
september 2011 | vol. 54 | no. 9 | communications of the acm 69

Constraint-satisfaction problems arise in diverse
application areas, including software and hardware
verification, type inference, static program analysis,
test-case generation, scheduling, planning, and
graph problems, and share a common trait—a core
component using logical formulas for describing

states and transformations between
them. The most well-known constraint
satisfaction problem is propositional
satisfiability, or SAT, aiming to de-
cide whether a formula over Boolean
variables, formed using logical con-
nectives, can be made true by choos-
ing true/false values for its variables.
Some problems are more naturally
described with richer languages (such
as arithmetic). A supporting theory (of
arithmetic) is then required to capture
the meaning of the formulas. Solvers
for such formulations are commonly
called “satisfiability modulo theories,”
or SMT, solvers.

In the past decade, SMT solvers have

attracted increased attention due to
technological advances and industrial
applications. Yet SMT solvers draw on
some of the most fundamental areas
of computer science, as well as a cen-
tury of symbolic logic. They combine
the problem of Boolean satisfiability

Satisfiability
Modulo
Theories:
Introduction and
Applications

doi:10.1145/1995376.1995394

Checking the satisfiability of logical formulas,
SMT solvers scale orders of magnitude beyond
custom ad hoc solvers.

by Leonardo de Moura and Nikolaj Bjørner

 key insights
 � �Many tools for program analysis, testing,

and verification are based on mathematical
logic as the calculus of computation.

 � �SMT solvers are the core engine of many
of these tools.

 � �Modern SMT solvers integrate
specialized solvers with propositional
satisfiability search techniques.

70 communications of the acm | september 2011 | vol. 54 | no. 9

contributed articles

with domains (such as those studied in
convex optimization and term-manipu-
lating symbolic systems). They involve
the decision problem, completeness
and incompleteness of logical theories,
and complexity theory. Here, we explore
the field of SMT and some of its applica-
tions.

Increased attention has led to enor-
mous progress in constraint-satisfac-
tion problems that can be solved due
to innovations in core algorithms, data
structures, heuristics, and the care-
ful use of modern microprocessors.
Modern SAT27 procedures can check
formulas with hundreds of thousands
of variables. Similar progress has been
observed for SMT solvers for more com-
monly occurring theories, including
such state-of-the art SMT solvers as Bar-
celogic,8 CVC,3,7 MathSAT,10 Yices,18 and
Z3.14

The annual competitions for SAT
(http://www.satcompetition.org) and
SMT (http://www.smtcomp.org) are a
key driving force.4 An important ingre-
dient is a common interchange format
for benchmarks, called SMT-LIB,33 and
the classification of benchmarks into
various categories, depending which
theories are required. Conversely, a
growing number of applications can
generate benchmarks in the SMT-LIB
format to further improve SMT solvers.

There is a relatively long tradition
dating to the late-1970s of using SMT
solvers in specialized contexts. One pro-
lific case is theorem-proving systems
(such as ACL226 and PVS32) that use de-
cision procedures to discharge lemmas
encountered during interactive proofs.
SMT solvers have also been used for the
past 15 years in the context of program
verification and extended static check-

ing21 where verification focuses on as-
sertion checking.

Progress in the past four years in
SMT solvers has enabled their use in
diverse applications, including inter-
active theorem provers and extended
static checkers, as well as in scheduling,
planning, test-case generation, model-
based testing and program develop-
ment, static program analysis, program
synthesis, and run-time analysis.

We begin by introducing an applica-
tion we use as a running example.

Scheduling. Consider the classical
job-shop-scheduling decision prob-
lem, involving n jobs, each composed
of m tasks of varying duration that must
be performed consecutively on m ma-
chines. The start of a new task can be
delayed as long as needed in order for a
machine to become available, but tasks
cannot be interrupted once they are
started. The problem involves essential-
ly two types of constraints:

Precedence. Between two tasks in the
same job; and

Resource. Specifying that no two dif-
ferent tasks requiring the same ma-
chine are able to execute at the same
time.

Given a total maximum time max
and the duration of each task, the
problem consists of deciding whether
there is a schedule such that the end-
time of every task is less than or equal
to max time units. We use di,j to denote
the duration of the j-th task of job i. A
schedule is specified by the start-time
(ti,j) for the j-th task of every job i. The
job-shop-scheduling problem can be
encoded in SMT using the theory of lin-
ear arithmetic. A precedence constraint
between two consecutive tasks ti,j and
ti,j+1 is encoded using the inequality ti,j+1

≥ ti,j + di,j; this inequality states that the
start-time of task j + 1 must be greater
than or equal to the start time of task j
plus its duration. A resource constraint
between two tasks from different jobs
i and i′ requiring the same machine j is
encoded using the formula (ti,j ≥ ti′,j + di′,j)
∨ (ti′,j ≥ ti,j + di,j), stating the two tasks do
not overlap. The start time of the first
task of every job i must be greater than
or equal to zero, so the result is ti,1 ≥ 0. Fi-
nally, the end time of the last task must
be less than or equal to max, hence ti,m
+di,m ≤ max. Figure 1 is an instance of
the job-scheduling problem, its encod-
ing as a logical formula, and a solution.
The logical formula combines logical
connectives (conjunctions, disjunction,
and negation) with atomic formulas in
the form of linear arithmetic inequali-
ties. We call it an SMT formula. The so-
lution in Figure 1 is a satisfying assign-
ment, a mapping from variables ti,j to
values that make the formula true.

SMT-Solving Techniques
Modern SMT solvers use procedures
for deciding the satisfiability of con-
junctions of literals, where a literal is
an atomic formula or the negation of
an atomic formula. Throughout this ar-
ticle, we call these procedures “theory
solvers.” The scheduling application
demonstrates that this kind of proce-
dure alone is not sufficient in practice,
because the encoding contains disjunc-
tive sub-formulas, as in

(t1,1 ≥ t2,1 + 3) ∨ (t2,1 ≥ t1,1 + 2)

SMT solvers handle sub-formulas like
this by performing case analysis, which
is in the core of most automated de-
duction tools. Most SMT solvers rely
on efficient satisfiability procedures
for propositional logic (SAT solvers) for
performing case analysis efficiently. A
standard technique for integrating SAT
solvers and theory solvers1,5,15,20,30 is de-
scribed next.

SAT: A propositional core. Proposi-
tional logic is a special case of predicate
logic in which formulas are built from
Boolean variables, called atoms, and
composed using logical connectives
(such as conjunction, disjunction, and
negation). The satisfiability problem for
propositional logic is famously known
as an NP-complete problem12 and
therefore in principle computationally

Figure 1. Encoding job-shop scheduling.

di,j Machine 1 Machine 2

Job 1 2 1

Job 2 3 1

Job 3 2 3

max = 8

Solution

t1,1

t1, 1 t1, 2

t2, 2

t3, 2

t1, 2

t2, 2

t3, 2

t2, 1

t3, 1

t1, 1

t2, 1

t3, 1

= 5, = 7,

t2,1

t3,1

t1,2

t2,2

t3,2

= 2, = 6,

= 0, = 3

Encoding

(≥ 0) ∧ (≥ + 2) ∧ (+ 1 ≤ 8) ∧
(≥ 0) ∧ (≥ + 3) ∧ (+ 1 ≤ 8) ∧
(≥ 0) ∧ (≥ + 2) ∧ (+ 3 ≤ 8) ∧
((t1, 1 t2, 1

t3, 1

t3, 1

t2, 2

t3, 2

t3, 2

t2, 1

t3, 1

t3, 1

t2, 2

t3, 2

t3, 2

t1, 1

t2, 1

t1, 2

t1, 2

t2, 2

t1, 1

t1, 1

t2, 1

t1, 2

t1, 2

t2, 2

≥ + 3) ∨ (≥ + 2)) ∧
((≥ + 2) ∨ (≥ + 2)) ∧

((≥ + 2) ∨ (≥ + 3)) ∧
((≥ + 1) ∨ (≥ + 1)) ∧
((≥ + 3) ∨ (≥ + 1)) ∧
((≥ + 3) ∨ (≥ + 1))

contributed articles

september 2011 | vol. 54 | no. 9 | communications of the acm 71

intractable. Yet recent advances in ef-
ficient propositional logic algorithms
have moved the boundaries for what is
intractable when it comes to practical
applications.27

Most successful SAT solvers are
based on an approach called “system-
atic search.” The search space is a tree
with each vertex representing a Bool-
ean variable and the out edges repre-
senting the two choices (true and false)
for this variable. For a formula contain-
ing n Boolean variables, the tree has
2n leaves. Each path from the root to a
leaf corresponds to a truth assignment.
A model is a truth assignment that
makes the formula true. We also say
the model satisfies the formula, and
the formula is satisfiable.

Most search-based SAT solvers are
based on the DPLL/Davis-Putnam-
Logemann-Loveland algorithm.13 The
DPLL algorithm tries to build a model
using three main operations: decide,
propagate, and backtrack. The
algorithm benefits from a restricted
representation of formulas in conjunc-
tive normal form, or CNF. CNF formu-
las are restricted to be conjunctions of
clauses, with each clause, in turn, a dis-
junction of literals. Recall that a literal
is an atom or the negation of an atom;
for example, the formula ¬p ∧ (p ∨ q)
is in CNF. The operation decide heu-
ristically chooses an unassigned atom,
assigning it to true or false, and is also
called branching or case-splitting. The
operation propagate deduces the
consequences of a partial truth assign-
ment using deduction rules. The most
widely used deduction rule is the unit-
clause rule, stating that if a clause has
all but one literal assigned to false and
the remaining literal l is unassigned,
then the only way for the clause to eval-
uate to true is to assign l to true.

Let C be the clause p ∨ ¬q ∨ ¬r, and M
the partial truth assignment {p → false,
r → true}, then the only way for C to
evaluate to true is by assigning q to false.
Given a partial truth assignment M and
a clause C in the CNF formula, such that
all literals of C are assigned to false in
M, then there is no way to extend M to
a complete model M′ that satisfies the
given formula. We say this is a conflict,
and C is a conflicting clause. A conflict
indicates some of the earlier decisions
cannot lead to a truth assignment that
satisfies the given formula, and the

DPLL procedure must backtrack and
try a different branch value. If a conflict
is detected and there are no decisions to
backtrack, then the formula is unsatis-
fiable; that is, it does not have a model.
Many significant improvements to this
basic procedure have been proposed
over the years, with the main ones be-
ing lemma learning, non-chronological
backtracking, and efficient indexing
techniques for applying the unit-clause
rule and preprocessing techniques.27

A solver for difference arithmetic.
The job-shop-scheduling decision
problem can be solved by combining a
SAT solver with a theory solver for dif-
ference arithmetic. Difference arithme-
tic is a fragment of linear arithmetic,
where predicates are restricted to be
of the form t − s ≤ c and where t and s
are variables and c a numeric constant
(such as 1 and 3). Every atom in Figure
1 can be put into this form; for example,
the atom t3,1 ≥ t2,1+3 is equivalent to the
atom t2,1−t3,1 ≤ −3. For atoms of the form
s ≤ c and s ≥ c, a special fresh variable z is
used. We say z is the zero variable, and
the atoms are represented in difference
arithmetic as s − z ≤ c and z − s ≤ − c, re-
spectively; for example, the atom t3,2 + 3
≤ 8 is represented in difference arithme-
tic as t3,2 − z ≤ 5. A set of difference arith-
metic atoms can be checked efficiently
for satisfiability by searching for nega-
tive cycles in weighted directed graphs.
In the graph representation, each vari-
able corresponds to a node, and an in-
equality of the form t − s ≤ c corresponds
to an edge from s to t with weight c. Fig-
ure 2 is a subset of atoms (in difference
arithmetic form) from the example in
Figure 1, along with the corresponding
graph. The negative cycle, with weight
−2, is shown by dashed lines. The cycle
corresponds to the following schedule

that cannot be completed in eight time
units:

task 1/job 1 → task 1/job 2 →
task 1/job 3 → task 2/job 3

Recall that the scheduling problem in
Figure 1 is satisfiable but requires as-
signing a different combination of at-
oms to true.

Interfacing solvers with SAT. We’ve
outlined a theory solver for difference
arithmetic and now describe how a
SAT procedure interacts with this the-
ory solver. The key idea is to create an
abstraction that maps the atoms in an
SMT formula into fresh Boolean vari-
ables p1, . . . , pn; for example, the formu-
la ¬(a ≥ 3) ∧ (a ≥ 3 ∨ a ≥ 5) is translated
into ¬p1 ∧ (p1 ∨ p2), where the atoms a
≥ 3 and a ≥ 5 are replaced by the Bool-
ean variables p1 and p2, respectively.
The new abstract formula can then be
processed by a regular SAT procedure.
If the SAT procedure finds the abstract
formula to be unsatisfiable, then so,
too, is the SMT formula. On the other
hand, if the abstract formula is found
to be satisfiable, the theory solver is
used to check the model produced by
the SAT procedure. The idea is that any
model produced by the SAT procedure
induces a set of literals; for example,
{p1 → false, p2 → true} is a model for
the formula ¬p1 ∧ (p1 ∨ p2), inducing the
set of literals {¬(a ≥ 3), a ≥ 5} that is un-
satisfiable in the theory of arithmetic.
Therefore, the formula (clause) a ≥ 3∨
¬(a ≥ 5) is valid in the theory of arithme-
tic. The abstraction of this formula is
the clause p1 ∨ ¬p2. We say it is a “theory
lemma,” and since it is based on a valid
formula from the theory of arithmetic,
we can then add it to our original for-
mula, obtaining the new formula:

Figure 2. Example of difference arithmetic.

z − t1, 1

t2, 1

t3, 1

t3, 2

t3, 2

t3, 1

t3, 1

t2, 1

t2, 1

t1, 1

≤ 0

z − ≤ 0

z − ≤ 0

− z ≤ 5

− ≤ –2

− ≤ –3

− ≤ –2 t3, 2 t3, 1

t2, 1

t1, 1

z

0

0

0

–2

–3

–2

5

72 communications of the acm | september 2011 | vol. 54 | no. 9

contributed articles

¬p1 ∧ (p1 ∨ p2) ∧ (p1 ∨ ¬p2)

The SAT solver is executed again, tak-
ing the new formula as input, and finds
the new formula to be unsatisfiable,
proving the original formula ¬(a ≥ 3) ∧
(a ≥ 3 ∨ a ≥ 5) is also unsatisfiable. In
practice, many theory lemmas are cre-
ated until this process converges. Note,
too, this process always converges be-
cause there is a finite number of atoms,
and, consequently, there is a finite
number of theory lemmas that can be
created using them.

Given an unsatisfiable set of theory
literals S, we say a justification for S
is any unsatisfiable subset J of S. Any
unsatisfiable set S is, of course, also a
justification for itself. We say a justifi-
cation J is non-redundant if there is no
strict subset J′ of J that is also unsatis-
fiable. It is desirable to have a theory
solver that produces non-redundant
justifications, as they may drastically
reduce the search space. This observa-
tion follows from the fact that smaller
sets produce smaller theory lemmas
(clauses) and consequently have fewer
satisfying assignments.

Returning to the example in Figure
2, the negative cycle corresponds to a
non-redundant unsatisfiable set of dif-

ference atoms. The negation of these
atoms corresponds to the following
valid clause in difference arithmetic:

¬(t3,1 − t3,2 ≤ −2) ∨ ¬(t2,1 − t3,1 ≤ −3) ∨
¬(t1,1 − t2,1 ≤ −2) ∨ ¬(z − t1,1 ≤ 0) ∨
¬(t3,2 − z ≤ 5)

This integration scheme is also known
as the “lazy offline” approach and in-
cludes many refinements; one is to
have a tighter integration between the
two procedures, where the theory solv-
er is used to check partial truth assign-
ments being explored by the SAT solver
(online integration). In it, additional
performance gains can be obtained if
the theory solver is incremental (new
constraints can be added at minimal
cost) and backtrackable (constraints
can be removed at minimal cost). The-
ory deduction rules can also be used to
prune the search space being explored
by the DPLL solver (theory propaga-
tion). In difference arithmetic, theory
propagation can be implemented by
computing the shortest distance be-
tween two nodes. Returning to the ex-
ample in Figure 2, assume the inequal-
ity t2,1 − t3,1 ≤ −3 is not there. Thus, the
graph on the right-hand side will not
contain an edge from t3,1 to t2,1 and,
consequently, the negative cycle. The
shortest distance between the nodes
t2,1 and t3,1 is 1 by following the path

t2,1 → t1,1→ z → t3,2→ t3,1

This fact implies that t3,1−t2,1 ≤ 1, and
one can verify the result by adding the
inequalities associated with each edge.
The inequality t3,1−t2,1 ≤ 1 is equivalent
to t2,1−t3,1 ≥ −1, implying ¬(t2,1 − t3,1 ≤
−3). Therefore, if the SAT solver has as-
signed the atoms t1,1 − t2,1 ≤ −2, z − t1,1
≤ 0, t3,2 − z ≤ 5 and t3,1 − t3,2 ≤ −2 to true,

then, by theory propagation, the atom
t2,1 − t3,1 ≤ −3 can be assigned to false,
thus avoiding the inconsistency (nega-
tive cycle) in Figure 2.

SMT in Software Engineering
Software developers use logical for-
mulas to describe program states and
transformations between program
states, a procedure at the core of most
software-engineering tools that ana-
lyze, verify, or test programs. Here, we
describe a few such applications:

Dynamic symbolic execution. SMT
solvers play a central role in dynamic
symbolic execution. A number of tools
used in industry are based on dynamic
symbolic execution, including CUTE,
Klee, DART, SAGE, Pex, and Yogi,23 de-
signed to collect explored program
paths as formulas, using solvers to
identify new test inputs that can steer
execution into new branches. SMT solv-
ers are a good fit for symbolic execution
because the semantics of most program
statements are easily modeled using
theories supported by these solvers. We
later introduce the various theories that
are used, but here we focus on connect-
ing constraints with a solver. To illus-
trate the basic idea of dynamic symbolic
execution, consider the greatest com-
mon divisor in Program 3.1, taking the
inputs x and y and producing the great-
est common divisor of x and y.

Program 3.2 represents the static
single assignment unfolding corre-
sponding to the case where the loop is
exited in the second iteration. Asser-
tions are used to enforce that the condi-
tion of the if statement is not satisfied
in the first iteration and is in the second
iteration. The sequence of instructions
is equivalently represented as a formula
where the assignment statements have
been turned into equations.

The resulting path formula is satis-
fiable. One satisfying assignment that
can be found using an SMT solver is of
the form:

x0 = 2, y0 = 4, m0 = 2, x1 = 4, y1 = 2, m1 = 0

It can be used as input to the origi-
nal program; in this example, the call
GCD(2,4) causes the loop to be entered
twice, as expected.

Fuzz testing is a software-testing
technique that provides invalid or unex-
pected data to a program. The program

Program 3.1. Greatest common divisor
program.

int GCD (int x, int y)
 while (true) {
 int m = x % y;
 if (m == 0) return y;
 x = y;
 y = m;
 }
}

Program 3.2. Greatest common divisor path formula.

int GCD (int x0, int y0) {
 int m0 = x0 % y0; (m0 = x0 % y0) ∧
 assert (m0 != 0); ¬(m0 = 0) ∧
 int x1 = y0; (x1 = y0) ∧
 int y1 = m0; (y1 = m0) ∧
 int m1 = x1 % y1; (m1 = x1 % y1) ∧
 assert (m1 == 0); (m1 = 0)
}

contributed articles

september 2011 | vol. 54 | no. 9 | communications of the acm 73

being fuzzed is opaque, and fuzzing
is performed by perturbing input vec-
tors using random walks. “White-box
fuzzing” combines fuzz testing and
dynamic symbolic execution and is ac-
tively used at Microsoft. Complement-
ing traditional fuzz testing, it has been
instrumental in uncovering several sub-
tle security-critical bugs that traditional
testing methods are unable to find.

Program model checking. Dynamic
symbolic execution finds input that can
guide execution into bugs. This method
alone does not guarantee that programs
are free of all the errors being checked
for. The goal of program model check-
ing tools is to automatically check for
freedom from selected categories of
errors. The idea is to explore all pos-
sible executions using a finite and suf-
ficiently small abstraction of the pro-
gram state space. The tools BLAST,25
SDV,2 and SMV from Cadencea perform
program model checking. Both SDV
and SMV are used as part of commercial
tool offerings. The program fragment in
Program 3.3 is an example of finite-state
abstraction, accessing requests using
GetNextRequest. The call is protect-
ed by a lock. A question is whether it is
possible to exit the loop without having
a lock. The program has a very large, po-
tentially unbounded, number of states,
since the value of the program variable
count can grow arbitrarily.

However, from the point of view
of locking, the actual values of count
and old _ count are not interesting.
On the other hand, the relationship
between these program variables con-
tains useful information. Program 3.4
is a finite-state abstraction of the same
locking program. The Boolean vari-
able b encodes the relation count ==
old _ count. In it, we use the symbol
∗ to represent a Boolean expression that
nondeterministically evaluates to true
or false. The abstract program contains
only Boolean variables, thus a finite
number of states. We can now explore
the finite number of branches of the
abstract program to verify the lock is al-
ways held when exiting the loop.

SMT solvers are used for construct-
ing finite-state abstractions, like the
one in Program 3.4. Abstractions can
be created through several approaches;
in one, each statement in the program

a	 http://www.kenmcmil.com

is individually abstracted; for example,
consider the statement count = count
+ 1. The abstraction of it is essentially
a relation between the current and the
new values of the Boolean variable b.
SMT solvers are used to compute the re-
lation by proving theorems, as in

count == old _ count →
count+1 != old _ count

which is equivalent to checking unsat-
isfiability of the negation

count == old _ count ∧
count+1 == old _ count

The theorem says if the current value of
b is true, then after executing the state-
ment count = count + 1, the value of
b will be false. Note that if b is false,
then neither of the following conjec-
tures is valid:

count != old _ count →
count+1 == old _ count
count != old _ count →
count+1 != old _ count

In each, an SMT solver will produce a
model for the negation of the conjec-

Most SMT solvers
rely on efficient
satisfiability
procedures for
propositional logic
(SAT solvers) for
performing case
analysis efficiently.

Program 3.3. Processing requests using
locks.

do {
 lock ();
 old_count = count;
 request = GetNextRequest();
 if (request != NULL) {
 unlock();
 ProcessRequest(request);
 count = count + 1;
 }
}
while (old_count != count);
unlock();

Program 3.4. Processing requests using
locks, abstracted.

do {
 lock ();
 b = true;
 request = GetNextRequest();
 if (request != NULL) {
 unlock();
 ProcessRequest(request);
 if (b) b = false; else b = ∗;
 }
}
while (!b);
unlock();

74 communications of the acm | september 2011 | vol. 54 | no. 9

contributed articles

ture. Therefore, the model is a counter-
example of the conjecture, and when
the current value of b is false, nothing
can be said about its value after the ex-
ecution of the statement. The result
of these three proof attempts is then
used to replace the statement count =
count + 1; by if (b) b = false; else
b = *;. A finite state model checker can
now be used on the Boolean program
and will establish that b is always true
when control reaches this statement,
verifying that calls to lock() are bal-
anced with calls to unlock() in the
original program.

Static program analysis. Static pro-
gram analysis tools work like dynamic-
symbolic-execution tools, checking
feasibility of program paths. On the
other hand, they never require execut-
ing programs and can analyze software
libraries and utilities independently of
how they are used. One advantage of
using modern SMT solvers in static pro-
gram analysis is they accurately capture
the semantics of most basic operations
used by mainstream programming lan-
guages. The program fragment in Pro-
gram 3.5 illustrates the need for static
program analysis to use bit-precise rea-
soning, searching for an index in a sort-
ed array arr containing a key.

The assert statement is a precon-
dition for the procedure, restricting the
input to fall within the bounds of the
array arr. The program performs sev-
eral operations involving arithmetic, so
a theory and corresponding solver that
understands arithmetic is arguably a
good match. However, it is important
for software-analysis tools to take into
account that languages (such as Java,

C#, and C/C++) all use fixed-width bit-
vectors as representation for values of
type int, meaning the accurate theory
for int is two-complements modular
arithmetic. Assuming a bit-width of
32b, the maximal positive 32b integer
is 231−1, and the smallest negative 32b
integer is −231. If both low and high are
230, low + high evaluates to 231, which is
treated as the negative number −231. The
presumed assertion 0 ≤ mid < high does
therefore not hold. Fortunately, several
modern SMT solvers support the theory
of “bit-vectors,” accurately capturing
the semantics of modular arithmetic.
The bug does not escape an analysis
based on the theory of bit-vectors. Such
analysis would check that the array read
arr[mid] is within bounds during the
first iteration by checking the formula

(low > high ∨ 0 ≤ low < high < arr.length)
∧ (low ≤ high → 0 ≤ (low + high)/2 < arr.
length)

As in the case of code fragment 3.5, the
formula is not valid. The values low =
high = 230, arr.length = 230+1 pro-
vide a counterexample. The use of SMT
solvers for bit-precise static-analysis
tools is an active area of research and
development in Microsoft Research.
Integration with the solver Z314 and the
static analysis tool PREfix led to the au-
tomatic discovery of several overflow-
related bugs in Microsoft’s codebase.

Program verification. The ideal of
verified software is a long-running
quest since Robert Floyd and C.A.R.
Hoare introduced (in the late 1960s)
program verification by assigning logi-
cal assertions to programs. Extended

static checking uses the methods de-
veloped for program verification but in
the more limited context of checking
absence of runtime errors. The SMT
solver Simplify16 was developed in the
context of the extended static-checking
systems ESC/Modula 3 and ESC/Java.21
This work was and continues to be
the inspiration for several subsequent
verification tools, including Why19 and
Boogie.3 These systems are actively
used as bridges from several different
front ends to SMT-solver back ends; for
example, Boogie is used as a back end
for systems that verify code from lan-
guages (such as an extended version of
C# called Spec#), as well as low-level
systems code written in C. Current
practice indicates that a lone software
developer can drive these tools to ver-
ify properties of large codebases with
several hundred thousand lines of
code. A more ambitious project is the
Verifying C-Compiler system,11 target-
ing functional correctness properties
of Microsoft’s Viridian Hyper-Visor.
The Hyper-Visor is a relatively small
(100,000 lines) operating-system layer,
yet formulating and establishing cor-
rectness properties is a challenge. The
entire verification effort for this layer is
estimated by Microsoft to take around
60 programmer years.

Program-verification applications
often use theories not already sup-
ported by existing specialized solvers
but that are supported indirectly using
axiomatizations with quantifiers. As an
example of such a theory, in object-ori-
ented-type systems used for Java and
C#, it is the case that objects are relat-
ed using a single inheritance scheme;
that is, every object inherits from at
most one unique immediate parent.
To illustrate the theory, let array-of(x)
be the array type constructor for arrays
of values of type x. In some program-
ming languages, if x is a subtype of y,
then array-of(x) is a subtype of array-

Program 3.5. Binary search.

int binary_search(
 int[] arr, int low, int high, int key) {
 assert (low > high || 0 <= low < high);
 while (low <= high) {
 //Find middle value
 int mid = (low + high)/2;
 assert (0 <= mid < high);
 int val = arr[mid];
 //Refine range
 if (key == val) return mid;
 if (val > key) low = mid+1;
 else high = mid–1;
 }
 return –1;
}

Figure 3. Axioms for sub.

(∀x: sub(x, x))

(∀x,y,z: sub(x, y) ∧ sub(y, z) → sub(x, z))

(∀x,y: sub(x, y) ∧ sub(y, x) → x = y)

(∀x,y,z: sub(x, y) ∧ sub(x, z) → sub(y, z) ∨ sub(z, y))

(∀x,y: sub(x, y) → sub(array-of(x), array-of(y)))

contributed articles

september 2011 | vol. 54 | no. 9 | communications of the acm 75

of(y). In this case, we say arrays behave
in a monotone way with respect to in-
heritance. Using first-order axioms, we
specify in Figure 3 that the inheritance
relation sub(x, y) is a partial order sat-
isfying the single inheritance property
and that the array type constructor
array-of(x) is monotone with respect to
inheritance.

The theory of object inheritance il-
lustrates why SMT solvers targeted at
expressive program analysis benefit
from general support for quantifiers.

All the applications we have treat-
ed so far also rely on a fundamental
theory we have not described: the the-
ory of equality and free functions. The
axioms used for object inheritance
used the binary predicate sub and the
function array-of. All we know about
array-of is that it is monotone over
sub, and, for this reason, we say the
function is free. Decision procedures
for free functions are particularly im-
portant because it is often possible to
reduce decision problems to queries
over free functions. Given a conjunc-
tion of equalities between terms using
free functions, a congruence closure
algorithm can be used to represent the
smallest set of implied equalities. This
representation can help check if a mix-
ture of equalities and disequalities are
satisfiable, checking that the terms on
both sides of each disequality are in
different equivalence classes. Efficient
algorithms for computing congruence
closure are the subject of long-running
research17 in which terms are repre-
sented as directed acyclic graphs, or
DAGS. Figure 4 outlines the operation
of a congruence closure algorithm on
the following limited example
a = b, b = c, f(a, g(a)) ≠ f(b, g(c))

In Figure 4(a), we spelled out a DAG
for all terms in the example; in Figure
4(b), the equivalences a = b and b = c are
represented by dashed lines; in Figure
4(c), nodes g(a) and g(c) are congruent
because a = c is implied by the first two
equalities; and finally, in Figure 4(d),
nodes f(a, g(a)) and f(b, g(c)) are also
congruent, hence the example is unsat-
isfiable due to the required disequality
f(a, g(a)) ≠ f(b, g(c)).

Modeling. SMT solvers represent
an interesting opportunity for high-
level software-modeling tools. In some
contexts these tools use domains from
mathematics (such as algebraic data-
types, arrays, sets, and maps) and have
also been the subject of long-running
research in the context of SMT solvers.
Here, we introduce the array domain
that is frequently used in software
modeling.

The theory of arrays was introduced
by John McCarthy in a 1962 paper28
as part of forming a broader agenda
for a calculus of computation. It in-
cluded two functions: read and write.
The term read(a, i) produces the val-
ue of array a at index i, and the term
write(a, i, v) produces an array equal
to a, except for possibly index i, which
maps to v. To make the terminology
closer to how arrays are read in pro-
grams, we write a[i] instead of read(a,
i). These properties are summarized
through two equations:

write(a, i, v)[i] = v
write(a, i, v)[j] = a[j] for i ≠ j

They state that the result of reading
write(a, i, v) at index j is v for i = j. Read-
ing the array at any other index produc-
es the same value as a[j]. Consider, for
example, the program swap, swapping
the entries a[i] and a[j].

void swap (int [] a, int i, int j)

{
int tmp = a[i];
a[i] = a[j];
a[j] = tmp;
}

The statement that a[i] contains the
previous value of a[j]can be expressed
as
a[j] = write(write(a, i, a[j]), j, a[i])[i]

SMT solvers are
a good fit for
symbolic execution
because the
semantics of
most program
statements are
easily modeled
using theories
supported by
these solvers.

Figure 4. Example of congruence closure.

(a) f

g

a

f

g

b c

(b) f

g

a

f

g

b c

(c) f

g

a

f

g

b c

(d) f

g

a

f

g

b c

76 communications of the acm | september 2011 | vol. 54 | no. 9

contributed articles

One advantage of
using modern SMT
solvers in static
program analysis
is they accurately
capture the
semantics of most
basic operations
used by mainstream
programming
languages.

Here, we summarize a few areas in the
context of software modeling where
SMT solvers are used. Model programs
are behavioral specifications that can
be described succinctly and at a high
level of abstraction. These descrip-
tions are state machines that use ab-
stract domains. SMT solvers are used
to perform bounded model-checking
of such descriptions. The main idea of
bounded model-checking is to explore
a bounded symbolic execution of a pro-
gram or model. Thus, given a bound
(such as 17), the transitions of the state
machines are unrolled into a logical for-
mula describing all possible executions
using 17 steps. Model-based designs
use high-level languages for describing
software systems. Implementations are
derived by refinements. Modeling lan-
guages present an advantage, as they
allow software developers to explore a
design space without committing all
design decisions up front. SMT solv-
ers are the symbolic reasoning engines
used in model-based designs; for ex-
ample, they are used for type-checking
designs and in the search for different
consistent choices. Model-based test-
ing uses high-level models of software
systems, including network protocols,
to derive test oracles. SMT solvers have
been used in this context for exploring
related models using symbolic execu-
tion. Model-based testing is used on a
large scale by Microsoft developers in
the context of disclosure and documen-
tation of Microsoft network protocols.24
The model-based tools use SMT solvers
for generating combinations of test in-
puts, as well as for performing symbolic
exploration of models.

Combining Theory Solvers
How to combine multiple theory solv-
ers is a fundamental problem for
SMT solvers. As we discussed earlier,
applications ranging from test-case
generation to software verification re-
quire a combination of theories; for
example, a combination of arithmetic
and arrays is needed to reason about
Program 3.5. Fundamental questions
include: Is the union of two decidable
theories still decidable? Is the union
consistent? And how can we combine
different theory solvers? In general,
combining theory solvers is a very
difficult problem. However, useful
special cases have good answers. An

established framework for combining
theory solvers is known as the Nelson-
Oppen combination method,29 which
assumes theories do not share sym-
bols except for the equality relation.
When the only shared symbol is the
equality relation, we say the theories
are disjoint; for example, the theory of
linear arithmetic uses the constants,
functions, and relations +, 0, 1, ≤, and
the theory of arrays uses the disjoint
set read, write. It should also be pos-
sible to merge the models from the
two theory solvers into one without
contradicting assumptions one theory
might have about the size of models.
A condition that guarantees solutions
can be combined is known as “stable
infiniteness”; a theory T is stably infi-
nite if whenever a (quantifier-free) for-
mula is satisfiable in T, then it is satis-
fiable in a model of T with an infinite
universe (size).

In many practical cases, the dis-
jointness and stable infiniteness con-
ditions are easily satisfied when com-
bining theory solvers. However, not all
theory combinations satisfy these side
conditions, and research over the past
10 years has sought to generalize the
framework where signatures are non-
disjoint or where theories are non-sta-
bly infinite.22,34

Convexity, complexity, and propo-
sitional search. Convexity is an impor-
tant notion in the context of combin-
ing theories. A theory is convex if for all
sets of ground literals S and all sets of
equalities between variables E if S im-
plies the disjunction of E, then it also
implies at least one equation of E; for
example, the theory of free functions is
convex, but difference arithmetic over
integers is not.

Convexity plays an important role in
operations research, as well as in SMT,
because efficient, polynomial time
techniques exist for combining solv-
ers for convex theories.31 The key prop-
erty is that the equalities can be de-
duced, without backtracking, instead
of guessed, with backtracking. On the
other hand, nonconvex theories incur
a potential exponential time combina-
tion overhead. It therefore becomes an
additional requirement on solvers in
the Nelson-Oppen combination meth-
od that they also indicate which vari-
ables are implied equal based on a set
of assertions.

contributed articles

september 2011 | vol. 54 | no. 9 | communications of the acm 77

The advent in the late-1990s of ef-
ficient methods for propositional
search allowed viewing the theory
combination problem from a differ-
ent, more advantageous perspective.
The delayed theory combination9
method creates one atomic equal-
ity for every pair of variables shared
between solvers. These additional
atomic equalities are assigned to
true or false by a SAT solver. In this
approach, the SAT solver is used to
guess the correct equalities between
shared variables. If the theory solvers
disagree with the (dis)equalities, then
the conflict causes the SAT solver to
backtrack. The approach is oblivious
to whether or not theories are convex.
Delayed theory combination poten-
tially pollutes the search space with
a large number of mostly useless new
atomic equalities. The “Model-based
theory combination” method14 al-
lows more efficient handling of con-
vex and non-convex theories, asking
the solvers to generate a model. The
atomic equality predicates are cre-
ated only if two shared variables are
equal in a model.

Conclusion
Over the past 10 years, SMT has be-
come the core engine behind a range
of powerful technologies and an active,
exciting area of research with many
practical applications. We have pre-
sented some of the basic ideas but did
not cover many details and heuristics;
other recent topics in SMT research6
include proof-checking, integration
with first-order quantifiers, quantifier
elimination methods, and extraction
of so-called Craig interpolant formu-
las from proofs. We also did not cover
several existing and emerging appli-
cations, including sophisticated run-
time analysis of real-time embedded
systems,b estimating asymptotic run-
time bounds of programs, and pro-
gram synthesis.

SMT-solving technologies have had
a positive effect on a number of ap-
plication areas, providing rich feed-
back in terms of experimental data.
The progress in the past six years has
relied heavily on experimental evalua-
tions that uncovered new theoretical
challenges, including better repre-
sentations and algorithms, efficient
methods for combining procedures,

theories for quantifier reasoning, and
various extensions to the basic search
method. 	

References
1.	A udemard, G., Bertoli, P., Cimatti, A., Kornilowicz, A.,

and Sebastiani, R. A SAT-based approach for solving
formulas over Boolean and linear mathematical
propositions. In Proceedings of the Conference
on Automated Deduction, Vol. 2392 of LNCS
(Copenhagen, July 27–30). Springer-Verlag, Berlin,
2002.

2.	B all, T. and Rajamani, S.K. The SLAM project:
Debugging system software via static analysis.
(Symposium on Principles of Programming
Languages). SIGPLAN Notices 37, 1 (Jan. 16–18,
2002), 1–3.

3.	B arnett, M., Leino, K.R.M., and Schulte, W. The Spec#
programming system: An overview. In Proceedings
of the International Workshop on Construction and
Analysis of Safe, Secure and Interoperable Smart
Devices, LNCS 3362 (Marseille, Mar. 10–13). Springer-
Verlag, Berlin, 2005, 49–69.

4.	B arrett, C., de Moura, L., and Stump, A. Design and
results of the first Satisfiability Modulo Theories
Competition. Journal of Automated Reasoning 35, 4
(Nov. 2005), 372–390.

5.	B arrett, C., Dill, D., and Stump, A. Checking
satisfiability of first-order formulas by incremental
translation to SAT. In Proceedings of the International
Conference on Computer Aided Verification
(Copenhagen, July, 27–31). Springer-Verlag, Berlin
2002, 236–249.

6.	B arrett, C., Sebastiani, R., Seshia, S.A., and Tinelli, C.
Satisfiability Modulo Theories, Vol. 185 of Frontiers in
Artificial Intelligence and Applications, Chapter 26.
IOS Press, Feb. 2009, 825–885.

7.	B arrett, C. and Tinelli, C. CVC3. In Proceedings of the
19th International Conference on Computer Aided
Verification, Vol. 4590 of LNCS, W. Damm and H.
Hermanns, Eds. (Berlin, July 3–7). Springer-Verlag,
Berlin, 2007, 298–302.

8.	B ofill, M., Nieuwenhuis, R., Oliveras, A., Rodríguez
Carbonell, E., and Rubio, A. The Barcelogic SMT Solver.
In Proceedings of the 20th International Conference
on Computer Aided Verification, Vol. 5123 of LNCS,
A. Gupta and S. Malik, Eds. (Princeton, July 7–14).
Springer-Verlag, Berlin, 2008, 294–298.

9.	B ozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T.A.,
Ranise, S., van Rossum, P., and Sebastiani, R. Efficient
satisfiability modulo theories via delayed theory
combination. In Proceedings of the International
Conference on Computer Aided Verification, Vol.
3576 of LNCS, K. Etessami and S. K. Rajamani, Eds.
(Edinburgh, July 6–12). Springer-Verlag, Berlin, 2005,
335–349.

10.	B ruttomesso, R., Cimatti, A., Franzén, A., Griggio, A.,
and Sebastiani, R. The MathSAT 4 SMT Solver. In
Proceedings of the 18th International Conference
on Computer Aided Verification, Vol. 5123 of LNCS.
Springer-Verlag, Berlin, 2008.

11.	 Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach,
D., Moskal, M., Santen, T., Schulte, W., and Tobies, S.
VCC: A practical system for verifying concurrent C.
In Proceedings of the International Conference on
Theorem Proving in Higher Order Logics (Munich, Aug.
17–20). Springer-Verlag. Berlin, 2009, 23–42.

12. Cook, S.A. The complexity of theorem-proving
procedures. In Proceedings of the Third Annual ACM
Symposium on Theory of Computing (May 3–5). ACM
Press, New York, 1971, 151–158.

13.	 Davis, M., Logemann, G., and Loveland, D. A machine
program for theorem proving. Commun. ACM 5, 2
(July 1962), 394–397.

14.	 de Moura, L. and Bjørner, N. Z3: An efficient SMT
solver. In Proceedings of the International Conference
on tools and algorithms for the Construction and
Analysis of Systems, Vol. 4963 of LNCS, C.R.
Ramakrishnan and J. Rehof, Eds. (Budapest, Mar. 29–
Apr. 6). Springer-Verlag, Berlin, 2008, 337–340.

15.	 de Moura, L. and Rueß, H. Lemmas on demand
for satisfiability solvers. In Proceedings of the
International Conference on Theory and Applications
of Satisfiability Testing (Cincinnati, May 6–9, 2002).

b	 http://www.eecs.berkeley.edu/~sseshia/
research/embedded.html

16.	 Detlefs, D., Nelson, G., and Saxe, J.B. Simplify: A
theorem prover for program checking. Journal of the
ACM 52, 3 (May 2005), 365–473.

17.	 Downey, P.J., Sethi, R., and Tarjan, R.E. Variations on
the common subexpression problem. Journal of the
ACM 27, 4 (Oct. 1980), 758–771.

18.	 Dutertre, B. and de Moura, L. A fast linear-arithmetic
solver for DPLL(T). In Proceedings of the 16th
International Conference on Computer Aided
Verification, Vol. 4144 of LNCS (Seattle, Aug. 17–20).
Springer-Verlag, Berlin, 2006, 81–94.

19.	 Filliâtre, J.-C. Why: A Multi-Language Multi-Prover
Verification Tool. Technical Report 1366, Université
Paris Sud, 2003.

20.	 Flanagan, C., Joshi, R., Ou, X., and Saxe, J.B. Theorem
proving using lazy proof explication. In Proceedings of
the 15th International Conference on Computer Aided
Verification (Boulder, CO, July 8–12). Springer-Verlag,
Berlin, 2003, 355–367.

21.	 Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson,
G., Saxe, J.B., and Stata, R. Extended static checking
for Java. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (Berlin, June 17–19). ACM Press,
New York, 2002, 234–245.

22.	G hilardi, S., Nicolini, E., and Zucchelli, D. A
comprehensive framework for combined decision
procedures. In Proceedings of the Fifth International
Workshop on Frontiers of Combining Systems, Vol.
3717 of LNCS, B. Gramlich, Ed. (Vienna, Sept. 19–21).
Springer-Verlag, Berlin, 2005, 1–30.

23.	G odefroid, P., de Halleux, J., Nori, A.V., Rajamani, S.K.,
Schulte, W., Tillmann, N., and Levin, M.Y. Automating
software testing using program analysis. IEEE
Software 25, 5 (Sept./Oct. 2008), 30–37.

24.	G rieskamp, W., Kicillof, N., MacDonald, D., Nandan,
A., Stobie, K., and Wurden, F.L. Model-based quality
assurance of Windows protocol documentation. In
Proceedings of the First International Conference
on Software Testing, Verification, and Validation
(Lillehammer, Norway, Apr. 9–11). IEEE Computer
Society Press, 2008, 502–506.

25.	H enzinger, T.A., Jhala, R., Majumdar, R., and Sutre, G.
Software verification with blast. In Proceedings of
the 10th International SPIN Workshop, Vol. 2648 of
LNCS, T. Ball and S. R. Rajamani, Eds. (Portland, May
9–10). Springer-Verlag, Berlin, 2003, 235–239.

26.	 Kaufmann, M., Manolios, P., and Moore, J.S. Computer-
Aided Reasoning: An Approach. Kluwer Academic,
June 2000.

27.	 Malik, S. and Zhang, L. Boolean satisfiability from
theoretical hardness to practical success. Commun.
ACM 52, 8 (Aug. 2009), 76–82.

28.	 McCarthy, J. Towards a mathematical science of
computation. In Congress of the International
Federation for Information Processing, 1962, 21–28.

29.	N elson, G. and Oppen, D.C. Simplification by
cooperating decision procedures. ACM Transactions
on Programming Languages and Systems 1, 2 (Oct.
1979), 245–257.

30.	N ieuwenhuis, R., Oliveras, A., and Tinelli, C. Solving
SAT and SAT modulo theories: From an abstract
Davis–Putnam–Logemann–Loveland procedure
to DPLL(T). Journal of the ACM 53, 6 (Nov. 2006),
937–977.

31.	O ppen, D.C. Complexity, convexity and combinations of
theories. Theoretical Computer Science 12, 3 (1980),
291–302.

32.	O wre, S., Rushby, J.M., and Shankar, N. PVS: A
prototype verification system. In Proceedings of
the 11th International Conference on Automated
Deduction (Saratoga, NY, June 15–18). Springer-
Verlag, Berlin, 1992, 748–752.

33.	R anise, S. and Tinelli, C. The Satisfiability Modulo
Theories Library (SMT-LIB), 2006; http://www.SMT-
LIB.org

34.	T inelli, C. and Zarba, C.G. Combining nonstably infinite
theories. Journal of Automated Reasoning 34, 3 (Apr.
2005), 209–238.

Leonardo de Moura (leonardo@microsoft.com) is a
senior researcher in the Software Reliability Research
group at Microsoft Research, Redmond, WA.

Nikolaj Bjørner (nbjorner@microsoft.com) is s senior
researcher in the Foundations of Software Engineering
group at Microsoft Research, Redmond, WA.

© 2011 ACM 0001-0782/11/09 $10.00

