needs to adapt to the robot. 

 
Accommodating to Different People 
 Cristen Torrey, a graduate student in our lab, has 

developed a compelling argument for designing robots that 
adapt their messages appropriately to the needs of their users 
[21]. By doing so, robots are more likely to achieve the goal 
of least collective effort.  

Torrey reviewed the literature on “elderspeak”—a 
tendency for people to talk with older people in institutions 
as though they were toddlers. Nurses, doctors, visitors, and 
others use simpler vocabulary with old people, minimize 
their number of words, and repeat themselves. They also 
exaggerate their intonation, speak in a high pitched voice, 
speak slowly, and make a number of controlling gestures 
such as patting the person on the head [22]. Torrey 
concluded that some forms of elderspeak, for instance, 
stressing the important words in a sentence, can help elders 
to understand complex language whereas other forms of 
elderspeak, such as terms of endearment, do not help. 
Furthermore, elderspeak, even if it aids communication, can 
make listeners feel less competent and disrespected.   

 Torrey is experimentally testing the design implications 
of this argument for a robot’s communications with people 
whose needs for information vary. She argues that when 
people have expertise in a domain, a robot that provides too 
much clarification or detail about information in that domain 
will constitute “overkill” and will violate the least 
collaborative effort principle. Too much elaboration will 
seem to be disrespectful of the person’s skill. Too little 
detail would have the same impact on a novice. Thus a 
novice will welcome the same clarification and detail that is 
unsuitable for an expert. To achieve common ground, then, 
a robot should adapt to the person’s level of knowledge and 
the degree of common ground between the person and the 
robot. Thus, our robot guard should assess whether a visitor 
to the airport is familiar with the airport (a Nashville 
resident) or a stranger. The resident is more likely to know 
where gates are by reference to landmarks whereas the 

stranger is not. By adjusting to the likely knowledge of the 
resident or stranger, the robot can reach common ground 
with least collaborative effort. 

 
CONCLUSION 

 
 Scassellati has argued that a humanoid robot needs to 
have a theory of mind [23]. We take this argument a step 
further to argue that an interactive robot should have a 
theory of common ground and should incorporate action 
plans that will achieve common ground with people. Social 
cues emitted by the robot are a first step in creating common 
ground, as these cues can elicit in people an appropriate 
mental model of the robot. The robot’s initial behaviors can 
correct people’s mental models if they are inappropriate and 
they can repair damage to common ground. Beyond these 
initial steps, the robot will need to assess the expertise and 
needs of individuals, so that its actions reflect the 
requirements for common ground across different people. 
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