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Abstract

This paper presents a new approach to the coopera-

tive localization problem, namely collective localization. A

group of M robots is viewed as a single system composed

of robots that carry, in general, di�erent sensors and have

di�erent positioning capabilities. A single Kalman �lter

is formulated to estimate the position and orientation of

all the members of the group. This centralized schema

is capable of fusing information provided by the sensors

distributed on the individual robots while accommodating

independencies and interdependencies among the collected

data. In order to allow for distributed processing, the equa-

tions of the centralized Kalman �lter are treated so that

this �lter can be decomposed in M modi�ed Kalman �lters

each running on a separate robot. The collective localiza-

tion algorithm is applied to a group of 3 robots and the

improvement in localization accuracy is presented.

1 Introduction

In order for a mobile robot to autonomously navigate,

it must be able to localize itself [7]; i.e. to know its posi-

tion and orientation (pose). Localization has always been

a problem for both indoor and outdoor mobile robots. Dif-

ferent types of sensors [8] and techniques have been em-

ployed to attack this problem (e.g. [6], [5], [17], [20]). The

basic idea behind most of the current localization systems

is to combine measurements from proprioceptive sensors

that monitor the motion of the vehicle with information

collected by exteroceptive sensors that provide a repre-

sentation of the environment and its signals. The �rst

category of sensing devices includes wheel encoders, ac-

celerometers, gyroscopes, etc. By applying appropriate

integration of the measured quantities, the displacement

of a robot in the space of motion can be estimated. How-

ever, the integration of noise contaminating these signals,
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causes the position estimate to drift away from its real

value [10], [1]. The sensors in the second category focus

on extracting directly the position and/or orientation of

the robot by measuring the unique characteristics of an

area. For example, in an outdoor environment a compass

records the heading of the robot while a GPS receiver pro-

vides the longitude and latitude coordinates of the current

position. In indoor environments, sensors such as sonars,

laser scanners and cameras can be used for di�erentiating

between locations in a building [16], [14], [23]. Uncertainty

is the limiting factor in this case. Areas that appear simi-

lar prohibit the exteroceptive sensing module to single out

a location among a set of possible ones. By using sensors

from both categories and combining both approaches in

an expectation-measurement cycle [21], [22], the extero-

ceptive sensor uncertainty can be reduced while the pro-

prioceptive sensor noise is �ltered out.

Many robotic applications require that robots work in

collaboration in order to perform a certain task [9], [15].

Most existing localization approaches refer to the case of

a single robot. Even when a group of, say M , robots is

considered, the group localization problem is usually re-

solved by independently solving M pose estimation prob-

lems. Each robot estimates its position based on its indi-

vidual experience (proprioceptive and exteroceptive sen-

sor measurements). Knowledge from the di�erent entities

of the team is not combined and each member must rely

on its own resources (sensing and processing capabilities).

This is a relatively simple approach since it avoids dealing

with the complicated problem of fusing information from a

large number of independent and interdependent sources.

On the other hand, a more coordinated schema for local-

ization has a number of advantages that can compensate

for the added complexity.

First let us consider the case of a homogeneous group of

robots. As we mentioned earlier, robotic sensing modali-

ties su�er from uncertainty and noise. When a number of

robots equipped with the same sensors detect a particular

feature of the environment, such as a door, or measure a

characteristic property of the area, such as the local vec-



tor of the earth's magnetic �eld, a number of independent

measurements originating from the di�erent members of

the group is collected. Combining all this information will

result in a single estimate of increased accuracy and re-

duced uncertainty. A better estimate of the position and

orientation of a landmark can drastically improve the out-

come of the localization process and thus this group of

robots can bene�t from this collaboration schema.

The advantages stemming from the exchange of infor-

mation among the members of a group are more crucial in

the case of heterogeneous robotic colonies. When a team of

robots is composed of di�erent platforms carrying di�erent

proprioceptive and exteroceptive sensors and thus having

di�erent capabilities for self-localization, the quality of the

localization estimates will vary signi�cantly across the in-

dividual members. For example, a robot equipped with

a laser scanner and expensive INS/GPS modules will out-

perform another member that must rely on wheel encoders

and cheap sonars for its localization needs. Communica-

tion and 
ow of information among the members of the

group constitutes a form of sensor sharing and can im-

prove the overall positioning accuracy. In fact, as will be

evident later, if each robot could sense and communicate

with its colleagues at all times then every member of the

group would have less uncertainty about its position than

the robot with the best localization results (if it were to

localize itself without communicating with the rest of the

group).

In the following section we will refer to previous ap-

proaches to the collaboration of robots in order to perform

localization and we will state the main di�erences between

these approaches and the proposed collective localization

schema.

2 Previous Approaches

An example of a system that is designed for cooperative

localization is presented in [13]. The authors acknowledge

that dead-reckoning is not reliable for long traverses due

to the error accumulation and introduce the concept of

\portable landmarks". A group of robots is divided into

two teams in order to perform cooperative positioning. At

each time instant, one team is in motion while the other

remains stationary and acts as a landmark. In the next

phase the roles of the teams are reversed and this process

continues until both teams reach the target. This method

can work in unknown environments and the conducted ex-

periments suggest accuracy of 0.4% for the position esti-

mate and 1 degree for the orientation [12]. Improvements

over this system and optimum motion strategies are dis-

cussed in [11].

A similar realization is presented in [18], [19]. The au-

thors deal with the problem of exploration of an unknown

environment using two mobile robots. In order to reduce

the odometric error, one robot is equipped with a cam-

era tracking system that allows it to determine its relative

position and orientation with respect to a second robot

carrying a helix target pattern and acting as a portable

landmark.

Both previous approaches have the following limita-

tions: (a) Only one robot (or team) is allowed to move at

a certain time instant, and (b) The two robots (or teams)

must maintain visual contact at all times. Although prac-

tices like those previously mentioned can be supported

within the proposed collective localization framework, the

key di�erence is that it provides a solution to the most

general case where all the robots in the group can move

simultaneously while visual contact is not required.

In order to treat the group localization problem, we

begin from the reasonable assumptions that the robots

within the group can communicate with each other (at

least 1-to-1 communication) and carry two types of sen-

sors: 1. Proprioceptive sensors that record the self mo-

tion of each robot and allow for position tracking, 2. Ex-

teroceptive sensors that monitor the environment for (a)

(static) features and identities of the surroundings of the

robot to be used in the localization process, and (b) other

robots (treated as dynamic features). The goal is to in-

tegrate measurements collected by di�erent robots and

achieve localization across all the robotic platforms con-

stituting the group.

The key idea for performing collective localization is

that the group of robots must be viewed as one entity

- the \group organism" - with multiple \limbs" (the indi-

vidual robots in the group) and multiple virtual \joints"

visualized as connecting each robot with every other mem-

ber of the team. The virtual \joints" provide 3 degrees

of freedom (�x;�y;��)1 and thus allow the \limbs" to

move in every direction within a plane without any limita-

tions. Considering this perspective, the \group organism"

has access to a large number of sensors such as encoders,

gyroscopes, cameras etc. In addition, it \spreads" itself

across a large area and thus it can collect far more rich

and diverse exteroceptive information. When one robot

detects another member of the team and measures its rel-

ative pose, it is equivalent to the \group organism's" joints

measuring the relative displacement of these two \limbs".

When two robots communicate for information exchange,

this can be seen as the \group organism" allowing infor-

mation to travel back and forth from its \limbs". This

information can be fused by a centralized processing unit

and provide improved localization results for all the robots

in the group. At this point it can be said that a realization

of a two-member \group organism" would resemble the

multiple degree of freedom robot with compliant linkage

shown to improve localization implemented by J. Boren-

stein [2], [3], [4].

The main drawback of addressing the cooperative lo-

calization problem as an information combination prob-

lem within a single entity (\group organism") is that it

requires centralized processing and communication. The

solution would be to attempt to decentralize the sensor fu-

16 dof in a 3 dimensional space of motion.



sion within the group. The collective localization approach

uses the previous analogy as its starting point and treats

the processing and communication needs of the group in

a distributed fashion. This is intuitively desired; since the

sensing modalities of the group are distributed, so should

be the processing modules.

In order to deal with the cross-correlation terms (local-

ization interdependencies) that can alter the localization

result (Section 3), the data processed during each collec-

tive localization session must be propagated among all the

robots in the group. While this can happen instantly in

groups of 2 robots, in Section 4 we will show how this

problem can be treated by reformulating the collective lo-

calization approach so it can be applied in groups of 3 or

more robots.

3 Group Localization Interdependencies

In order to examine the e�ect of the interdependencies

in the group localization process we study the simple case

of two robots constrained to move in a single dimension

capable of exchanging positioning data. Every time the

two robots meet they have available two independent es-

timates of their position. One is the estimate based on

their own sensors xA(�) (or xB(�)) and the other is de-

rived from the measurement of their relative position with

respect to the other robot xA(meas) = �xA;B+xB(�) (or

xB(meas) = �xB;A+xA(�)). The uncertainty related to

this additional estimate is given by:

PxA(meas) = P�xA;B + PxB(�) = R+ PxB(�) (1)

where R = P�xA;B is the uncertainty corresponding to

the relative position measurement. The quality of the ad-

ditional estimate xA(meas) depends on the quality of the

relative position measurement and the position estimate of

robot B. Small values of PxA(meas) require precise localiza-

tion of robot B and an accurate relative position measure-

ment. The two estimates xA(�) and xA(meas), assuming

that they are independent, can be combined as:

P�1
xA(+)

= P�1
xA(�)

+ P�1
xA(meas)

(2)

P�1
xA(+)

xA(+) = P�1
xA(�)

xA(�)+P
�1
xA(meas)

xA(meas) (3)

The previous equation expresses that the location of robot

A is the weighted average of where robot A itself believes

it is and where robot B believes that robot A is.

This combination of positioning information between

two robots is valid only when the robots meet for the �rst

time. If they meet again later, the independence assump-

tion is not valid anymore. The new propagated estimates

contain information exchanged during their previous ren-

dezvous that is now shared by both robots.2 The e�ect of

2Another pathological situation would be if one or both of the

initiallymet robots A and B subsequentlymeet other robots C and D

which have no knowledge of A and B havingmet in the past. If C and

D meet subsequently, their position estimates are not independent

and any exchange of information will produce levels of uncertainty

that are over-optimistic.

this is explained in the following numerical example:

Example: In this one-dimensional case, let us assume

that robots A and B started from the same point and

moved (probably with di�erent speeds) along the same di-

rection for some distance and then meet for the �rst time.

The uncertainty for A is PA(k) = 4 and for B, PB(k) = 4.

In order to simplify the calculations, let us also assume

that the relative position measurement is almost perfect

(zero uncertainty associated with it). Applying Equation

(2), the result of combining these two independent sources

of information would be P+
A (k) = P+

B (k) = 2.

The robots move again and we assume that their un-

certainty has increased by �PA(k; k + 1) = �PB(k; k +

1) = 8. Then each of them will have total uncer-

tainty PA(k + 1) = P+
A (k) + �PA(k; k + 1) = 10 and

PB(k + 1) = P+
B (k) + �PB(k; k + 1) = 10. If the two

robots meet again and we assume (falsely) that their cur-

rent estimates are independent, then their updated covari-

ance estimates would be: P+
A (k + 1) = P+

B (k + 1) = 5,

which is over-optimistic. The reason is that the inde-

pendent part of information now is the one due to the

motion after the �rst rendezvous and the associated un-

certainty is �PA(k; k + 1) and �PB(k; k + 1). Therefore,

it is only legitimate to combine these last two quantities

and infer that due to the exchange of information be-

tween the two robots the uncertainty associated with the

last part of their motion is updated to �P+
A (k; k + 1) =

�P+
B (k; k+1) = 4. The overall position uncertainty would

now be: P+
A (k+1) = P+

A (k)+�P
+
A (k; k+1) = P+

B (k+1) =

P+
B (k) + �P+

B (k; k+ 1) = 2 + 4 = 6 > 5.

It is obvious that if the cross-correlation terms are not

considered properly in the formulation of the localization

information fusion, the resulting positioning estimates will

not be realistic. In the extreme case, if every time the two

robots have moved in�nitesimal distance they take another

snapshot of each other, their position uncertainty will de-

crease exponentially (becoming almost half of its previous

value during each update).

4 Problem Statement

We state the following assumptions:

1. A group of M independent robots move in an N �

dimensional space. The motion of each robot is de-

scribed by its own linear or non-linear equations of

motion,

2. Each robot carries proprioceptive and exteroceptive

sensing devices in order to propagate and update its

own position estimate. The measurement equations

can di�er from robot to robot depending on the sen-

sors used,

3. Each robot carries exteroceptive sensors that allow it

to detect and identify other robots moving in its vicin-

ity and measure their respective displacement (rela-

tive position and orientation),



4. All the robots are equipped with communication de-

vices that allow exchange of information within the

group.

The problem is to determine a principal way to exploit

the information exchanged during the interactions among

members of a group taking under consideration possible

independencies and interdependencies. It is also within

our focus to formulate the problem in such a way that it

will allow for distributed processing with minimal commu-

nication requirements.

As we mentioned before, our starting point is to con-

sider this group of robots as a single centralized system

composed of each and every individual robot moving in

the area and capable of sensing and communicating with

the rest of the group. In this centralized approach, the

motion of the group is described in an N � 3-dimensional

space and it can be estimated by applying Kalman �lter-

ing techniques. The goal now is to treat the Kalman �lter

equations of the centralized system so as to distribute the

estimation process amongM Kalman �lters, each of them

operating on a di�erent robot.

Here we will derive the equations for a group of M = 3

robots. The same steps describe the derivation for larger

groups.

4.1 Cross-correlation terms

At this point we show how the cross-correlation terms
are introduced in the system and how their calculation can
be distributed. Starting from the covariance propagation
equation for a single system:

P (t�k+1) = �(tk+1; tk)P (t
+
k )�

T (tk+1; tk) + Qd(tk+1) (4)

in our case initially we would have:

P (t+k ) =

"
P11 0 0

0 P22 0

0 0 P33

#
(t
+
k
)

(5)

The assumption is that at the beginning each robot knows
only its own position in global coordinates and the un-
certainty related to it. Since there is no a priori shared
knowledge amongst the robots, the covariance matrix for
the centralized system is diagonal and each of the diago-
nal elements is the covariance of each of the participating
robots. Under the assumption that the motion of each
robot does not a�ect, at least directly, the motion of the
other robots, the centralized system matrix will also be
diagonal:

�(tk+1; tk) =

"
�1 0 0

0 �2 0
0 0 �3

#
(tk+1;tk)

(6)

Each of the �i matrices describes the motion of robot i.
Similarly, the system noise matrix Qd for the centralized
system would be:

Qd(tk+1) =

"
Qd1 0 0

0 Qd2 0

0 0 Qd3

#
(tk+1)

(7)

Where Qdi corresponds to the system noise matrix as-
sociated with robot i. While no shared dual update has
occurred, i.e. no relative position information has been
exchanged, Equation (4) describes the update for the cen-
tralized system position uncertainty and by substituting
from Equations (5), (6), and (7) we have:

P (t
�

k+1) =24 �1P11�
T
1 +Qd1 0 0

0 �2P22�
T
2 +Qd2 0

0 0 �3P33�
T
3 +Qd3

35
(t
+
k
)

(8)

It is obvious from Equation (8) that the propagated co-
variance of the centralized system is also a diagonal matrix
as was the initial covariance matrix (Equation (5)). There-
fore the state covariance propagation can easily be decen-
tralized and distributed amongst the individual robots.
Each robot can propagate its own part of the centralized
system covariance matrix. This is the corresponding di-
agonal matrix element Pii that describes the uncertainty
associated with the position of roboti:

Pii(t
�

k+1) = �i Pii(t
+
k ) �

T
i +Qdi(tk+1); i = 1::3 (9)

If no relative position information is exchanged between
any of the robots of the group then there is no global
update and thus the covariance remains the same:

P (t
+
k+1) = P (t

�

k+1) (10)

Applying Equation (4) repetitively, to propagate to the
next step we will again have a diagonal covariance ma-
trix for the centralized system and its computation can
be distributed amongst the 3 robots. All the quantities in
Equation (9) are local to robot i and thus the centralized
system covariance propagation can be distributed with all
the necessary computations being local.

When for example, robot 1 meets robot 2, they use
the exteroceptive sensing to measure their relative posi-
tion and orientation:

zk+1 =
�
�~x12

�
=

"
�x12
�y12
��12

#
=

"
x1 � x2
y1 � y2
�1 � �2

#
=

�
I �I 0

� " ~x1
~x2
~x3

#
= H(tk+1) ~x(tk+1) (11)

Where ~xi is the pose estimate for robot i. This measure-
ment is used to update the overall (centralized system)
pose estimate and the covariance of this estimate.3 This
update is described by the following equations:

S(tk+1) = H(tk+1)P (t
�

k+1)H
T
(tk+1) +R12(tk+1) (12)

3One of the reasons for formulating the group localization prob-

lem in a centralized way is that when one robot in the group senses

another robot, a relative position and orientation measurement is

recorded. There is no function relation between the state of one

of the two robots with the relative measurement. An observation

model for this type of data would consist of a functional containing

the position and orientation states of both robots. Motivated by

this observation we formulate the group localization problem as a

centralized one and then describe how it can be distributed among

the group of the robots.



Where R12(tk+1) represents the noise associated with
the relative position and orientation measurement between
robots 1 and 2.

K(tk+1) = P (t�k+1)H
T (tk+1)S

�1(tk+1) (13)

b~x(t+k+1) =
b~x(t�k+1) +K(tk+1)

h
zk+1 �H(tk+1)b~x(t�k+1)

i
(14)

P (t+k+1) = P (t�k+1)�P (t
�

k+1)H
T (tk+1)S

�1(tk+1)H(tk+1)P (t
�

k+1)
(15)

First we calculate the residual covariance. Substituting
H(tk+1) from Equation (11) in Equation (12) we have:

S(tk+1) =
�
I �I 0

� � P11 0 0
0 P22 0
0 0 P33

�
(t�
k+1

)

�
I

�I

0

�
+ R12(tk+1)

= P11(t
�

k+1) + P22(t
�

k+1) +R12(tk+1) (16)

Then we calculate the covariance update for the pose
estimate. By applying Equation (15) we have:

P (t+k+1) =

�
P11 � P11S

�1
P11 P22S

�1
P11 0

P11S
�1P22 P22 � P22S

�1P22 0
0 0 P33

�
(t
�

k+1
)

(17)

By inspection of Equation (17) we can derive the following
conclusions:

1. The covariances of robots 1 and 2 are the only ones
that change:

P11(t
+
k+1) = P11(t

�

k+1) � P11(t
�

k+1)S
�1
(tk+1)P11(t

�

k+1) (18)

P22(t
+
k+1) = P22(t

�

k+1) � P22(t
�

k+1)S
�1(tk+1)P22(t

�

k+1) (19)

The matrix S(tk+1), as calculated in Equation (16), de-
pends only on quantities local to robots 1 and 2. Thus this
update can be performed locally at robots 1 and 2 which
actively participate in the update. It is not necessary for
the other robots to know about this update. Therefore the
communication is limited to robots 1 and 2 only. They
must exchange matrices P11(t

�

k+1) and P22(t
�

k+1) in order
for each of them to calculate the covariance of the resid-
ual, S(tk+1), required for the update.

2. The covariances of the rest of the robots (in this case
robot 3) remain the same:

P33(t
+
k+1) = P33(t

�

k+1) (20)

Thus, no computations need to take place at the rest of
the robots and no information from the exchange amongst
robots 1 and 2 needs to be communicated to any of the
rest of the group.

3. Cross coupling terms appear, changing the form of
the overall (centralized system) covariance matrix. The
new elements are:

P12(t
+
k+1) = P11(t

�

k+1)S
�1(tk+1)P22(t

�

k+1) (21)

P21(t
+
k+1) = P22(t

�

k+1)S
�1(tk+1)P11(t

�

k+1) (22)

P12(t
+
k+1) = P

T
21(t

+
k+1) (23)

These new elements represent the shared knowledge in

the robotic colony and need to be included in the calcula-

tions during the next propagation and a later update.

4.2 Propagation

In the previous section, we derived the equations for the
propagation of the initial, fully decoupled system. In this
section we will examine how Equations (4) and (12) are
modi�ed in order to include the cross-correlation terms
introduced after a few updates of the system. Starting
again from Equation (4) we have;

P (t�k+1) = �P (t+k )�
T + Qd =

"
�1P11(t

+
k
)�T1 + Qd1 �1P12(t

+
k
)�T2 �1P13(t

+
k
)�T3

�2P21(t
+
k
)�T1 �2P22(t

+
k
)�T2 + Qd2 �2P23(t

+
k
)�T3

�3P31(t
+
k
)�T1 �3P32(t

+
k
)�T2 �3P33(t

+
k
)�T3 + Qd3

#
(24)

where P (t�k+1) now contains cross-correlation terms

P (t�k+1) =

"
P11 P12 P13

P21 P22 P23

P31 P32 P33

#
(t
�

k+1
)

(25)

Equation (24) is repeated at each step of the propagation
and it can be distributed among the robots after appro-
priately splitting the cross-correlation terms:
Robot 1:

P11(t
�

k+1) = �1P11(t
+
k )�

T
1 +Qd1 (26)q

P12(t
�

k+1) = �1

q
P12(t

+
k ) (27)q

P13(t
�

k+1) = �1

q
P13(t

+
k ) (28)

Robot 2 q
P21(t

�

k+1) = �2

q
P21(t

+
k ) (29)

P22(t
�

k+1) = �2P22(t
+
k )�

T
2 +Qd2 (30)q

P23(t
�

k+1) = �2

q
P23(t

+
k ) (31)

Robot 3 q
P31(t

�

k+1
) = �3

q
P31(t

+
k
) (32)q

P32(t
�

k+1) = �3

q
P32(t

+
k ) (33)

P33(t
�

k+1) = �3P33(t
+
k )�

T
3 +Qd3 (34)

After a few steps, if we want to calculate the (full) cross-
correlation terms of the centralized system, we will have
to multiply their respective components. For example:

P32(t
�

k+1) =

q
P32(t

�

k+1
)

q
P23(t

�

k+1
)
T

(35)



4.3 Update

If now we assume that robots 2 and 3 are exchanging
relative position and orientation information, the residual
covariance matrix is updated as:

S(tk+1) =
�

0 I �I
� � P11 P12 P13

P21 P22 P23
P31 P32 P33

�
(t
�

k+1
)

�
0
I

�I

�
+ R23(tk+1)

= P22(t
�

k+1
) � P32(t

�

k+1
) � P23(t

�

k+1
) + P33(t

�

k+1
) + R23(tk+1) (36)

In order to calculate matrix S only the covariances of
the two meeting robots are needed along with their cross-
correlation terms. All these terms can be exchanged when
the two robots detect each other, and then used to calcu-
late the S matrix (N � N instead of 3N � 3N ). For the
covariance update we apply Equation (15) again, yielding
the �nal formula:

P (t
+
k
) =

�
P11 � (P12 � P13)S

�1(P21 � P31)

P21 � (P22 � P23)S
�1(P21 � P31)

P31 � (P32 � P33)S
�1(P21 � P31)

����
���� P12 � (P12 � P13)S

�1(P22 � P32) P13 � (P12 � P13)S
�1(P23 � P33)

P22 � (P22 � P23)S
�1(P22 � P32) P23 � (P22 � P23)S

�1(P23 � P33)

P32 � (P32 � P33)S
�1(P22 � P32) P33 � (P32 � P33)S

�1(P23 � P33)

�
(t
�

k
)

(37)

This centralized system covariance matrix calculation can
be divided into 3(3+1)=2 = 6, N �N matrix calculations
and distributed among the robots of the group.4 Finally,
the calculation of the Kalman gain (Equation 13) can be
split to the following 3 equations:

K1 = (P12 � P13)S
�1 (38)

K2 = (P22 � P23)S
�1 (39)

K3 = (P32 � P33)S
�1 (40)

5 Experimental Results

The proposed collective localization method was imple-

mented and tested in simulation for the case of 3 mobile

robots. The most signi�cant result is the reduction of the

uncertainty regarding the position and orientation esti-

mates of each individual member of the group.

The 3 robots start from 3 di�erent locations and they

move within the same area. Every time a meeting occurs,

the two robots involved measure their relative position and

orientation. Information about the cross-correlation terms

is exchanged among the members of the group and the

distributed modi�ed Kalman �lters update the pose es-

timates for each of the robots. In order to focus on the

e�ect of the collective localization algorithm, no absolute

localization informationwas available to any of the robots.

Therefore the covariance of the position estimate for each

of them is bound to increase while the position estimates

4In general M(M + 1)=2 matrix equations distributed among M

robots, thus (M + 1)=2 matrix calculations per robot.
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Figure 1: Collective localization position updates for

robots 1 (�) and 2 (o).

will drift away from their real values.

At time t=320 robot 1 meets robot 2 and they exchange

relative localization information. At time t=720 robot 1

meets robot 3 and they also perform collective localiza-

tion. As it can be seen in Figure 2, after each exchange of

information, the covariance, representing the uncertainty

of the position and orientation estimates, of robots 1 and

2 (t=320) and 1 and 3 (t=720) is signi�cantly reduced.

Robot 1 that met with other robots of the group twice,

has signi�cantly lower covariance values at the end of the

test (t=1000).

Finally in Figure 1 parts of the real and estimated tra-

jectories of robots 1 and 2 before and after they meet are

shown. When they detect each other, the localization es-

timates are updated and the di�erence between the next

position estimate and the real trajectory is signi�cantly

reduced.

6 Conclusions

In this paper, a new method for cooperative mobile
robot localization was presented. In order to improve the
overall localization accuracy, a team of mobile robots was
initially treated as a centralized system. A single Kalman
�lter was used to optimally combine the information gath-
ered by all the sensors distributed among the robots of this
group. The transition to a fully distributed system of M
modi�ed Kalman �lters (one for each robot) was then de-
scribed.

The application of the collective localization approach
results in groups homogeneous as far as the type and
amount of knowledge shared by its members while there
is no homogeneity requirement for the members them-
selves. Within the proposed framework, each robot propa-
gates the uncertainty related to its motion independent of
the other robots. The individual uncertainty propagation
is decentralized and depends on quantities local to each
robot. This way the overall system has increased 
exibil-



ity and can support collective localization of homogeneous
as well as heterogeneous groups of robots. The motion
of di�erent robots can be described by di�erent models
depending on their particular capabilities, mission, local
area morphology, etc. Similarly, each robot can carry dif-
ferent sets of sensors described by di�erent models. The
individual, local updates are also carried out without any
communication with other members of the group.

Exteroceptive sensing allows for relative positioning
and this introduces localization coupling within the group.
When two robots sense each other, we have a shared, dual,
coupled update that has global characteristics compared
to a local update that takes place when one robot detects a
landmark, for example. Every time two robots meet they
exchange information not only for themselves but also for
the rest of the group (cross-correlation terms). These ses-
sions cause di�usion of the overall certainty amongst all
the robots and push toward a more homogeneous (in terms
of positional knowledge) robotic colony.
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Figure 2: Collective localization results: The covariance of the x (plots 1, 4, 7), y (plots 2, 5, 8), and � (plots 3, 6, 9)

estimates for each of the three robots in the group.


