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Abstract
Many verifications of realistic software systems are monolithic, in
the sense that they define single global invariants over complete
system state. More modular proof techniques promise to support
reuse of component proofs and even reduce the effort required to
verify one concrete system, just as modularity simplifies standard
software development. This paper reports on one case study apply-
ing modular proof techniques in the Coq proof assistant. To our
knowledge, it is the first modular verification certifying a system
that combines infrastructure with an application of interest to end
users. We assume a nonblocking API for managing TCP network-
ing streams, and on top of that we work our way up to certify-
ing multithreaded, database-backed Web applications. Key verified
components include a cooperative threading library and an imple-
mentation of a domain-specific language for XML processing. We
have deployed our case-study system on mobile robots, where it in-
terfaces with off-the-shelf components for sensing, actuation, and
control.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams - Mechanical verification; D.2.4 [Software Engineering]:
Software/Program Verification - Correctness proofs

Keywords modular program verification; proof assistants; thread
libraries; Internet servers; domain-specific languages

1. Introduction
Program verification for realistic systems is very labor-intensive.
The proof engineer faces all of the usual challenges of the software
engineer and then some. Typically a machine-checked proof of pro-
gram correctness requires more human effort than implementing
the software system in the first place. Modularity is an essential
part of the programmer’s arsenal in mastering complexity, and we
might ask for the same in verification. We want a program’s proof
to mirror its natural decomposition into encapsulated components.
Each component should be proved to respect a formal interface,
and thereafter we reason about the component only through its in-
terface. Not only does this style allow us to reuse component proofs
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in verifications of different full systems, but it also frequently low-
ers the effort to verify just one system, for the same reason the au-
thor of a program with a special-purpose data structure may choose
to encapsulate that data structure in its own class or module, even
with no expectation for future reuse in other programs.

The most recent impressive system verifications are not mod-
ular. The L4.verified [22] and Verve [37] projects have both veri-
fied operating-system kernels with different semi-automated proof
tools. Their proofs are structured around global invariants relating
all state of all system components, both in the kernel and in relevant
parts of applications. When one part of a kernel changes, the global
invariant must often be modified, and the proofs of all other com-
ponents must be reconsidered. Ideally, proof automation is able to
use already-written annotations and proof scripts to reconstruct the
new proofs, but in practice the proof engineer is often required to
revisit old proof details of system modules beside the one he has
changed. Such coupling between proof pieces is undesirable, and
we instinctively feel that it should be avoidable for certain kinds of
changes, like applying an optimization that does not affect a com-
ponent’s API-level behavior.

A variety of impressive results have also been published for
modular verification systems. Modular program logics have been
demonstrated for a variety of tricky features of low-level code in-
cluding dynamic thread creation [9], function pointers [29], stack-
based control operators [12], self-modifying code [3], garbage col-
lection [28], and interrupts [10]. However, these past projects never
applied modular verification at scale, certifying a full system of in-
terest to end users. In theory, the frameworks were set up to allow
black-box linking of proofs about systems infrastructure and appli-
cations, to produce full-system proofs, but the devil is in the details.
This paper is about those details.

We present the first realistic case study in modular mech-
anized program verification, establishing properties of a de-
ployed application. What exactly we mean by “realistic” we will
spell out below. One key element is separate proof of an application
and reusable systems infrastructure. In our case, the application is
a database-backed dynamic Web application and the infrastructure
is a cooperative multithreading library. One subtle source of dif-
ficulty is supporting infrastructure that itself needs to play nicely
with other modules of infrastructure, some of which may not even
have been written or specified yet. Contrast that complication with
the L4.verified [22] and Verve [37] proofs, which show correctness
of OS kernels assumed to have exclusive control over all privileged
elements of machine state; or the proof of the CompCert C com-
piler [23], which assumes that no other compiler will be used to
produce code in the final program. Other elements of realism have
produced further challenges, which we needed to solve on the way
to deploying an application with real users who are not formal-
methods experts.



What properties would we expect to see of modular verifica-
tions, in a hypothetical future world where such activities are stan-
dard, at least for code of particular importance?
• Not all verified components will have theorems at the same

level of detail. The reason is the classic formal-methods com-
plaint that “a word processor does not have an obvious speci-
fication worth proving.” Also, different parts of a system may
be of varying importance, where the proof engineer wants to
invest more effort in more important components via more pre-
cise theorems.

• Not all software in the final system will be verified. It is
necessary to have some kind of “foreign function interface” to
connect to conventional components.

• There will be further modular structure within infrastruc-
ture components, and this structure must be designed to
facilitate effective reasoning in client code. For instance, in
the components of a thread library, we need to think carefully
about which interfaces to assign to the data structures used to
implement the scheduler, where we feel pressure to make the
interfaces as weak as possible to minimize proof effort. How-
ever, we are building these modules so that they may eventually
be linked with client code, where we feel pressure to make the
infrastructure interfaces as strong as possible to give the client
flexibility.

• Some components will be implemented in domain-specific
languages (DSLs), but we do not want to have to trust anything
about those languages or their implementations. Our case study
uses a DSL for declarative XML processing and access to a
relational database.

• Most proof details should be automated. It is unacceptable to
require detailed manual proof for each line of program code.

• Most importantly, we must actually link our proofs of infras-
tructure components with proofs of applications, to form
full-program theorems. A proof of infrastructure is only as
good as the sorts of proof composition it enables.

To the best of our knowledge, no past work in modular verifica-
tion has produced a runnable case study demonstrating any of the
above principles, whereas ours involves all of them.

Our verification was done in the Coq proof assistant using the
Bedrock library [4, 5], whose basic functionality we review in
more detail shortly. Bedrock is a platform for producing verified
assembly code by programming, proving, and compiling entirely
within Coq.

Our application is a replacement for the so-called Master Server
of the popular open-source Robot Operating System (ROS) [32].
ROS is a platform for component-based implementation of robotics
software. Systems are structured as networks of nodes (processes)
that communicate only via message-passing (mostly with TCP).
Messages are largely exchanged via a publish-subscribe architec-
ture. Among other services, the Master Server processes node re-
quests to publish or subscribe to particular named topics. It must
maintain an in-memory database mapping node names to IP ad-
dresses and ports, mapping topics to their publishers and sub-
scribers, and so on. The Master Server speaks the XML-RPC pro-
tocol and runs as a Web server. Our version of it has been deployed
on several semi-autonomous vehicles and used to coordinate the
interaction of nodes for sensors, actuators, and control algorithms.

The system infrastructure we have verified is a cooperative
threading library. As unverified primitives, we assume system-call
functions for opening TCP sockets and sending and receiving byte
streams over them. Furthermore, we require system calls for ef-
ficient polling, to determine which sockets have new data to pro-

cess. All the assumed primitives beside polling are nonblocking.
On top of them, we implement a threading library that supports
the standard abstraction of threads blocking during calls to IO
functions, without forcing programmers to refactor their code into
continuation-passing style.

We prove a deep functional correctness theorem for the thread
library, where bugs can lead to particularly vexing misbehavior
where one thread overwrites the private state of another. To demon-
strate the possibility to mix proofs at different granularities in one
verification, we verify the application at the level of data-structure
shape invariants, mostly pertaining to the in-memory relational
database. We link the module proofs together into a whole-program
proof.

The unifying specification style applied to the final program is:
various points in the assembly code (e.g., entry labels of crucial
functions) are labeled with invariants in higher-order logic, for-
malizing properties of machine state that should always hold upon
reaching those points. We prove that, starting from an initial pro-
gram location whose invariant is satisfied, execution will proceed
safely forever, never reaching a program point whose invariant is
false, regardless of what nondeterministic results system calls re-
turn. These invariants can be at many different levels of speci-
ficity. Invariants within our thread library encode detailed require-
ments for functional correctness, while invariants in our applica-
tion code focus more on shape invariants of data structures like the
in-memory relational database. All invariants, throughout the pro-
gram, must formalize enough of essential isolation properties to
guarantee lack of corruption of other modules’ data structures.

Section 2 gives a more detailed outline of what we have proved,
and Section 3 reviews the relevant aspects of the Bedrock frame-
work. The next few sections present our main contributions:

• Section 4 explains how to extend Bedrock with a treatment of
system calls, to model interaction with conventional, unverified
libraries.

• Section 5 introduces three verification design patterns that we
found essential to meet our standard of proof modularity and
automation. We present a new style of definition for recursive
predicates that are higher-order and stateful, a new formal in-
terface style for components of thread libraries or others work-
ing with first-class code pointers, and a new take on classic
separation-logic [33] rules that is compatible with verifying the
building blocks of domain-specific languages.

• The next two sections present particular modular verification
architectures that we found work well for our components. Sec-
tion 6 presents the architecture of our cooperative threading li-
brary and Section 7 the architecture of our verified compiler for
a DSL for XML processing and relational database operations.

• Finally, one contribution that we want to highlight most is that
our proofs apply to real code that has been deployed outside a
formal-methods context. Section 8 gives some empirical analy-
sis of our proofs and executable code, which we do not believe
has been done before for modularly verified systems.

The complete source code of this project, for both rechecking
proofs and generating executable Linux programs, is available on
the project Web site:

http://plv.csail.mit.edu/bedrock/

2. System Architecture Summary
Before proceeding to technical details, we take a moment to sketch
the full layered architecture that we have verified. Different lev-
els of this architecture have separately encapsulated proofs, and we

http://plv.csail.mit.edu/bedrock/


combine all the proofs, treated as black boxes, into one final theo-
rem about a particular linked assembly program.

To summarize our results: the unifying verification formalism
is based on invariant checking. Programs contain assertions writ-
ten in higher-order logic. That is, they may express much more
intricate properties than in executable code-based assertions. Each
module contains code with assertions, plus assumptions on other
modules, plus proofs that the assumptions imply that no assertions
are violated while we are running code from this module. Our final
program is a large assembly source file (about 500,000 lines) where
each basic block begins with an assertion, but we produce this code
by (verified) compilation from higher-level languages with their
own notions of where assertions (again, in higher-order logic, not
just executable code) are allowed. The final theorem is that the as-
sembly code runs without assertion violations.

The Bedrock platform is fundamentally single-threaded at its
lowest level. We verify assembly programs with respect to a single-
core operational semantics. We do not take advantage of paral-
lelism as a performance optimization, but rather we use concur-
rency as a convenient program-structuring idiom, with multiple
threads running and participating in different IO interactions. The
thread model is cooperative, where threads yield control of the pro-
cessor explicitly by calling particular library functions.

We prove functional (partial) correctness of our thread library,
by giving it very expressive assertions, sufficient to enable easy ver-
ification of similar functional correctness of simple applications,
e.g., proving that a factorial program really computes factorial de-
spite context switches to other threads in the middle of its computa-
tion. Application assertions that we prove are about data-structure
shape invariants. For instance, we have an in-memory relational
database involving nontrivial use of arrays (with index arithmetic
unchecked at runtime) and linked lists. In future work we would
hope to establish stronger properties, but we also consider it worth-
while to demonstrate that modular verification is not “all or noth-
ing.” Rather, different parts of a system may be verified at different
granularities, while still allowing fully rigorous linking into useful
whole-program results.

Our proof is structured into several software layers. We expand
on each layer in later sections, but here is a quick summary.

1. Device Abstraction API. We begin from a nonverified layer
providing a set of system calls for basic, nonblocking access
to a network card and TCP/IP stack. Without impacting our
proofs, this layer could just as well be a simple interprocess
communication mechanism, as the details of message-passing
are orthogonal to the properties we verify.

2. Data Structures & Algorithms (systems-level). Our first veri-
fied layer considers core data structures, such as the free list of
a malloc() implementation and the FIFO queue at the heart of
a round-robin thread scheduler. Challenges here have to do with
reasoning about heap-allocated data structures, pointer aliasing,
and their connection to higher-level interfaces like “finite mul-
tiset” to be exported to higher layers.

3. Thread Context Management. Next, we provide an abstrac-
tion of queues of suspended threads. Verification challenges
center on the relationship between memory and first-class code
pointers (i.e., saved instruction pointers of threads). Each thread
must be considered to own some private memory but also to ac-
cess some shared memory, containing data structures that other
threads access as well. Functions at this level must break basic
abstractions of C-like code, implementing a coroutine style by
storing function return pointers in heap data structures, rather
than just returning to them as usual. The interface for this level
should hide such details, so that higher layers may pretend that
a normal function-call discipline is being followed.

4. Blocking IO Abstraction. The next challenge is to provide
a simple interface that enables easy overlapping of IO and
computation. While the lowest layer of our system exposes
nonblocking IO functions, we combine them with thread queues
to implement blocking IO plus dynamic thread creation and
destruction. The interface of this level should make blocking
IO calls appear very similar to the nonblocking calls, hiding
the fact that threads may suspend themselves into queues while
waiting for IO events to be enabled.

5. Data Structures & Algorithms (application-level). We imple-
ment a simple in-memory relational database, with standard
data structures for representing table state.

6. Domain-Specific Language (application-level). Our applica-
tion must both access the database and do parsing and gener-
ation of XML, since it provides an XML-RPC Web service.
We implemented a domain-specific language (DSL) called the
Bedrock Web Service Language (BWS), which more or less
allows us to execute intuitive pseudocode for such operations.
Our language has a verified compiler, so programmers do not
need to do any manual proof to generate a theorem correspond-
ing to a compiled application, showing that it maintains the in-
variants of the database, does not interfere with other threads,
etc.

7. Application Logic. Finally, we implement the ROS Master
service as a BWS program in about 400 lines of code, calling
BWS library tactics to automate its proof.

Layers 2 through 4 would be considered as a “user-level thread
library” in UNIX parlance. They implement functionality similar
to what has been treated in operating-systems-verification projects
like L4.verified [22]. Those projects have generally given opera-
tional specifications to kernels, via nondeterministic programs ex-
pressing how the kernel should respond to hardware and user-level
events. In the modular verification style we adopt here, we instead
specify all layers of the system in terms of invariants that are re-
spected and with preconditions and postconditions of functions.
The two approaches can be related to each other formally, and the
invariant style tends to make for easier verification of application-
level properties.

Of course, one can always ask for more specific theorems about
programs, and it is hard to come up with a formal characterization
of “full functional correctness for a full system.” For instance,
most theorems assume correctness of hardware at some level, and
our proof goes even further in considering a TCP/IP stack to be
outside the scope of what we verify. However, we do not assume
any other services traditionally provided by an operating system:
we need no virtual memory, no process preemption interrupts,
and so on. The program style is set up to be compatible with
“bare-metal” execution in future work. We start modestly with
our application-level specifications, as this case study is targeted
at learning pragmatic lessons about modular program proofs from
first principles.

3. Review of Bedrock
Our verification is done using Bedrock, a Coq library that provides
formal definitions, proof procedures, and syntax macros, which
together enable implementing, specifying, verifying, and compiling
low-level programs within Coq. At the core of Bedrock is the
Bedrock IL, a kind of cross-platform assembly language. In the
end, every program we verify is compiled to the Bedrock IL, and
our correctness theorems are stated in terms of this language and
its semantics. Every assembly basic block begins with an invariant,
and we prove that each invariant holds each time it is visited. We
compile Bedrock IL to 32-bit or 64-bit x86 assembly code for
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Figure 1. Syntax of the XCAP assertion logic

execution in Linux. That final translation is currently unverified, but
it works in a particularly simple way, essentially macro-expanding
each Bedrock IL opcode into a sequence of opcodes in the target
language.

Though the core features deal with an assembly language,
Bedrock provides infrastructure for combined verification and
compilation of an extensible C-like language, the Bedrock Struc-
tured Programming System (BSPS) [5], and our explanation in this
paper begins at that abstraction layer. We will write code that looks
broadly like C. It is important to note that these programs appear
within Coq source files that also contain theorem statements and
proofs; Bedrock takes advantage of Coq’s extensible parser to em-
bed syntax of other languages. We make further use of the same
facility to embed our new Bedrock Web Service Language, whose
verified compiler is also built on top of BSPS to avoid redundant
proofs about low-level code generation. We refer readers to past
Bedrock publications [5] for details of the lower abstraction levels
that we elide for the rest of this paper.

Bedrock implements the XCAP [29] program logic and inherits
the sorts of final program correctness theorems that XCAP sup-
ports. XCAP is designed for modular verification of programs that
manipulate code pointers as data. In such a setting, it is not ob-
vious what is an appropriate notion of specification for functions.
One might try defining a domain of specifications like P , (W *

P) ! S ! Prop. That is, a specification is a predicate over both
machine states S and mappings from program counters W to the
specifications of the associated code blocks. Some sort of ability
for specifications to refer to specifications or code of other blocks
is essential for verifying higher-order programs. Unfortunately, the
naı̈ve recursive equation has no solution, as a simple cardinality
argument shows.

Several more involved notions of specification have been stud-
ied. Many are based on step indexing [2], where otherwise troubling
recursive definitions are made well-founded by adding extra param-
eters counting steps of program execution that remain. XCAP, and
thus our work in this paper, is based on an alternative approach.
A specification language is defined with a deep embedding, or an
explicit definition of syntax trees in Coq. XCAP uses the PropX
language shown in Figure 1.

PropX is a second-order assertion language that includes most
of the usual connectives. Unusual features include dP e, for lift-
ing a normal Coq proposition into PropX; and {| ��. � |}w, a
kind of Hoare double, for asserting that the precondition of the
code block pointed to by w is the function ��. �, from Bedrock
IL machine states to PropX formulas. Introducing this connective
solves the problem with specifications that reference other speci-
fications. Just as a classic static type system allows, e.g., a map

function to constrain its argument using a syntactic function type,
XCAP allows, e.g., an assembly-level map function to constrain its
argument using a syntactic Hoare double nested within map’s pre-
condition. The soundness of either reasoning pattern is justified by
considering that, at each point in program execution, we are run-

// Standard TCP socket operations
fd_t listen(int port);
fd_t accept(fd_t sock);
int read(fd_t sock, void *buf, int n_bytes);
int write(fd_t sock, void *buf, int n_bytes);
void close(fd_t sock);

// epoll-style IO event notification
res_t declare(fd_t sock, bool isWrite);
res_t wait(bool isBlocking);

Figure 2. List of system calls

ning some code fragment that has been proved to meet a syntactic
specification, which accurately describes the current state.

Usually one wants a more semantic notion {��. �}w of a Hoare
double, saying not that the given specification is literally attached
to code block w, but rather that the given specification implies w’s
specification semantically. Both this notation and the Hoare triple
of separation logic [33] are defined by macro expansion to uses of
{| · |}· and other connectives.

Also crucial to the expressiveness of PropX is the inclusion
of second-order quantification over predicate variables ↵. For in-
stance, in our thread library verification, we use this feature to
quantify over invariants describing the private state of individual
threads. The semantics of PropX formulas is given by a set of
natural-deduction rules, where the second-order quantifiers receive
the peculiar treatment of being given introduction rules but no elim-
ination rules. As a result, elimination-style reasoning may only
be done at the meta level, in Coq’s normal logic, reasoning about
the syntactic definition of PropX deduction. Here is where we run
into the friction that seems always to accompany sound specifica-
tion regimes for higher-order, stateful programs, as the soundness
proof for the PropX deduction system cannot be adapted naturally
to cover elimination rules for these quantifiers.

In the rest of this paper, we often adopt convenient shorthands
like omitting lifting brackets d·e in PropX formulas, pretending that
we are instead working in a more conventional higher-order logic.

Earlier we sketched the basic idea of a verified module: a unit of
code annotated with invariant assertions, plus assumptions about
which invariants (e.g., as precondition-postcondition pairs) are as-
sociated with code labels in other modules, plus proof that our
own code never encounters assertion violations, if our assumptions
are accurate. XCAP instantiates this style to the case of assembly
code. Modules encapsulate sets of basic blocks, and a linking the-
orem justifies combining the basic blocks of two modules, when
their assumptions are consistent. Linking module A with B may
remove A’s assumptions about B, and vice versa. Eventually, we
link enough modules to empty out the assumptions, and we have a
closed program. The final theorem about a verified closed program
is that it never encounters violations of its invariant assertions. We
also get a standard memory safety property, where code never ac-
cesses unmapped memory addresses or jumps to nonexistent pro-
gram labels.

Once again, however, in this paper we take the assembly-level
details for granted, hiding below the abstractions that BSPS pro-
vides. We think in terms of verified modules, invariants, linking,
etc., for modules of C-like code.

4. System Calls
The last section reviewed existing tools that we rely on, and we now
turn to new contributions. The next few sections discuss elements
of modular verification that only show up when scaling to more
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Figure 3. Operational-semantics rule for read() system call

realistic systems. We begin here with the question, how do we
support integration with unverified support code?

We extended the Bedrock IL with new system calls, trusted
primitives outside the scope of our verification, upon which we de-
pend to provide an efficient interface to the outside world. Since we
focus on Internet servers, our system calls all relate to TCP network
connections and IO. These system calls expose only nonblocking
operations, with no controls on sharing resources (e.g., the network
card) across different software components. Instead, we implement
such controls in Bedrock and verify our implementations.

Figure 2 shows C prototypes for our trusted system calls. The
first group of functions provides a simplified version of the standard
BSD sockets API. We write fd t for the type of file descriptors,
standing here for open socket connections. Again we emphasize
that all of these socket operations are nonblocking. For example,
any call to read() will return immediately with an error code if no
bytes are available to read.

On top of this interface, we built a verified implementation of
the standard cooperative multithreading abstraction with blocking
IO. To enable efficient polling of the kind needed to implement
blocking IO, we use two additional system calls in the style of
Linux’s epoll1. A function declare() is called to register intent
to read or write a particular socket, producing a value called a
reservation. Later, when the program makes a wait() system call,
the result is a reservation whose associated IO operation is now
ready to execute. A call to wait() itself may either be blocking,
if the program has no other useful work to do without further IO
opportunities; or nonblocking, if there is further CPU-bound work
to do while waiting for IO. Conceptually, in the former case, the
system blocks until one of the reserved IO events becomes enabled,
at which point that reservation ID is returned.

We have extended the Bedrock IL semantics to include these
system calls as primitive operations, explained via one new operational-
semantics rule per system call. Figure 3 gives an example rule for
read(). The semantics is small-step, operating on states of the
form (m, pc, r), where m is memory, pc the program counter, and
r values of registers. Two registers in particular matter here, to
formalize the calling convention that read() expects: the stack
pointer Sp and the return pointer Rp, which stores a code address
to return to after the call.

The first few premises in Figure 3 formalize the precondition of
read(). In order, we have that the stack pointer indicates a valid
memory segment lasting at least 16 bytes (containing the values of
passed parameters), two particular stack slots contain the values of
parameters buf and len , and the memory region signified by those
parameters is valid. The remaining premises constrain the result
state of this step. We say that the stack pointer Sp is guaranteed
to be restored, and that only memory addresses within the passed
buffer may be modified.

Note that the rule is quite nondeterministic. We give a conser-
vative characterization of the unverified code that we link against.
In particular, rather than formalizing the effect of the function, we
just describe which parts of state it may change.

1 http://en.wikipedia.org/wiki/Epoll

Though it is convenient to state our final theorems in terms of
this relatively simple operational semantics, reasoning about this
style of specification directly is unwieldy, so we restate it in the
higher-level separation-logic [33] notation that Bedrock provides
(and we prove that each restatement implies the original). For a
concrete example, consider this Hoare triple that we prove for the
read() function.

{buf ?7! len}read(sock, buf, len){buf ?7! len}

The notation a

?7! n asserts that memory address a is the beginning
of an accessible memory region of n bytes.

The read() specification is not fully precise. For instance, the
file descriptor sock is not mentioned at all. We do not model the
detailed semantics of network access, instead conservatively mod-
eling reading from the network as nondeterministic. Our concern is
more with verifying the correct management of resources internal
to a single server, so specifications focus on memory layout and
transfers of control.

We implemented the system calls mostly in C, with some as-
sembly code to mediate between the Bedrock calling convention
and the native conventions of target platforms.

5. Three Verification Design Patterns
The last section discussed the operational semantics that we use
to state our final theorem. Recall that programs at any level of
Bedrock are annotated with invariant assertions, and we prove that
assertions always hold whenever we reach them. We now describe
three design patterns we developed in the course of choosing good
invariants and good ways of proving that they always hold.

5.1 Defining Higher-Order Recursive Predicates
A challenging question arising in many verification tasks is how
should we define recursive, stateful, higher-order predicates?
That is, we need self-referential logical predicates that constrain
both mutable state and first-class code pointers. Small changes in
the formalism may bring large consequences for the ease of proof
automation. Past work on verifying a thread library in XCAP [30]
faced this challenge by extending XCAP with a new recursive µ

connective. That specification style turns out to make automation
especially challenging, for reasons that we explain shortly.

The natural use of recursive predicates in our setting is for
queues of suspended threads. The associated data representation
predicate must be higher-order because it deals with code pointers
(for suspended threads) and recursive because the preconditions of
those pointers must mention the same predicate we are defining.
The last condition follows because we expect threads to be able
to call into the thread library, whose methods will naturally be
specified in terms of the same thread queue predicate.

In this section, we discuss sound encodings of such predicates,
using a simpler motivating example, that of a function memo table
structure that stores both a function and an optional cached return
value for it. We would like to expose our memo table as an abstract
data type with an abstraction relation that hides implementation
details. The code module implementing memo tables should expose
methods for allocating new tables, setting the function stored in
a table, and querying the return value of a current function. For
simplicity, we consider only stored functions with no arguments
and no private state, satisfying deterministic specifications.

Since we model simple pure functions, a number n serves as
a “specification” for such a function, giving the result that it must
always return, so it makes sense to define the invariant of memo
tables as a predicate MemoTable(p, n), over the pointer p to the
table and the function specification n. Here is a first cut at the

http://en.wikipedia.org/wiki/Epoll
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Figure 4. Sketch of a recursive higher-order specification for a
simple memo table

predicate definition in separation-logic style [33], which makes
intuitive sense but has a formal weakness that we come to shortly.

MemoTable(p, n) , 9f, c. (p 7! f, c) ^ (c 6= 0) c = n)
^ {MemoTable(p, n)}f{MemoTable(p, n) ^ result = n}

We write that a memo table is a record in memory, indicated by the
multiword points-to operator 7!. In particular, p points to a record
containing some values f , a function pointer; and c, a cache of the
current function’s result, or 0 to indicate that the cache is invalid.
The next clause of the definition enforces cache validity, where any
nonzero c value must match the expected function return value.
The final clause ascribes a specification to f via a Hoare triple:
it must be legal to call in any state where the memo table itself
remains present with the same parameters, and (if it terminates) it
must return the expected result n while preserving a functionally
indistinguishable memo table in memory.

Figure 4 visualizes this predicate definition. We introduce a con-
vention followed throughout this paper of indicating encapsulation
boundaries with dashed borders. In this example, the only compo-
nent is the memo table module. We indicate the recursive refer-
ence within the predicate definition with a dashed line connecting
the overall predicate name to a smaller copy of the predicate’s box
elsewhere. Here the smaller copy appears within a thought bubble
indicating a specification ascribed to a code pointer.

This programming pattern is associated with the idea of Landin’s
knot, where a program without explicit recursion may nonethe-
less become recursive by stashing first-class function values in
a mutable store. Application to abstract data types in separation
logic has been studied before, not just for the XCAP thread library
project [30] that we build on, but also in a variety of other recent
work, e.g. with impredicative concurrent abstract predicates [35].
Our solution here also uses impredicative quantification (which is
built into XCAP’s PropX language) in an essential way.

A predicate like this one can be used in ascribing an abstract
specification to a method, such as the following ones for overwrit-
ing the function stored in a memo table and querying the current
function result, respectively. (The latter case ought to be imple-
mented by consulting and updating the cache as appropriate, so
that the stored function only needs to be called once.)

{MemoTable(p, n)
^ {MemoTable(p, n0)}f{MemoTable(p, n0) ^ result = n

0}}
SetFunc(p, f)

{MemoTable(p, n0)}

{MemoTable(p, n)}
QueryFunc(p)

{MemoTable(p, n) ^ result = n}
Unfortunately, it is not obvious that the recursion in our defini-

tion of MemoTable is well-founded. Certainly treated like a recur-
sive function in a programming language, this definition does not
“terminate,” since one call invokes itself with the same arguments.

We might try to phrase it as an inductive definition as in Coq and
other proof assistants, expressed as the least relation satisfying a set
of inference rules. Here we are still out of luck, as proof assistants
must generally impose a positivity restriction, where an inference
rule for a predicate P may not contain a premise like P (x) ) ...,
with an implication from the same predicate being defined. It is
hard to see how to encode Hoare-triple preconditions such that the
formulas inside them do not show up in just that kind of negative
position.

This sort of puzzle is not a consequence of our choice of
XCAP’s assertion logic; related challenges appear in all work on
semantics for higher-order programs with state. One popular solu-
tion uses step-indexed relations [2] to break circularities in recur-
sive definitions. We instead use the syntactic features of XCAP to
make our definition legal.

Past work on verifying a thread library in XCAP [30] extended
the XCAP assertion logic with a new µ connective for anonymous
recursive predicates. Of course, to retain soundness, this connec-
tive cannot be given the obvious natural-deduction rules establish-
ing (µ↵. P ) $ P [(µ↵. P )/↵], since then we would summon the
usual logical unsoundnesses of systems supporting definitions like
P , ¬P . So, this past work dealt with the inconvenience of a re-
stricted set of proof rules for µ. In particular, µ gets an introduction
rule but no elimination rule, forcing elimination-style reasoning to
take place only in the meta logic, Coq, in terms of explicit syntactic
statements about formula provability.

In our work, we apply a new approach to recursive predicate
definitions in XCAP that imposes fewer restrictions on reason-
ing patterns, which is especially helpful for the simpler proof au-
tomation that it enables. Rather than applying the analogue of
anonymous recursive types from programming, we instead apply
an analogue of named recursive types. We derive a connective
name ⌘ P for looking up the predicate associated with a textual
name name, and we allow program modules to include such defini-
tions of named predicates, which the connective will consult.

MemoTable(p, n) , 9f, c. (p 7! f, c) ^ (c 6= 0) c = n)
^ (9P. MemoTable ⌘ P

^ {P (p, n)}f{P (p, n) ^ result = n})

Note that this definition is not explicitly recursive. The predicate
name MemoTable does not appear in its own definition. Instead,
we see the monospaced MemoTable, referring to a label within
an XCAP code module. Our actual implementation gives each
module its own separate label namespace, so there is no danger of
predicate-name clash across modules. We note that this approach to
recursive definition can be seen as an analogue to the well-known
“recursion through the store” at the level of specifications.

An interesting implementation detail is how we can derive the
new connective from the original XCAP connectives. First, a re-
cursive definition of predicate name as P in a module is encoded
as a code block labeled name whose specification is � . 8x. P (x),
embedding P into an XCAP assertion in an arbitrary way. Next, we
define name ⌘ P as {| � . 8x. P (x) |}name, using the syntactic
Hoare double to look up the specification associated with the right
code block and assert it equal to a template built from P . One sub-
tle point here is that we want to allow any module to include pred-
icates over any Coq types. The 8 quantifiers in the templates above
are implicitly annotated with the predicate type, and at some point
in a related proof we need to reason from the equality of two such
formulas to the equality of their embedded predicates. That reason-
ing step turns out to require the opaquely named Axiom K [34],
which is the only Coq axiom used anywhere in our development.

An important benefit of this new encoding compared to past
work on a µ connective for XCAP shows up in the definition of
MemoTable above: the higher-order quantification over P appears
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only in one conjunct of the definition of MemoTable, so only when
reasoning about that conjunct do we need to deal with the “in-
completeness” of XCAP’s natural-deduction rules for higher-order
quantification. Only lines of code in the memo table implementa-
tion that actually call the function f will need to venture into that
conjunct, so straightforward proof automation can help us verify
the rest of the code automatically, applying the usual manipula-
tions to the connectives. This pattern persists into our verification
of thread queues, where manual human proving effort is only nec-
essary for lines of code that resume suspended threads.

5.2 Specifying Layers of Threading Abstractions
In verifying a thread library and its client code, we benefit from
several dimensions of modularity. Most obviously, it should be pos-
sible to verify client code without knowing library implementation
details. However, we also want to take advantage of proof mod-
ularity within the library, raising the question, which specifica-
tion idioms apply effectively to modules within a thread library,
where each layer of the library manages suspended threads in
some form? Past work with XCAP on cooperative [30] and pre-
emptive [11] thread libraries dodges this question by not attempt-
ing to verify any actual application code against the libraries, let
alone focus on minimizing human effort to verify a new client pro-
gram. Creating a pleasant client experience requires widening the
library specifications, and in turn that widening reveals the benefits
of decomposing the somewhat intricate proofs across modules with
encapsulated state.

Take as an example our lowest-level component that encapsu-
lates suspended threads: ThreadQueue, providing a FIFO queue
of thread entries. Our definition is very close to that from a prior
XCAP cooperative threading library [30], but the key difference
is in modeling parts of memory shared across threads. That past
work forced threads to operate only on their own private memory
partitions, modulo the ability to allocate and free memory blocks.
Realistic applications need to share some state. For instance, in our
final application, the in-memory database is shared across worker
threads.

Consider the schematic presentation of (most of) Thread-
Queue’s data-structure invariant in Figure 5. We maintain a queue
as a linked list of saved instruction pointer/stack pointer pairs. Each
saved stack pointer points to some memory region that is private
to the associated thread, and there is also a shared memory region
described by the global invariant. The trickiness appears in decid-
ing which requirements to assert for the saved code pointers. We
face the challenges in recursive predicate definition from the prior
subsection, plus additional complexities associated with state, both
thread-local and shared.

Figure 6 gives the formal definition that we settled on, which
we will explain in pieces.

Though many single-threaded data structures have obvious no-
tions of correctness, a concurrent structure like the ThreadQueue
raises questions of how we specify the rules for sharing of state

across threads. Many options are possible, and we adopted one sim-
ple choice here. Our specifications would be quite inflexible if we
took literally the idea of a global invariant, or a fixed property that
must always hold of shared memory. Invariants may evolve over
time. For instance, in the overall thread scheduler, we want the in-
variant to change as the set of open files expands, since the invariant
ought to enforce that certain pointers only go to valid open files.

We formalize a more general shared-state regime using the idea
of monotonically evolving state. A client programmer of Thread-
Queue is allowed to choose a set of worlds W , such as “sets of
open file pointers.” Furthermore, an evolution relation v must be
provided, to characterize how the world is allowed to change over
time. This relation must be reflexive and transitive, but no further
restrictions are enforced. Monotonic evolution of state is not suf-
ficient for stating all of the invariants one might care about, like
that there are no dangling references to closed file records, but it
provides a useful starting point for investigating logical interfaces
to expose to applications. (In higher layers of our stack, we dodge
the need to rule out dangling file references by recycling freed file
records in a free list and keeping dummy data in any free records.)

The global invariant may now be given as a predicate over W
and the root pointer of the ThreadQueue. Concretely, the Thread-
Queue module in Coq is a functor in the sense of ML module sys-
tems [24]. Its parameters are W , v, and the global invariant predi-
cate ginv, plus some logical axioms that must be proved about them
(e.g., transitivity).

This use of worlds and an evolution relation is inspired by
the various semantic techniques based on Kripke structures, such
as Kripke logical relations for compiler verification [19]. Binary
state-evolution relations for concurrent program verification have a
long history, including in rely-guarantee proof methods [20], which
have been used both for Hoare-logic-style proofs and in concert
with refinement types [14]; and in the two-state object invariants of
VCC [7].

As an example of one of the proved specifications for Thread-
Queue’s methods, here is the specification for yield().

8w 2W. {tq(w, q) ? ginv(w, q) ?malloc}
yield(q)

{9w0 2W. w v w

0 ^ tq(w0
, q) ? ginv(w0

, q) ?malloc}
The specification is in the style of separation logic [33], which uses
the ? operator to indicate by P ? Q that memory can be split into
two disjoint regions, one satisfying P and the other satisfying Q.
We write tq for the invariant sketched in Figure 5, ginv for the
global invariant predicate, and malloc for the free-list data-structure
invariant of our malloc library. Universal quantification over w

captures the abstract global state at the point where yield() is
called, while in the postcondition, existential quantification over w0

introduces the new, possibly evolved, world that characterizes state
when the yielding thread is finally resumed.

Note that this specification hides an important complexity:
yield() does not behave as a normal function, but rather grabs
the function return pointer and stores it in a heap data structure.
Nonetheless, the specification looks like one for a normal func-
tion, and we successfully encapsulate the details of code-pointer
manipulation within the correctness proof for ThreadQueue.

Verification of methods like yield() depends on giving a
proper definition of tq, drawing on the recursive definition ap-
proach from Section 5.1. First, we define what is a valid suspen-
sion of a paused thread in Figure 6, via a predicate susp(w, q, p, s)
over world (at time of suspension) w, thread queue pointer q, saved
program counter p, and saved stack pointer s. The definition starts
by using Section 5.1’s trick to obtain in local predicate variable P

a reference to tq. Next, we quantify existentially (and impredica-



susp(w, q, p, s) , �m. 9P. ThreadQueue ⌘ P

^ 9I. I(m) ^ {��.
�.Sp = s ^ 9w0

. w v w

0

^ [I ? P (w0
, q) ? ginv(w0

, q) ?malloc]�
}p

tq(w, q) , 9t, q0, s0. (q 7! q

0
, s

0) ? backupStack(s0)
? queue(t, q0) ?

N
(p,s)2t susp(w, q, p, s)

Figure 6. The thread queue predicate and an auxiliary definition

tively) over another predicate variable I, capturing the suspended
thread’s local memory invariant. We assert that this invariant does
indeed describe m, the partial memory that is the implicit parame-
ter to a separation-logic predicate like susp.

The final part of the definition is a semantic Hoare double
ascribing a precondition to the saved program counter. Where �

is the Bedrock IL state at the point where the thread is resumed, we
require first that the stack pointer of � has been restored to the saved
value s. Next, we require that the world w has evolved legally to
some w

0. A separation-logic assertion applied to � breaks memory
into four pieces, satisfying the local invariant I, the thread queue
invariant tq (referenced via its local name P ), the global invariant
in the new world, and the malloc library invariant.

Figure 6 also gives the final definition of the tq predicate, for
parameters current world w and queue pointer q. We quantify over
a bag (or multiset) t of suspended threads, represented as pairs of
saved program counters and stack pointers, as well as over two
values q

0 and s

0 that q points to. The pointer q

0 is to a more
primitive queue structure, while s

0 points to the backup stack used
while deallocating the current thread in exit(). Multisets form the
interface with queues via the queue predicate. The most interesting
part of the specification is its last conjunct, which uses

N
as a

notation for iterated separating conjunction over some index bag.
Here we generate one susp conjunct per suspended thread in t.

All the quantifiers appearing directly in tq’s definition are first-
order, since their domains do not involve specifications. As a result,
this definition stays within the fragment of XCAP assertions that
support simple proof automation, using connectives that have both
introduction and elimination rules. In contrast, susp uses second-
order quantification, so less clean proofs are required to reason
about indirect jumps to suspended threads. Fortunately, only four
such jumps appear in the ThreadQueue implementation, and we
are able to apply predictable proof automation for the other 60-
some lines of executable code. Past work on verifying a similar li-
brary with XCAP [30] used a new µ recursive predicate connective
that also lacks an elimination rule, and perhaps partly as a result,
their proofs were highly manual, using about 10 times more lines
of proof to establish a weaker interface for a library with fewer
features.

5.2.1 Layering More Instances of the Same Pattern
Not only does the world-based specification style facilitate flexible
use of shared state in applications, it also composes nicely in
layers within a thread library. To demonstrate, we discuss verifying
two further components on top of ThreadQueue: ThreadQueues,
which exposes multiple queues corresponding to multiple possible
IO events; and Scheduler, which exposes standard blocking IO
operations on TCP sockets. To our knowledge, ours is the first work
to consider a certified implementation of blocking IO in a modular
verification framework.

First consider ThreadQueues, which abstracts over a dynam-
ically growing set of thread queues. It provides our first chance

to take advantage of the generality of ThreadQueue’s handling of
global invariants. Specifically, ThreadQueues asks the programmer
to choose W andv like before, though now ginv is a predicate over
W and bags of queues, where the latter component was just a single
queue for ThreadQueue. For any such choices by the programmer
for the parameters of ThreadQueues, we must come up with appro-
priate parameters to use internally for ThreadQueue. Concretely,
both of these modules are ML-style functors, and ThreadQueues in-
stantiates the ThreadQueue functor with derived parameters based
on its own parameters.

The main idea is to define a ThreadQueue-level world to contain
not just a ThreadQueues-level world, but also the set of all queues
that have been allocated so far. To formalize this notion for given
W , v, and ginv, here is how we derive the ThreadQueue parame-
ters, where P(Q) stands for the set of sets of queue pointers:

W 0 , P(Q)⇥W
(q1, s1) v

0 (q2, s2) , q1 ✓ q2 ^ s1 v s2

ginv

0((q, s), q) , ginv(q, s) ?
O

q02q�{q}

tq((q, s), q0)

We focus on explaining the ginv0 definition, which formalizes what
a particular thread queue expects to see in the remainder of mem-
ory. The definition above says “a thread queue sees the global in-
variant plus all of the other thread queues.” The “other” part is
encoded via the � operator in the index bag of

N
. This sort of

explicit capture of all library state may seem verbose compared
to state-hiding approaches like anti-frame rules [31] and dynamic
locks with invariants [15] for separation logic. An advantage of our
approach here is that it may be developed as a “specification design
pattern” on top of XCAP’s simple Hoare logic, with no requirement
to build supporting features into the trusted base, while state-hiding
approaches seem to require such support.

Thankfully for the application programmer, these details are en-
capsulated inside the ThreadQueues correctness proof. In the end,
we export method specifications that refer to an abstract predi-
cate tqs, whose arguments are a world value and a set of available
queues. Here is the revised specification for yield() at the Thread-
Queues level, for enqueuing a thread into inq while dequeuing a
thread to resume from outq .

8w 2W, q 2 P(Q). {inq 2 q ^ outq 2 q

^ tqs(w, q) ? ginv(w, q) ?malloc}
yield(inq , outq)

{9w0 2W, q

0 2 P(Q). w v w

0 ^ q ✓ q

0

^ tqs(w0
, q

0) ? ginv(w0
, q

0) ?malloc}

We come finally to Scheduler, which encapsulates Thread-
Queues along with other state to provide both thread management
and blocking TCP IO. Scheduler is parameterized over a choice of
a simple global invariant whose only argument is f , a set of avail-
able file record pointers. We thus instantiate ThreadQueues with
W as the set of sets of file pointers, v as the subset relation, and
ginv as the invariant that we sketch later in Figure 8. Our choice
of this particular interface prevents the final clients of Scheduler
from choosing global invariants that depend on custom world con-
cepts. The proof architecture would support a stronger interface
preserving such freedom, but we decided to compromise flexibility
in favor of more straightforward proof automation.

Now we arrive at a specification for the final repackaging of
yield(), where F is the set of file record pointers:

8f 2 P(F ). {sched(f) ? ginv(f) ?malloc}
yield()

{9f 0 2 P(F ). f ✓ f

0 ^ sched(f
0
) ? ginv(f

0
) ?malloc}



The final interface hides all details of code-pointer manipula-
tion, using just an abstract predicate to capture the state of the
scheduler library. The four layers ThreadQueue, ThreadQueues,
Scheduler, and application are truly modular, where proofs in each
layer treat only the next lower layer, only through Hoare triples
for methods specified with abstract predicates. We may tweak each
layer without needing to reexamine proofs for others, so long as
we maintain its formal interface. For instance, the specifications of
the lower-level components are general enough to allow us to hone
the data structures of the scheduler without modifying any other
module or its proofs.

The reader may have noticed an apparent weakness in our
functor-based approach to specifying global invariants: when mul-
tiple applications are sharing a Scheduler instance, they must some-
how coordinate to choose a mutually satisfactory global invariant.
However, it is fairly straightforward to build a little plumbing that
still allows each application to be proved modularly, when global
state of each application can be kept in a distinct region that other
applications may not touch. Each application (with proof) is imple-
mented as a functor over the part of the global invariant contributed
by other applications, and the overall global invariant is denoted
as the conjunction of the part known locally and the part passed as
functor parameter. A single global invariant may be seen through
a different lens of this kind for each application. Variants of this
approach may also support different modes of state-sharing be-
tween applications. The point is that the Scheduler specification
allows these modularity disciplines to be constructed on top, with
Scheduler’s implementation and proof remaining a black box.

One last note may be worthwhile, about the malloc predicate
used throughout our example specifications. Why does this pred-
icate not take some kind of state-tracking argument, too, which
we are forced to propagate through the spec of Scheduler? For in-
stance, one might expect to see malloc parameterized over a de-
scription of which memory blocks have been allocated so far, so
that we can require that any block being freed really did come from
a past allocation. Our malloc library dodges this complication by
allowing any block of memory (disjoint from the current malloc

state) to be donated via “deallocation,” even if it previously had
nothing to do with malloc.

5.3 Patterns for DSL Implementation
Many verification tasks are practical to carry out over code in low-
level languages like C, but, in scaling to larger systems, we may
realize large productivity improvements by coding in and reasoning
about higher-level languages. Ideally we raise the abstraction level
while keeping our final theorems at the level of assembly code.
The relevant question is, what is the right way to incorporate a
verified DSL implementation within a modular proof?

In particular, we focus on how the DSL implementation and
proof may themselves be factored into modules. We developed our
DSL, the Bedrock Web Services Language (BWS), modularly at
the level of language constructs. BWS supports the mostly orthog-
onal features of relational database access and XML processing.
Each of these factors is further decomposed into constructs, like
database querying vs. modification, and XML pattern-matching vs.
generation. Each construct is implemented with a separately encap-
sulated proof. We hope these building blocks are suitable to assem-
ble in different ways to build different DSLs, but we also found that
modularity paid off, even just for the construction of this one DSL.

The Bedrock Structured Programming System [5] already pro-
vides a notion of certified low-level macro, where we package a
code generator with a Hoare-logic proof rule and a proof that the
two are compatible. Thus, it was natural for us to implement our
DSL building blocks as BSPS macros.

SE("", o↵set) , output 1

SE(c :: s, o↵set) , If (pos+ do↵sete < len

&& str[pos+ do↵sete] = dce) {
dSE(s, o↵set + 1)e

} else { output 0 }

Figure 7. Definition of a code generator for string equality

The Bedrock module formalism does not currently support stati-
cally allocated data, such as for string literals extracted from source
code. No doubt a more practical evolution of the framework would
add such a feature, but we can take advantage of the omission to
motivate an example macro, for checking whether a byte array
matches a string literal. In other words, we effectively represent
static character arrays by inlining appropriate unrolled loops into
assembly code.

BSPS includes basic combinators for, e.g., sequencing, condi-
tionals, and loops. Merely composing these combinators and their
proof rules leads to a derived proof rule that may expose too much
code detail. We often want to wrap a macro, applying an equiva-
lent of the rule of consequence to assign a more abstract proof rule.
The BSPS design includes a basic wrapping combinator, which ex-
poses a view of programs at the level of Bedrock IL control-flow
graphs, with no concept of local variables. We found that interface
to be too cumbersome for the more abstract macros that interest us
in this project, so we built a higher-level wrapping combinator that
allows the preconditions and postconditions of chunks to mention
the set V of declared local variables.

To illustrate, consider our example of a macro to check whether
some substring of a string equals a constant. Let us fix four program
variable names: str, for a pointer to the string we should check;
len, a variable holding its length; pos, indicating the first index
of the substring to check; and output, a variable where we write
either 0 or 1, to indicate the Boolean result of the test. In Figure 7,
a simple recursive definition of a function SE suffices to generate
the code, on top of more primitive BSPS macros.

We implement definitions like this one in Coq’s functional pro-
gramming language Gallina. The d. . .e syntax indicates antiquot-
ing some computed code pieces within BSPS syntax. We define the
overall macro via StringEq(s) , SE(s, 0).

BSPS automatically builds a sound Hoare-style proof rule for
any concrete application of StringEq. However, the rule reveals
the exact low-level code structure, when we would prefer a more
abstract presentation, encapsulating details like checking array
bounds. Here is the rule we derive with our expanded wrapping
combinator; we will step through explaining it in stages. We make
the four variable names (e.g., str) into explicit parameters of the
macro (e.g., str), so that client code may choose appropriate con-
crete names for its context.

8I, P. {P ? array8(I, str) ^ |I| = len ^ pos  len

^ {str, len, pos, output} ✓ V
^ NoDup([str, len, pos, output]) ^ |s| < 232

^ FV(P ) \ {output, pos} = ;}
StringEq(str, len, pos, output, s)

{P ? array8(I, str) ^ |I| = len ^ pos  len}

Most of the precondition and postcondition are heap-independent
facts combined with ^. The only heap-dependent parts of the pred-
icates are P , some frame predicate; and array8(I, str), indicating
that the requested variable str points to a byte array whose contents
are I . These parts repeat verbatim before and after, indicating that



the macro may only produce code that has no heap effects (or fails
to terminate).

Most of the heap-independent parts of the precondition are
variable-related side conditions, of the sort familiar to users of
separation logic. We require that the variable parameters are all
members of the set V of declared local variables, and we also
require that no variable name is duplicated as the value of multiple
parameters.

The last precondition conjunct imposes a condition on the free
variables of the frame predicate P , which is inspired by condi-
tions in the classic separation-logic frame rule. That rule assumes
{P}c{Q} and concludes {P ?F}c{Q ?F} for an arbitrary F that
does not mention variables that command c could modify. The clas-
sic rule is able to inspect c syntactically to determine which vari-
ables it may write, but in the macro setting we want to hide code
details through encapsulation. Thus, we expose a formal interface
for StringEq that in effect promises not to change any variable
outside the set {output, pos}, by only allowing useful postcondi-
tions with P that does not depend on those variables.

This technique generalizes to macros that take blocks of code as
arguments. For instance, consider some macro Iterate(buf, len, k)
implementing a foreach loop over all cells of a buffer (indicated
by base-pointer variable buf and length variable len), running
some body code k for each. Where V is some set of program
variables that the macro needs to use in generated bookkeeping
code, we might assign this proof rule:

8I. {P ? array8(I, buf) ^ |I| = len}
k {P ? array8(I, buf) ^ |I| = len}

8I. {P ? array8(I, buf) ^ |I| = len

^ {buf, len} [ V ✓ V ^ FV(P ) \ V = ;}
Iterate(buf, len, k) {P ? array8(I, buf)}

Let us read the conclusion first. We assert a particular Hoare
triple for the macro, for arbitrary choices of buffer contents I

(which should remain unchanged by execution). As before, two
pieces of state appear identically in precondition and postcondition:
a frame predicate P and the buffer itself via the array8 predicate.
We require that variable len hold an accurate array length, that all
variables we need are included in the available variables V , and that
the frame predicate P does not depend on any of the bookkeeping
variables V that may be modified.

The premise formalizes expectations for the body code block
k. We require that a Hoare triple is valid for k, again for any
buffer contents I . Specifically, k must preserve a familiar-looking
statement about P , buf, and len. Technically, k might change the
values of these variables, but at least the new versions must still
satisfy the invariant that buf points to an array whose length is len.
Note that P may be chosen to include any state known only to k

and not to the Iterate macro.
We want to emphasize one key element of rules like this one: the

body k may be instantiated with arbitrary assembly code that can
be proved semantically to satisfy the Hoare triple. That is, in coding
and verifying our DSL building blocks, we need not commit to the
DSL design in advance. Subsets of our building blocks ought to be
usable to construct different verified DSL implementations, though
so far we have only assembled them into the DSL of Section 7.

6. A Thread-Library Component Stack
This section overviews our concrete architecture for a modularly
verified (cooperative) thread library that exposes a rich inter-
face to client code. Sections 5.1 and 5.2 presented the two key
novel design patterns that enabled this architecture, and we show
the details in Figure 8.
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Figure 8. Thread-library architecture

We follow visual conventions introduced in Figure 4. Mixed
dotted and dashed borders group elements of state within a sin-
gle encapsulation boundary, to aid understanding. Arrows indicate
pointers, which terminate at precise memory elements, when they
do not span encapsulation boundaries; or terminate at the edges of
dashed boxes, when pointing to abstract objects provided by other
modules. Basically, this picture shows how to take a snapshot of
memory in a running system and divide it into pieces encapsulated
within separately verified modules.

The bulk of the diagram portrays state of the Scheduler, which
provides functions for thread creation and destruction, TCP con-
nection management, and blocking IO. These functions are built on
top of the nonblocking IO system calls from Figure 2. The Sched-
uler is implemented via a number of data structures, including three
more encapsulated components (sketched in Section 5.2), but an
abstract interface is exported for use by client code.

The Scheduler manages both threads and open files. A Sched-
uler instance is rooted in a four-element struct, containing ready, a
pointer to a queue of suspended threads ready to be resumed; free,
a pointer to a pool of available structs to use in representing open
files; wait, a pointer to a table to be consulted in interpreting the re-
sults of polling via the wait() system call; and waitLen, the length
of the wait array.

The Scheduler maintains a pool of file records, which are recy-
cled after previous open files are closed. Each file record includes
an underlying file descriptor and pointers to two queues of sus-
pended threads, one for threads waiting to read from the file and
the other for threads waiting to write. In any blocking IO call as-
sociated with one of these file records, a pointer to the appropriate
one of the two queues is saved in the wait array, at an offset equal
to the reservation assigned to this request by the declare() sys-
tem call. Thus, when a wait() system call returns, its return value
may be treated as an index into wait, determining which thread
is woken up to handle the new IO event. Since the trusted specs
of declare() and wait() are simple and nondeterministic, we
do dynamic checking of reservations returned by wait(), to make
sure they are in-bounds for the wait array. We also check that the



bfunctionNoRet "handler"("buf", "listener", "accepted", "n", "Sn")
[handlerS]
"listener" Call "scheduler"!"listen"(port)
[8 fs, PREmain[_, R] d R 2 fs e ? sched fs ? mallocHeap 0];;
"buf" Call "buffers"!"bmalloc"(inbuf_size)

[8 fs, PREmain[V, R] R ?7! bsize ? d R 6= 0 e ? d freeable R inbuf_size e
? d V "listener" 2 fse ? sched fs ? mallocHeap 0];;

"accepted" Call "scheduler"!"accept"("listener")

[8 fs, PREmain[V, R] d R 2 fs e ? V "buf"
?7! bsize ? d V "buf" 6= 0 e ? d

freeable (V "buf") inbuf_size e ? d V "listener" 2 fse ? sched fs
? mallocHeap 0];;

"n" Call "scheduler"!"read"("accepted", "buf", bsize)

[8 fs, PREmain[V] d V "accepted" 2 fs e ? V "buf"
?7! bsize ? d V "buf"

6= 0 e ? d freeable (V "buf") inbuf_size e ? d V "listener" 2 fse ?
sched fs ? mallocHeap 0];;

"Sn" "n" + 1;;
Call "scheduler"!"close"("accepted")

[8 fs, PREmain[V] V "buf" ?7! bsize ? d V "buf" 6= 0 e ? d freeable (V "
buf") inbuf_size e ? d V "listener" 2 fse ? sched fs ? mallocHeap

0 ? d V "Sn" = V "n" +̂ $1 e ];;
Call "scheduler"!"close"("listener")

[8 fs, PREmain[V] V "buf" ?7! bsize ? d V "buf" 6= 0 e ? d freeable (V "
buf") inbuf_size e ? sched fs ? mallocHeap 0 ? d V "Sn" = V "n" +̂ $
1 e ];;

Call "buffers"!"bfree"("buf", inbuf_size)
[8 fs, PREmain[V] sched fs ? mallocHeap 0 ? d V "Sn" = V "n" +̂ $1 e ];;
Call "sys"!"printInt"("Sn")
[8 fs, PREmain[V] sched fs ? mallocHeap 0 ? d V "Sn" = V "n" +̂ $1 e ];;
Exit 100

end

Ltac t := try solve [ sep unf hints; auto ];
unf; unfold localsInvariantMain; post; evaluate hints; descend;
try match_locals; sep unf hints; auto.

Theorem ok : moduleOk m.
Proof.
vcgen; abstract t.

Qed.

Figure 9. An example client program of the thread library

corresponding array cell has been initialized with a non-null queue
pointer. Failure of either check signals a top-level runtime program
error.

The concept of threads in Scheduler is lighter-weight than in
most thread libraries. There is no persistent data structure in the
library standing for a thread. Instead, we think of each queue
as storing continuations allocated opportunistically as “threads”
decide to block. The notations in our specification style so far
have been hiding details of call-stack representation. Effectively,
we require each thread to have a valid stack at the point where it
calls any library function, but it is legal for thread code to grow
and shrink its stack through manual reallocation between blocking
operations. When such an operation is triggered, the associated
stack is folded into the idea of local state for the continuation that
we save.

Figure 9 shows an example of a client program verified against
the thread library. We refer the reader to the BSPS paper [5] for
more detail on the C-like programming language used here. At
a high level, the code alternates between executable statements
and invariants enclosed in square brackets. The former are mostly
assignments and function calls. We prove that every invariant holds
every time it is reached.

This program accepts a TCP connection on a port, reads some
bytes from that connection, and then stashes in a local variable a
value one greater than the number of bytes read. After a few more
calls into the thread library, that saved value is printed. Invariants
ensure that the proper value is printed in the end, modulo the non-
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Figure 10. Architecture of verified DSL implementation

determinism of our specs for the underlying IO operations. For in-
stance, the later invariants include clauses V "Sn" = V "n" +̂ $1,
asserting that the value of local variable Sn equals the value of vari-
able n plus one, in the domain of 32-bit machine words. Other inter-
esting conjuncts appearing throughout the function include sched
fs, representing the state of the scheduler with open-file set fs;
and V "accepted" 2 fs, indicating that local variable accepted
holds a file pointer belonging to that set.

Figure 9 shows an excerpt from a real Coq source file, ending
in the full code to prove that invariants are never violated. The
proof is almost entirely automated, appealing to the separation-
logic proof procedures that Bedrock provides [25]. This level of
automation persists in verifications of more featureful client code,
and it represents a qualitative improvement to the ease of building
on verified systems libraries, compared to past work.

7. A Library of Verified Compiler Features
We summarize our architecture for modular verification of a
DSL implementation for database access and XML processing.
Section 5.3 introduced the basic design patterns we use for splitting
a language implementation into a set of certified macros, whose
definitions and proofs are independent of the full language that
they will be used to implement. Recall that we decided to verify our
thread library at the level of functional correctness, and verify client
applications mostly at the level of data-structure shape invariants.
Figure 10 shows how we decomposed the verification effort at that
level for the implementation of our DSL, the Bedrock Web Service
Language (BWS). Arrows indicate dependencies between modules.

The two core sets of features are relational database access and
XML processing. We decompose the former into macros for fil-
tering (DbCondition), querying (DbSelect), adding (DbInsert), and
removing (DbDelete) database rows; and the latter into macros for
XML pattern-matching (XmlSearch) and generation (XmlOutput).
All of the above are combined into a macro XmlLang, whose pa-
rameter is a syntactic BWS program in an AST type. We are able to
write the equivalent of a type-checker as a functional program over
these ASTs. The final theorem for our main BWS macro estab-
lishes that any type-correct program is compiled to assembly code
that maintains the invariants of the database and does not interfere
with the state of other components.

Figure 11 shows an example BWS function definition from our
ROS Master Server. Any such function is callable remotely over
HTTP, following the XML-RPC protocol. This particular function
installs a key-value pair in the configuration store that the Master
maintains. One complication is that ROS nodes are allowed to sub-
scribe to updates on particular keys, and we must initiate further



RosCommand "setParam"(!string $"caller_id",
!string $"key", !any $$"value")

Do
Delete "params" Where ("key" = $"key");;
Insert "params" ($"key", $"value");;

From "paramSubscribers" Where ("key" = $"key") Do
Callback "paramSubscribers"#"subscriber_api"
Command "paramUpdate"(!string "/master", !string $"key", $"value");;

Response Success
Message "Parameter set."
Body ignore
end
end

Theorem Wf : wf ts pr buf_size outbuf_size.
Proof.
wf.

Qed.

Figure 11. Example BWS function with proof

HTTP callbacks to all interested parties. In order, the body com-
mands of this function delete any old mapping for the key, insert
the new mapping, loop over callbacks to all nodes subscribed to
updates, and return a response document to the calling node. The
code here uses special ROS-specific Coq notations to hide the de-
tails of XML parsing and generation, but we use BWS macros for
those functions under the hood.

We show the complete program-specific correctness proof at
the end of the figure. This proof actually applies to the full set
of 20 methods in the Master. It works by calling a BWS library
tactic wf for discharging program well-formedness obligations au-
tomatically. We only need that sort of shallow fact to instantiate the
generic correctness proof of the BWS implementation, yielding an
assembly-level result that can be composed with the main theorem
about our thread library. The generated main() function spawns a
set of worker threads servicing HTTP requests.

8. Empirical Results
The premise of this paper is that some lessons about modular
verification can only be learned by building and deploying systems
at realistic scales. Our ROS Master Server application has both an
assembly-level Coq proof and real users without formal-methods
expertise. In this section, we summarize the human cost of carrying
out our case study, the run-time performance of our application, and
its usability.

8.1 Developing the Proofs
Overall, we spent about 2 person-months implementing and veri-
fying the thread library, and then another 2 person-months doing
the same for the BWS implementation. The ROS Master Server it-
self is trivial to code and verify with that infrastructure in place.
The thread library includes about 600 lines of implementation code
and about 3000 additional lines to state and prove theorems, mak-
ing for a ratio of verification code to implementation of about 5:1.
The BWS implementation includes about 1000 lines for actual ex-
ecutable code generation plus about 20,000 lines for verification,
for a ratio of about 20:1. We ascribe the higher overhead in the lat-
ter case to the greater “meta-ness” of a compiler, where the code
has a higher density of interesting operations. These ratios in gen-
eral compare reasonably to related projects, like L4.verified [22]
with a ratio of 20:1 in a project over 2.2 person-years (with non-
modular proofs); and past work in modular verification of thread
libraries [11, 30] achieving ratios on the order of 100:1, spend-
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Figure 12. Throughput of our Web server (static content)

ing person-months just on developing libraries without interfacing
them formally with realistic verified applications.

Our general workflow is to verify each component fully before
testing it. We have been pleasantly surprised that not a single
bug has been found in the systems components through testing;
verification caught every mistake we have found so far. Testing
has revealed about 10 bugs in the application-level components, for
which we prove only the sorts of invariant annotations from Figure
9. In each case, we corrected the implementation and found that our
automation adjusted the proofs without any need to edit proof code
manually.

The current biggest practical obstacle to our verification method-
ology is the performance of the proof automation (taking several
hours to check our whole stack), which we hope to ameliorate in
the future by running proof search in parallel on compute clusters.

8.2 Running the Code
We have not attempted to build a competitive high-performance
Web server, but we wanted to make sure that we had not simplified
our program code too much during verification, in a way that led to
performance too poor to support any real use. Therefore, we ran a
basic load test experiment between two servers in the same cloud
data center. Our benchmark input is the full set of static files from
a recent snapshot of a conference Web site. There are about 60
different files, with one outlier at size about 3 MB and the rest
each smaller than 1 MB, with several HTML files of only a few
kB each. Our experiment compares our verified server against the
Apache server from Ubuntu 13 with default configuration. We load-
test each server by launching on one of the two machines a set of
concurrent processes to send repeated requests to a server running
on the other machine.

Figure 12 shows the results of our experiment, comparing the
throughput of Apache and our verified server running either 1
worker thread or 10. As expected, the single-threaded server fails
to scale throughput well with increased request concurrency. In
contrast, our 10-thread verified server keeps up with Apache. Here
the network link and the underlying Linux implementation are the
real limiting factors. Our coarse experimental results show just
that we (and Apache) attain sufficient performance to saturate that
substrate. If anything, the results are skewed in favor of Apache,
which runs multiple hardware threads, while the Bedrock model is
inherently single-core. We can serve real Web sites at rates that will
not aggravate users, where to our knowledge previous mechanized
verifications of applications had not yielded any such practical
results.

The real test of our case-study program is the reactions of its real
users. The robotics experts who helped us with our test deployment
pay little attention to verification details and are much more inter-
ested in how our Master server performs in practice. In the demo
set-up, ROS nodes split across the two computers (robot and control
terminal) include those associated with a joystick, wheel controls,
and sensors including GPS and radar. Where the traditional Python
Master server leads to a 2-second start-up process for the robot to
enable driving it with the joystick, our BWS server requires 8 sec-
onds, which our users deem tolerable in a high-assurance context.

Bedrock-based programs should have an inherent performance
advantage over interpreted Python, thanks to specialized generation



of assembly code doing manual memory management. However,
our very elementary database implementation, which does not use
any kind of index structures, should bring an offsetting asymptotic
performance disadvantage, compared to the standard dictionaries
used to store corresponding data in the Python server. We also,
to make proofs more straightforward, simplified some aspects of
our code in ways that hurt performance, like always allocating
certain buffers at a fixed size and zeroing them out in full per
request, even when network inputs do not take up the full space; and
making copies of buffers before sending them, to deal with a library
specification weakness that we explain in the next paragraph. We
believe that the performance differential stems from these coding
patterns.

In the process of building and deploying the application, we
noticed a few weaknesses in the thread-library formal interface. For
instance, the blocking write() function is assigned a specification
like:

{sched ? ginv ? buf

?7! len}write(sock, buf, len){. . .}
We realized late that this specification precludes sending from
string buffers that logically belong within the global invariant,
such as strings for column values within the database. To compen-
sate, we copy column values into temporary buffers before sending
them, incurring additional overhead.

Our server does defend successfully against a security attack
that works on the Python server. A carefully crafted XML input2

leads the Python server to loop allocating an effectively unbounded
amount of memory. In contrast, our final theorem establishes a
modest static bound on how much memory our server can allocate,
by defining the set ValidMem (demonstrated in Figure 3) to be
small enough.

9. Related Work
Several recent projects have verified systems infrastructure me-
chanically. L4.verified [22] is the best-known project in this space,
based on an Isabelle/HOL proof that a C-language microkernel re-
fines a specification of system calls and so forth, given by a func-
tional program. There has been preliminary work [21] on using the
L4.verified proof to establish theorems about applications running
on the kernel, but we are not aware of results with applications on
the scale of those reported here with our Web service. The Verve
project [37] establishes type safety but not functional correctness
of .NET programs running on a platform that includes a verified
garbage collector. The Verisoft project [1] has also produced ker-
nel correctness proofs, using a decomposition of the proof effort
via layering several abstract machines, from hardware to user-level.
Theorems have been proved for kernel composed with embedded
applications [8] following a simple communication model without
dynamic thread creation or freeform calls to IO operations.

Past work has designed verification frameworks to support mod-
ular reasoning. For instance, the CAP project has demonstrated sev-
eral verification frameworks for systems-level programs, including
the XCAP logic [29] that we use here.

One project used XCAP to verify a user-level thread library [30]
that inspired our new work. Our library follows theirs roughly to
the level of ThreadQueue, where their work ends. They also assign
their version of this module a weaker specification that does not
support sharing of memory across threads in application-specific
ways, and they did not report on experience verifying applications
against the library.

A follow-on project applied a compositional program logic for
hardware interrupts to certify kernel-level code for process schedul-
ing (without dynamic process creation) plus user-level code imple-

2 http://en.wikipedia.org/wiki/Billion_laughs

menting synchronization primitives [11]. Here the focus was on ex-
porting a convenient interface for user-level systems library work,
rather than for applications of interest to end users, and no such
applications were verified. Even in the proofs of user-level code
that rely on abstract interfaces exported by kernel-level modules,
the verification overhead is about 10 times greater than in our new
work, though it is hard to make a direct comparison, since our li-
brary is based on cooperative scheduling rather than interrupt-based
preemption.

Gotsman and Yang presented a framework for on-paper modu-
lar correctness proofs of preemptive process schedulers [16]. They
designed a domain-specific separation logic to enable proofs of this
kind for a variety of schedulers that are more realistic than those
tackled in other verification work, including ours. No application-
level proof approach is suggested for linking of whole-system the-
orems, and none of their proofs are mechanized so far, so it is hard
to predict what human cost they would impose on authors of sched-
ulers or applications.

Ours is not the first project to implement a verified compiler for
a higher-level language on top of BSPS. The Cito project [36] has
verified semantics preservation for a C-like language with built-in
support for data abstraction. That compiler theorem is stronger than
ours for BWS, which only establishes preservation of data-structure
shape invariants, but it also applies to a programming language at a
lower abstraction level, requiring more proof work by programmers
to establish basic properties of source code.

The Frenetic project has verified an implementation [17] of a
domain-specific language for software-defined networking. They
compile to the OpenFlow language rather than general-purpose
assembly, establishing in Coq rich semantic correctness properties
of network controllers, without the sort of feature-modular DSL
decomposition we introduce in this paper.

Other projects have verified elements of database-backed Web
applications. The Ynot project [6] produced proofs for a Web-
based application [27] and a relational database engine [26]. That
work established more semantic properties than in this paper, for a
more realistic database system, but in the setting of interpretation
in a high-level functional language, rather than compilation to
optimized assembly; and they require new manual proof about each
program using the database library.

Several programming languages have been developed to help
programmers reason about XML manipulation, including Xtatic [13]
and XDuce [18]. These languages use features like regular expres-
sion types to bring static typing features like pattern-match exhaus-
tiveness checking from the world of ML and Haskell to XML pro-
cessing. This sort of static type system would be a complementary
addition to BWS.

10. Conclusion
We have described the first modular mechanized verification of a
deployed software system, combining proofs about systems infras-
tructure (primarily a thread library) and an application (an XML-
based Web service backed by a relational database). Our summary
of the project focuses on lessons that are difficult to learn when
not applying modular verification at scale, where formal interfaces
must be flexible at the same time as machine-checked proofs are
kept automated, short, and maintainable. We sketch one decompo-
sition that we found effective, into about 20 separately encapsulated
pieces, which we hope can provide a model for future verifications
in this style.
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