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Abstract

Kidneys are the most prevalent organ transplants,
but demand dwarfs supplKidney exchangesn-
able willing but incompatible donor-patient pairs
to swap donors. These swaps can include cycles
longer than two pairs as well, and chains triggered
by altruistic donors. Current kidney exchanges ad-
dressclearing (deciding who gets kidneys from
whom) as an offline problem: they optimize the
current batch. In reality, clearing is an online prob-
lem where patient-donor pairs and altruistic donors
appear and expire over time. In this paper, we study
trajectory-based online stochastic optimization al-
gorithms (which use a recent scalable optimal of-
fline solver as a subroutine) for this. We identify
tradeoffs in these algorithms between different pa-
rameters. We also uncover the need to set the batch
size that the algorithms consider an atomic unit.
We develop an experimental methodology for set-
ting these parameters, and conduct experiments on
real and generated data. We adapt the REGRETS
algorithm of Bent and van Hentenryck for the set-
ting. We then develop a better algorithm. We also
show that the AMSAA algorithm of Mercier and
van Hentenryck does not scale to the nationwide
level. Our best online algorithm saves significantly
more lives than the current practice of solving each
batch separately.
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79,000 patients await a kidney. In 2008, 4,268 died waiting.

People have two kidneys, but a person can live fine with
just one. This has beget the practice of voluntary live-dono
kidney transplants. However, usually willing donors (even
from within the same family) are incompatible—due to blood
type, tissue type, or other reasons—uwith the patient. ewrth
more, buying and selling of organsis illegal in most colayi
including the US.

Kidney exchangesave recently emerged as a way of mit-
igating this problem. They enable willing but incompatible
donor-patient pairs to swap donors. These swaps can in-
clude cycles longer than two pairs as well, and chains trig-
gered by altruistic donors. In 2007, Abraham, Blum, and
Sandholm developed an algorithm that can optimally solve
the NP-complete kidney exchangkearing problem (decid-
ing who gets kidneys from whom) on a nationwide sdale
However, that algorithm, and, to our knowledge, all current
kidney exchanges, address the clearing problem as an offline
problem: whenever they optimize, they optimize the current
batch as if it were the last. In reality, clearing is an online
problem where patient-donor pairs and altruistic donors ap
pear and expire over time.

We prove that no prior-free algorithm can do sufficiently
well on this online problem. Therefore, we leverage the ex-
cellent probabilistic information that is available (albblood
and tissue type distributions, etc.). Conceptually thfsrin
mation could be incorporated in the classical way into a imult
stage integer stochastic program which would then be solved
to come up with the optimal plan. Unfortunately, such true
stochastic optimization techniques are not capable of effi-
ciently solving problems of the size required in this donrain
In contrast, online stochastic algorithms are suboptinul b
scalable ways of solving stochastic integer progré®s, 8,

The role of kidneys is to filter waste from blood. Kidney dis- 9,17. The idea is to sample a subset of the future scenarios
ease is common around the world and often lethal. Death caftrajectories), solve the offline problem on each of them, as
be postponed by dialysis treatment, but the quality of lifie 0 sign a score to each possible action, and select the acabn th
dialysis is extremely low, and only 12% of dialysis patientsis the best overall.

survive 10 year$13]. Furthermore, dialysis treatment is ex-  |n this paper, we study such algorithms in the large, with
pensive, and it is nearly impossible for dialysis patientsé  application to kidney exchange. Our problem differs from
productive in society.

The Only permanent cure for kidney disease is a trans- 1ynited Network for Organ Sharing (UNOS)ww.unos.org.
plant. Kidney transplants outnumber all other organ trans-  2jn fact, Algorithm 3 in this paper approximates such true
plants combined. Unfortunately, demand for deceased+don@tochastic optimization, and as we will show, even that agiprate

kidneys dwarfs supply. In the United States alone, ovewariation does not scale well.



most prior work in that the action space is enormous, and th Problem for mulation

sequences of events and actions are very long. We present

approaches for dealing with that. We identify tradeoffs in A kidney exchange can be represented as a directed graph.
these algorithms between different parameters, espethi@|  Figure 1 shows an example. Each patient-donor pair forms a
lookahead depth and the number of sample trajectories. Weertex in the graph. Each edge (- v) is assigned a weight
also uncover the need to set the batch size that the algehat denotes the goodness of the donor kidney in vertex
rithms consider an atomic unit. We develop an experimentathe patient in vertex.. Altruistic donors can be included as
methodology for setting these parameters, and conductexpe

iments on real and generated data. We adapt the REGRETS

algorithm[2, g for the setting. We then develop a better al- m
gorithm. We also show that the AMSAA algorithi8] does

not scale. e G

Our best online algorithm saves significantly more lives
(both in the sense of statistical significance and practial
portance) than the current practice of solving each batga-se °
rately. One reason for this is that the current approach is my \ e
opic rather than anticipatory. Furthermore, the current my
opic approach keeps the pool in a depleted state where the e
remaining patients tend to be difficult to match (for ins&@&nc
they have difficult-to-match blood and/or tissue types)tt Pa @
of the benefit of viewing the problem as an online problem is
that such depletion should occur only to an effective extent Figure 1:Example kidney exchange graph.

11 Additional related research vga_rtices with one edge of the kind dgsqribed above; in ad-
dition, a dummy edge of weight zero is included from each
such vertex to each donor-patient vertex. The weight of a cy-

Several authors have studied the problem of solving stechagle, w., is the sum of the weights of the edges participating

tic versions of various combinatorial problems. For a classn it. In the offline problem, the goal is to find a collection

of combinatorial optimization problems, Gupta et al. give of vertex-disjoint cycles that has maximum collective weig

a framework for converting an approximation algorithm for under the constraint that no cycle is of length greater than

the offline problem into an approximation algorithm for the some capL. A cap is used because longer cycles are logis-

stochastic version of the problef6,7]. The main idea is tically more difficult or infeasible (because all operatdn

to form a problem instance by sampling from the distribu-the cycle have to be conducted simultaneously so no donor

tion of future scenarios, solving the deterministic prable has the opportunity to back out) and because longer cycles

on each scenario and customizing the solution once the aare more likely to fail due to last-minute incompatibilitg-d

tual scenario has been observed. That paper gives thedretiaection. Most current kidney exchanges, and the proposed na

guarantees on the quality of the solution, provided thaafie tionwide kidney exchange by thgnited Network for Organ

proximation algorithm for the offline problem satisfies eémt  Sharing (UNOS)usually usel. = 3. The problem is NP-
properties (which may not hold for kidney exchange). Theircomplete forL > 3, but can be optimally solved in practice
approach is computationally prohibitive for kidney excban at a nationwide scale using a recent algoriftifn

because it involves running the offline algorithmonthe grap |, this paper we present a solution to the stochastic version

obtained by taking the union of a number of scenarios. of this problem. At each time step, new vertices can appear

There has also been a bit of recent work on online kid-and existing ones can expire; the distribution of this pssce
ney exchange.Unver studies the problem under the objec-is known (not in closed form but in a form that supports sam-
tive of minimizing average waiting co4tll]. The paper pling). The objective is to choose a collection of cyclegwit
ignores tissue type incompatibility and assumes patieats dmaximum weight in expectation. L€ét, denote the graph at
not expire. Assuming Poisson arrivals, the paper interesttime ¢, and letP be the distribution according to which the
ingly proves that certain dispatch rules—which do not usegraph changes over time. Lét(L, G) be the set of all cy-
optimization—constitute an optimal policy. Zenios stiglie cles inG no longer tharL. Introduce &)/1 variablex, for
kidney exchange restricted to 2-cycldss]. He models the each cyclee € C(L,G). LetC(L) = UL ,C(L,G:) and
exchange as a birth and death process, where no patients é%-= U;_,V;. The online problem is

pire but long wait is penalized by a fixed cost. His objects/e i

to rlnax.imize average quality—adjusted life years. The oatim max Ep[ max Ep[.. max Z weze]

policy is analytically derived: it uses no optimization@lg  ceC(L,Go) ceC(L,G1) c€C(L,Gr)

rithms. It is a simple policy that limits the number of patien .

that can take par? inppair\yvise exchange. Patients npot admit- subject to y | we <1, Vo €V

ted to that exchange queue for altruistic donors (the waig ti cvice

here is assumed to be zero). with ¢ € {0,1}, Ve € C(L)



3 Noprior-free online algorithm performs tion that we have. Indeed there is excellent informatiorilava
well able about the blood and tissue type distributions (and ex-
piration rates, etc.). We will discuss these in detail in the
. . ; . experimental section. Conceptually these could be incorpo
retical computer science is to take a prior-free approatie. T rlated into a stochastic program which would then be solved.

algorithm tries to do as well as possible, and a hypOthet'caUnfortunately stochastic optimization is very far from kca
adversary picks the sequence of events. Performance is con

pared against a solution that is optimal in hindsight:dbm- g to problems of the size addressed here. Recently, sample

i tiois th luti litv of the hindsidht opti trajectory-based online stochastic algorithms have cttch
petiive raliois the sofution quality ot the hindsIgnt opimum 0 rat for solving stochastic integer prograf@iss, 8, 12.

Unlike stochastic optimization, they are suboptimal aral-sc

, X X Yple. They are relatively easy to implement, fast, and can
prior-free algorithm can do well: leverage any—in particular the best—available algoritfons
Proposition 1 No deterministic prior-free algorithm can solving the offline problem.

achieve a competitive ratio better thdny2. The main idea behind these algorithms is to sample a sub-

Proof: We construct an instance on which no deterministicSet of the future scenarios (trajectories), solve the @flin

algorithm can achieve ratio better thari2, see figure. Vertex Problem on each of them, assign a score to each possible ac-
tion, and select the action which is the best overall. The fol

lowing subsections present specific algorithms in this Fami

The usual approach to dealing with online problems in theo

‘ O These algorithms are targeted to scale to the large.
e v L : 4.1 Algorithm 1 (adaptation of REGRETS)
T . Let G, be the graph representing the kidney exchange at time
‘ Q stept and P denote the distribution according to which the

graph changes over time.
A enters up front and remains for the entire duration. VeBex RgthEq—séaall?goor'rtiPthvzvead'fusirsa'iz ﬁ%ﬂgg?ﬁ}ﬂg gnc;;fhe

Z?tfrr?huag ]ctrr?;;?jsv\évreslgrgu%gyoglryrﬁ;;iIr?ck))tleb];(i)r:; ili,m;ti?gé Oftion of REGRETS is not scalable here because in our problem
lengthL thatincludes A. The algorithm has to decide whetheran action would correspond tccallectionof cycles—and the

to take the short cvele (e, 2 le A-B) f ; number of such collections is exponential in the number of
o take the short cycle (i.e., 2-cycle A-B) for sure for a piiyo cycles (which itself i9(|V|%)). This would make the action
of 2, or wait for the unsure long cycle with potential payoff

) : ) ace prohibitively large: exponential in the size of thauin

L. If Fhe algorithm decides to walt, the adversary does nof?-g ovePcomethis,XNe i%steagassign a score to each cycle, and
brmg.ln the Io_ng cycle, so the ratio would l%e: co. If the . then finally select a set of cycles that has the maximum score.
algorithm decides to take the short cycle, the adversangkri

in the long cycle, so the ratio would Hg. The latter ratio is Algorithm 1 (adaptation of REGRETS)

better. Thus the algorithm always takes the short cyclem  |nput: GraphG,, distribution P over future graphs until tim@',

.. . . . and a non-negative constant
Proposition 2 No randomized prior-free algorithm can Output: A set of vertex-disjoint cyclegc: , c, . . ., cn } in Gy

achieve a competitive ratio better th&h—=2. 1. For each cycle € G, setscore(c) — 0

Proof: Consider the proof above. Now the algorithm can ran-2- USiNgZ, generaten scenarioger, 2, .. ., em }
domize between taking the short cycle (with some robabil-?" For each scenariq do
9 Y P 4. S — solution of the offline problem ofiG¢, ; }

ity p) and waiting for the unsure long cycle (with probability 5. Fore € Gy N S, setscore(c) — score(c) + value(S)
1 — p). If the adversary does not bring in the long cycle, 6. Forc € Gy — (G¢ N S), setscore(c) — score(c) — &
the ratio iSp—?Q; if he does, the ratio ip_2+(€,p)L- The al- 7. Using another integer program, determine a set of
gorithm’s best strategy is to make the adversary indifferen  vertex-disjoint cycles with maximum score, and return it
between these choices?, = ——Lf—— ie.,p = 2222,
D p-2+(1—p)L L . .
Thus the competitive ratiop?—Q, is 2LL72' . In Step 4, any offline solver can be used. In parucular, we
use the offline solver that was recently developed spedifical
One familiar with competitive ratios might argue that the for kidney exchangekl]. It can optimally solve problems at
ratios in the above propositions are not too bad. Howeverhe projected size of the US nationwide kidney exchange.
losses that might be tolerable when measuring, say, compu- Step 6 is to ensure that a cycle that is optimal in a very
tational resource waste, are not acceptable here sinceale demall fraction of scenarios does not get selected. We exper-
in human lives. Even witll, = 3, Proposition 2 shows that imented with different values of using the generated data
any prior-free algorithm might only save (on average over th set and methodology described lateFhe results are shown
algorithms randomization) 75% of the lives that can be save

3For these experiments, the parameters (explained in datail
; ; ; on in the paper in the experimental section) were set asiisliThe
4 Online StQChaStIC alg_orlthms o _ lookahead was 10, the number of samples was 50, and batch size
Because no prior-free algorithm can do sufficiently well in was 10. The death rate was set so that without a transplat,of 2
this domain, we want to leverage the probabilistic informa-the patients survive 10 years.



in the following table. In the rest of the experiments in this4.3 Algorithm 3 (adaptation of AM SAA)
Recent theoretical results relate the solution quality of

0 Average numbel Standard deviation REGRETS-based algorithms to a quantity called@ebal

of lives saved Anticipatory Gap (GAG)8]. The analysis applies to both
0 244.3 3.36 Algorithm 1 and 2. The GAG is a property of the problem
8 248.0 3.32 and of the probability distributionf, that describes how the
15 245.7 3.45 problem changes over time:
20 242.3 4.87
50 | 243.6 3.12 GAG = Ep[maz. Y _ Ay(Gy)]
100 | 242.8 4.12 t
500 | 208.3 3.79 A,(G;) is theanticipatory gapof a stateG;. It is defined as

paper, we used = 8. Ay(Gr) = mine A(Gy, c)

Algorithm 1 is not optimal. We provide a counter-example Here A(G¢, c) is the expected local loss of state action pair
on the graph of Figure 1. Let the graph at timeontain the (G, ¢):
vertices{A, B,C, D}. After one time stepA expires and
either vértices{E, F}} or vertices{G, H} enter (with equal A(Gr,c) = Ep[O(Gr,€) — O(Gr, ¢, €)|GY]
probability). In the former scenario the optimal actionast  This is the difference in solution quality produced by
choose cycled — C and cycleB — £ — F. In the latter  choosing the best action at stafg versus actiorr. Intu-
scenario the optimal action is to choose cyde- B and jtively, A,(G;) is small if there exists an action in stafg
cycleC — G — H. However, the optimal action at tinteis  that is close to optimal in most of the scenarios. Due to the
to choose cyclel — B — C' — D since it has expected weight huge action space in kidney exchange, this will likely not be
4. The other two cycles at timehave expected weight+ 2 the case for a reasonable probability distributinThus the
each. Hence, Algorithmwill not select the optimal action— A,(s¢) are likely large, yielding a high GAG.
because it is not optimal in any one of the trajectories. §Thi Therefore, we implemented th&MSAA algorithm [9],
same example serves to prove that the original REGRET$hich specifically addresses a high GAG. It tries to the solve
algorithm, which would treat collections of cycles as aetip  the multi-step problem directly by approximating it using

would also be suboptimal.) sample trajectories and then solving it as a Markov Deci-
sion Process. Again, in our adaptation of it, individuallegc
4.2 Algorithm 2 (rather than collections of cycles) are actions.

The above counter-example motivated us to try to develop|gorithm 3 (adaptation of AM SAA)
a better algorithm. The idea is to optimize the scenarios fO[nput: GraphG, and distributionP over future graphs until timé’
each action (i.e., cycle) separately rather than optirgiziech ~ Output: A set of vertex-disjoint cyclegc, cz, . . ., ¢n } in Gy
individual scenario separately: 1. UsingP, generaten scenariog = {€1,€2,...,€m}
2. For each state do // Construct an approximate MDP

3. if sis a final state, then(s) < offline solution in state

Algorithm 2 | | f the offli uti

Input: GraphG; and distributionP over future graphs until tim& e sev(s)”<— average value of tne ?h Te SO utlondc_)ver
Output: A set of vertex-disjoint cycle§ci, ca, ..., cn} in Gy all scenarios Ire assuming that no vertex dies
1. UsingP, generaten scenariogcr, cs, . .., em} 4. Solve that MDP using tree search starting at ve@iex

5. For each cycle € G, setscore(c) «— Q(Gt, c)
6. Using another integer program, determine a set of
vertex-disjoint cycles with maximum score, and return it

2. For each cycle € G do
2. Setscore(c) — 0
3. For each scenarig do
4. S — solution of the offline problem ofiG; — ¢, €;}
5. setscore(c) « score(c) + value(S) + value(c)
6. Using another integer program, determine a set of
vertex-disjoint cycles with maximum score, and return it

In Step 4, various search strategies can be used. As in the
prior paper on AMSAA[9], in our experiments we use learn-
ing depth first search (LDF$¥]

By default we again include a dummy action.

We also include a dummy action in the set of possible ac- .
tions at each step. It is for the case where choosing no cycle  EXperiments
is the most valuable action. A dummy action has proven usewe conducted experiments on data of two kinds. The first
fulin prior research on online problems in other contd®ls  kind is a real data set that we obtained from the largest ntirre
We will show its usefulness in our domain in the experimentakidney exchange in the US by helping them conduct exchange
section of this paper. clearing. The data set corresponds to almost two years bf rea
For Step 5 of Algorithm 2, we also experimented with atime. Because even the largest current real kidney exchange
variant where we do not include the term-talue(c)”. It is relatively small—compared to the projected size of the US
performed very similarly to the main version of Algorithm 2 nationwide kidney exchange—that data set only has 158 pairs
shown in the pseudocode above. and 11 altruistic donors (and 4,086 edges).



We also benchmarked on larger problems. This secondreasing the lookahead too much actually decreases solutio
kind of data was generated by the most commonly used germguality even if one keeps the number of sample trajectories
erator for the problem, which was designed by others toconstant!
closely mimic the real-world populatiofil0]. Briefly, pa- We ran experiments to choose a good value for these two
tients are generated with a random blood type, gender, angarameters for each of the algorithms separately. For these
probability of being tissue-type incompatible witharamdp  experiments we fixed the batch size tollodor the generated
chosen donor. Each patient is then assigned a donor with data set, and for the real data set. (As explained above, the
random blood type. If the patient and donor are incompati-death rate was set so tH&% survive in10 years.) Algorithm
ble, they join the exchange. We generated a training set af did not scale to the generated data set, so we only ran it
510 pairs, 25 altruistic donors, and 15,400 edges. We alson the real data. The results are shown in Tables 1 and 2.
generated a test set of the same size. They show that there are diminishing returns to the number

The real and generated data sets differ not only in sizepf samples, as expected. They also show that increasing the
but also the real data has much lower average degree in theokahead too much (for a given number of samples) actually
exchange graph. This is because current greedy approach@screases solution quality.
to matching pairs in kidney exchanges leave a depleted pool

where the remaining patients tend to be difficult to match Lookahead| Samples| Lives saved by| Lives saved by
(they have difficult-to-match blood and/or tissue typesjtt P Algorithm 1 Algorithm 2
: il . 5 10 2238% 254 | 2345 3.25
of the benefit of viewing the problem as an online problem— 5 20 2946+ 3.15 23494 3.27
as we do in this paper—is that such depletion should occur 5 50 228.3+2.37 23594 2.97
only to an effective extent. o 10 ponarose | 2n8knl
We considered all transplants equally worthy, i.e., the 10 50 244.2 + 2.74 2432+ 3.29
weight of each edge in the exchange graph was set to one. 20 10 237.3+2.18 250.1 4+ 3.17
In our experiments, the exchange graph changes over time 29 20 238.64:2.94 2a9.44 3.25
per ) ge grapn ges 20 50 240.14+3.32 | 249.8+ 3.64
as follows. Initially the exchange starts with no verticés.
each time step a fixed number of vertices enter the graph. Table 1:Algorithms1 and2 on generated data.

Each vertex has a probability, of dying at each time step. In
each experiment, the value pfvas set to match the fact that

in reality, on a\(erage2% of patients survivea 0 year3[13]- ] Lookahead | Samples| Lives saved by| Lives saved by| Lives saved by
After some time, the exchange reaches steady state, ee., th Algorithm 1 Algorithm 2 Algorithm 3
number of donors (and patients) entering roughly equals the 5 % po2rlas | okl | 28403
number of QOnors (and pat|ents) Ieavmg. When there are not; 15 29.8+ 1.74 30.4+ 1.62 30.44 2.19
too many time steps left in the experiment, the algorithm’s j io gggi ;gz ggii igg gg-iﬂi 1l-é>9
lookahead reaches all the way to the end of the time horizon. , 15 274208 | 31£172 | 3164167
This might cause some special effects, so we exclude thatz 5 32.24+1.43 32.3+2.12 30.8+ 2.28
ramp-down phase from any steady-state analysis. 7 10 31.9+1.24 | 328+141 | 294+154
7 15 32.44+ 1.58 32.2+ 2.07 30.2+ 1.78

In what follows, we first tune the parameters of the algo-
rithms using the training set. We then compare the algosthm _
on the separate test set. In contrast, the real data setis rel Table 2:Algorithms, 2, and3 on real data.
tively small; hence for experiments on real data we use only
one set. Each reported numberin each table is an average overBased on these results, we picked reasonable values for the
ten runs, and the second number is the standard deviation. two parameters for each algorithm for each of the two kinds

of data (these parameter values were chosen based on the
5.1 Tuningthelookahead depth and the number best performance among the parameter combinations tested,
of sampletrajectories as shown in bold in the tables). These parameter settings wer

All of the online algorithms work by sampling a number of USed in the rest of the experiments.
scenarios into the future. This number is called saeple . .
size Also of interest is the parametrokahead which de- 5.2 Tuningthebatch size

fines how many steps into the future the algorithm sees, i.eAnother issue that we need to deal with in scaling online
how long each trajectory is. If an algorithm uses a largestochastic optimization into the large is that the horizén o
lookahead, it can make a more informed decisions. Howevepossible events is too long to conduct meaningful lookahead
due to computational limitations one cannot sample all tra-on. To address this, we introduce the notion of batching, and
jectories. There is a tradeoff between number of trajeetori the associated algorithm parameter which we loatch size

and lookahead. One straightforward reason for this trddgof It defines how many arrivals the algorithm considers as one
that it takes more time to handle a deep trajectory than a shahtomic event. In principle, for an ideal algorithm the best
low one. A more subtle reason—demonstrated by our expematch size is one, but because the algorithms are computa-
iments, e.g., Table 1—is that increasing lookahead ineeas tionally limited and therefore cannot look ahead arbityari
the number of possible scenarios (exponentially), andether deeply (while ensuring reasonable coverage of the possible
fore for a given number of sample trajectories, the coveragérajectories with sample trajectories), it turns out to le¢tdr

of possible trajectories by samples decreases. Theréfore, to use a batch size significantly greater than one.



In practice, batch size determines how often the algorithrdummy action was removed (standard deviation 1.0%). So,
is run. For example, assuming thidt vertices enter the sys- the dummy action indeed helps save more lives. This is con-
tem every month and that the batch siz&Gsthe algorithm  sistent with prior experiments with dummy actions in other
will be run every two months. Therefore, one step of the algo-domains[3]. While in our experiments the dummy action
rithm will correspond to a time period of two months, and the helps only a small amount, that amount is statistically lyigh
death rate is adjusted accordingly to maintain the realdvor significant: in none of the 20 total runs did including the
fact that 12% survive 10 years. dummy action perform worse than not including it. For all

We ran a set of experiments to determine the appropriatthese reasons, for the rest of the experiments we leave the
batch size for each of the algorithms—including tfline-  dummy actions in.
based algorithmwhich runs the offline algorithm for each
batch as if it were the last—for each of the two kinds of data5.4 Comparing the algorithms
Tables 3 and 4 show that the number of lives saved increase, _ . . .
with batch size up to some point and then decreases. For eafhte! tuning each algorithm as described in the three subsec
algorithm and each kind of data, we ran experiments to sandiOns above, we compared the algorithms on the real data and
wich this best batch size, and we will use that batch size if?" & separate test set O_f the generated_data. We ran the gener-
the remaining experiments. As one might expect, the beﬁ[ed exchange for 51 virtual months, with vertices joining

batch size is significantly larger for the offline-based algo th€ graph per month. The real data was simulated forir-
rithm since the algorithm itself is myopic. tual months withb vertices joining per month. Each experi-

ment was repeated 10 times, and averages are reported.

Baich| Lives saved by| Lives saved by| [ Baich| Lives saved by _ The results are shown in Figures 2 and 3. The online algo-
Zize /;gggogtihrg :1;1 llk(l)ggogtjf;ms ‘215 size olfﬂim_ethbased rithms outperform the offline-based algorithm. Algorithm 2
. . . . algorithm : :
10 111.24+2.75 110.44 3.52 20 112.6+2.94 er|dS better results than Algorlthm 1.
12 116.4 + 3.12 115.84 3.25 40 115.4 + 3.89
15 115.84 3.22 118.24 3.73 45 111.84 4.36
18 110.24 2.92 1191 4+ 3.21 50 115.24 3.04
20 1105+ 3.1 116.3+ 3.14 60 105+ 4.02 250 ]
Table 3: Algorithms1 and2 (Left), and the offline-based
gorithm (Right) on generated data. 200 ,
Batch| Livessavedby| Livessavedby]| Livessavedby]| Lives saved by 3
size Algorithm 1 Algorithm 2 Algorithm 3 offline-based £ 150 &
algorithm % g
3 16.2+2.21 16.4+ 2.65 16.4+ 2.06 9.2+ 4.13 0 4 _ :
5 2044234 | 2134276 | 21+ 1.69 18+ 3.12 2 100 Z Algorithm 2 |
10 258+ 24 241+231 | 2224257 | 20.8+3.01 x ---Algorithm 1
15 2524266 | 26431 252 + 355 2344277 g Offline-based
17 24.34+ 2.98 25.84 2.63 22.84 2.46 22.84+ 2.56 A
20 22.64 2.57 25.24+2.7 21.842.74 22.44+ 2.62 50 EI‘I g
Table 4: Algorithmsl, 2, and 3, and the offline-based al¢ /
rithm on real data. 0
0 10 20 30 40 50

virtual months
5.3 Studyingtheimpact of the dummy action

As discussed, we supplemented the action set in Algorithms 5igure 2:Algorithms 1 and 2, and the offline-based algorithm
and 3 with a dummy action so the algorithms can decide t&" generateo! data. Standard_dewatlons are also shown for
make no matches and wait. On the downside, this increas&@ch data point. Steady state is from month 26 to month 35.
the size of the space of possible plans and thus (to an ex-

tent) decreases the coverage of possible trajectoriestoglac  In steady state on the generated data, Algorithm 2 outper-
sample trajectories (for the fixed lookahead and number oformed the offline-based algorithm by 13.0% (standard de-
samples). (Algorithm 1 and the offline-based algorithm doviation 2.2%). Algorithm 1 outperformed the offline-based
not need a dummy because they can choose to wait anywayajgorithm by 10.9% (standard deviation 2.0%).

To study the impact of the dummy action, we ran experi- Algorithm 3 did not scale to the generated data, so again it
ments with it included versus removed. In each experimentvas tested only on the real data. Overall, the results on the
we conducted 10 runs and report average performance. Weal (significantly smaller) data set are less conclusiver F
ran the generated test exchange for 51 virtual months, witlone, it is too short to establish a steady state of meaningful
10 vertices joining the graph per month. Solution quality of length. Overall, Algorithm 2 outperformed the offline-bdse
Algorithm 2 was 2.2% worse when the dummy action was algorithm by 6.5% (standard deviation 1.7%). Algorithm 1
removed (standard deviation 1.2%). We simulated the reabutperformed the offline-based algorithm by 3.2% (standard
data for31 virtual months with5 vertices joining per month. deviation 1.7%). Algorithm 3 outperformed the offline-bdse
Solution quality of Algorithm 3 wad.8% worse when the algorithm by 0.7% (standard deviation 0.1%).



sibility of other actions.) It would be interesting to useth
structure to design better and/or faster algorithms; thieect
algorithms are not specific to kidney exchange.
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Figure 3:Algorithms 1, 2, and 3, and the offline-based algo-[2]
rithm on real data.

While these improvements may seem small as percentages,
these savings represent human lives and are thus very signifi3]
cant from a practical perspective (and also statisticadjgis
icant). Furthermore, the improvement over current praatc
even greater because in current practice the batch sizbdor t
offline-based approach is ad hoc unlike the tuned batch size
for the offline-based approach here.

6 Conclusionsand futureresearch (5]

We showed how online anticipatory algorithms can save a sig-
nificant number of lives (both in the sense of statisticat sig
nificance and practical importance) via better online kidne
exchange clearing. Real-world nationwide kidney exchange[G]
have already adopted the scalable optimal offline algorithm
that our group developed for kidney exchange in 2007
The online anticipatory algorithms presented in this papef7]
thus have the real potential to serve as the next-generation
clearing algorithms for the world’s largest kidney exchasg
From the perspective of online anticipatory algorithms, ou
problem differs from most prior work in that the action space 8]
is enormous. We presented approaches for dealing with tha[t.
We identified tradeoffs in these algorithms between différe
parameters such as lookahead and the number of samples. \gﬁ
also uncovered the need to set the batch size that the alg
rithms consider an atomic unit. We developed an experimen-
tal methodology for setting these parameters, and conducte

experiments on real and generated data. We adapted the RE-Q]

GRETS algorithm for the setting. We then developed a better
algorithm. We also showed that the AMSAA algorithm does
not scale.

Future research includes extending the algorithms to evep) g

[12]

larger graphs. Since the current algorithms are still sohaw
computationally intensive, one approach would be to partit
the exchange graph into approximately independent compo-
nents (based on low weight graph cuts) and run the algorithm

on each of them separately. This is promising for kidney ex{13]

change since the graph is very sparse in practice.
Also, there is structure in the kidney exchange problem.
(For example, the feasibility of an action depends on the fea

1 References

David Abraham, Avrim Blum, and Tuomas Sandholm.
Clearing algorithms for barter exchange markets: en-
abling nationwide kidney exchangesCM EC-07

Russell Bent and Pascal van Hentenryck. Regrets only!
Online stochastic optimization under time constraints.
AAAI-04

Russell Bent and Pascal van Hentenryck. Waiting and
relocation strategies in online stochastic vehicle raytin
IJCAI-07.

Blai Bonet and Hector Geffner. Learning depth-first
search: A unified approach to heuristic search in deter-
ministic and non-deterministic settings, and its applica-
tion to MDPs.ICAPS-06

Craig Boutilier, David Parkes, Tuomas Sandholm, and
William Walsh. Expressive banner ad auctions and
model-based online optimization for clearirgAAI-08

Anupam Gupta, Martin Pal, R. Ravi, and Amitabh
Sinha. Boosted sampling: approximation algorithms for
stochastic optimizationrSTOC-04

Anupam Gupta, Martin Pal, R. Ravi, and Amitabh
Sinha. What about Wednesday? Approximation algo-
rithms for multistage stochastic optimizatiohPPROX-
RANDOM-05

Luc Mercier and Pascal van Hentenryck. Performance
analysis of online anticipatory algorithms for large mul-
tistage stochastic integer progranh3CAI-07.

Luc Mercier and Pascal van Hentenryck. Amsaa: A
multistep anticipatory algorithm for online stochastic
combinatorial optimizationCPAIOR-08

S Saidman, A Roth, T Sénmez, U Unver, and F Del-
monico. Increasing the opportunity of live kidney do-
nation by matching for two and three way exchanges.
Transplantation81, 2006.

Utku Unver. Dynamic kidney exchange. Mimeo, 2007.

Pascal van Hentenryck, Russell Bent, and Yannis Ver-
gados. Online stochastic reservation systeGRAIOR-
06.

Stefanos A. Zenios. Optimal control of a paired-kidney
exchange programManagement Sciengcé8(3), 2002.



