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Constraint-satisfaction problems arise in diverse 
application areas, including software and hardware 
verification, type inference, static program analysis, 
test-case generation, scheduling, planning, and 
graph problems, and share a common trait—a core 
component using logical formulas for describing 

states and transformations between 
them. The most well-known constraint 
satisfaction problem is propositional 
satisfiability, or SAT, aiming to de-
cide whether a formula over Boolean 
variables, formed using logical con-
nectives, can be made true by choos-
ing true/false values for its variables. 
Some problems are more naturally 
described with richer languages (such 
as arithmetic). A supporting theory (of 
arithmetic) is then required to capture 
the meaning of the formulas. Solvers 
for such formulations are commonly 
called “satisfiability modulo theories,” 
or SMT, solvers. 

In the past decade, SMT solvers have 

attracted increased attention due to 
technological advances and industrial 
applications. Yet SMT solvers draw on 
some of the most fundamental areas 
of computer science, as well as a cen-
tury of symbolic logic. They combine 
the problem of Boolean satisfiability 
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 key insights
 � �Many tools for program analysis, testing, 

and verification are based on mathematical 
logic as the calculus of computation. 
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with domains (such as those studied in 
convex optimization and term-manipu-
lating symbolic systems). They involve 
the decision problem, completeness 
and incompleteness of logical theories, 
and complexity theory. Here, we explore 
the field of SMT and some of its applica-
tions. 

Increased attention has led to enor-
mous progress in constraint-satisfac-
tion problems that can be solved due 
to innovations in core algorithms, data 
structures, heuristics, and the care-
ful use of modern microprocessors. 
Modern SAT27 procedures can check 
formulas with hundreds of thousands 
of variables. Similar progress has been 
observed for SMT solvers for more com-
monly occurring theories, including 
such state-of-the art SMT solvers as Bar-
celogic,8 CVC,3,7 MathSAT,10 Yices,18 and 
Z3.14 

The annual competitions for SAT 
(http://www.satcompetition.org) and 
SMT (http://www.smtcomp.org) are a 
key driving force.4 An important ingre-
dient is a common interchange format 
for benchmarks, called SMT-LIB,33 and 
the classification of benchmarks into 
various categories, depending which 
theories are required. Conversely, a 
growing number of applications can 
generate benchmarks in the SMT-LIB 
format to further improve SMT solvers. 

There is a relatively long tradition 
dating to the late-1970s of using SMT 
solvers in specialized contexts. One pro-
lific case is theorem-proving systems 
(such as ACL226 and PVS32) that use de-
cision procedures to discharge lemmas 
encountered during interactive proofs. 
SMT solvers have also been used for the 
past 15 years in the context of program 
verification and extended static check-

ing21 where verification focuses on as-
sertion checking. 

Progress in the past four years in 
SMT solvers has enabled their use in 
diverse applications, including inter-
active theorem provers and extended 
static checkers, as well as in scheduling, 
planning, test-case generation, model-
based testing and program develop-
ment, static program analysis, program 
synthesis, and run-time analysis. 

We begin by introducing an applica-
tion we use as a running example. 

Scheduling. Consider the classical 
job-shop-scheduling decision prob-
lem, involving n jobs, each composed 
of m tasks of varying duration that must 
be performed consecutively on m ma-
chines. The start of a new task can be 
delayed as long as needed in order for a 
machine to become available, but tasks 
cannot be interrupted once they are 
started. The problem involves essential-
ly two types of constraints: 

Precedence. Between two tasks in the 
same job; and 

Resource. Specifying that no two dif-
ferent tasks requiring the same ma-
chine are able to execute at the same 
time. 

Given a total maximum time max 
and the duration of each task, the 
problem consists of deciding whether 
there is a schedule such that the end-
time of every task is less than or equal 
to max time units. We use di,j to denote 
the duration of the j-th task of job i. A 
schedule is specified by the start-time 
(ti,j) for the j-th task of every job i. The 
job-shop-scheduling problem can be 
encoded in SMT using the theory of lin-
ear arithmetic. A precedence constraint 
between two consecutive tasks ti,j and 
ti,j+1 is encoded using the inequality ti,j+1 

≥ ti,j + di,j; this inequality states that the 
start-time of task j + 1 must be greater 
than or equal to the start time of task j 
plus its duration. A resource constraint 
between two tasks from different jobs 
i and i′ requiring the same machine j is 
encoded using the formula (ti,j ≥ ti′,j + di′,j) 
∨ (ti′,j ≥ ti,j + di,j), stating the two tasks do 
not overlap. The start time of the first 
task of every job i must be greater than 
or equal to zero, so the result is ti,1 ≥ 0. Fi-
nally, the end time of the last task must 
be less than or equal to max, hence ti,m 
+di,m ≤ max. Figure 1 is an instance of 
the job-scheduling problem, its encod-
ing as a logical formula, and a solution. 
The logical formula combines logical 
connectives (conjunctions, disjunction, 
and negation) with atomic formulas in 
the form of linear arithmetic inequali-
ties. We call it an SMT formula. The so-
lution in Figure 1 is a satisfying assign-
ment, a mapping from variables ti,j to 
values that make the formula true. 

SMT-Solving Techniques 
Modern SMT solvers use procedures 
for deciding the satisfiability of con-
junctions of literals, where a literal is 
an atomic formula or the negation of 
an atomic formula. Throughout this ar-
ticle, we call these procedures “theory 
solvers.” The scheduling application 
demonstrates that this kind of proce-
dure alone is not sufficient in practice, 
because the encoding contains disjunc-
tive sub-formulas, as in 

(t1,1 ≥ t2,1 + 3) ∨ (t2,1 ≥ t1,1 + 2) 

SMT solvers handle sub-formulas like 
this by performing case analysis, which 
is in the core of most automated de-
duction tools. Most SMT solvers rely 
on efficient satisfiability procedures 
for propositional logic (SAT solvers) for 
performing case analysis efficiently. A 
standard technique for integrating SAT 
solvers and theory solvers1,5,15,20,30 is de-
scribed next. 

SAT: A propositional core. Proposi-
tional logic is a special case of predicate 
logic in which formulas are built from 
Boolean variables, called atoms, and 
composed using logical connectives 
(such as conjunction, disjunction, and 
negation). The satisfiability problem for 
propositional logic is famously known 
as an NP-complete problem12 and 
therefore in principle computationally 

Figure 1. Encoding job-shop scheduling. 
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intractable. Yet recent advances in ef-
ficient propositional logic algorithms 
have moved the boundaries for what is 
intractable when it comes to practical 
applications.27 

Most successful SAT solvers are 
based on an approach called “system-
atic search.” The search space is a tree 
with each vertex representing a Bool-
ean variable and the out edges repre-
senting the two choices (true and false) 
for this variable. For a formula contain-
ing n Boolean variables, the tree has 
2n leaves. Each path from the root to a 
leaf corresponds to a truth assignment. 
A model is a truth assignment that 
makes the formula true. We also say 
the model satisfies the formula, and 
the formula is satisfiable. 

Most search-based SAT solvers are 
based on the DPLL/Davis-Putnam-
Logemann-Loveland algorithm.13 The 
DPLL algorithm tries to build a model 
using three main operations: decide, 
propagate, and backtrack. The 
algorithm benefits from a restricted 
representation of formulas in conjunc-
tive normal form, or CNF. CNF formu-
las are restricted to be conjunctions of 
clauses, with each clause, in turn, a dis-
junction of literals. Recall that a literal 
is an atom or the negation of an atom; 
for example, the formula ¬p ∧ (p ∨ q) 
is in CNF. The operation decide heu-
ristically chooses an unassigned atom, 
assigning it to true or false, and is also 
called branching or case-splitting. The 
operation propagate deduces the 
consequences of a partial truth assign-
ment using deduction rules. The most 
widely used deduction rule is the unit-
clause rule, stating that if a clause has 
all but one literal assigned to false and 
the remaining literal l is unassigned, 
then the only way for the clause to eval-
uate to true is to assign l to true. 

Let C be the clause p ∨ ¬q ∨ ¬r, and M 
the partial truth assignment {p → false, 
r → true}, then the only way for C to 
evaluate to true is by assigning q to false. 
Given a partial truth assignment M and 
a clause C in the CNF formula, such that 
all literals of C are assigned to false in 
M, then there is no way to extend M to 
a complete model M′ that satisfies the 
given formula. We say this is a conflict, 
and C is a conflicting clause. A conflict 
indicates some of the earlier decisions 
cannot lead to a truth assignment that 
satisfies the given formula, and the 

DPLL procedure must backtrack and 
try a different branch value. If a conflict 
is detected and there are no decisions to 
backtrack, then the formula is unsatis-
fiable; that is, it does not have a model. 
Many significant improvements to this 
basic procedure have been proposed 
over the years, with the main ones be-
ing lemma learning, non-chronological 
backtracking, and efficient indexing 
techniques for applying the unit-clause 
rule and preprocessing techniques.27

A solver for difference arithmetic. 
The job-shop-scheduling decision 
problem can be solved by combining a 
SAT solver with a theory solver for dif-
ference arithmetic. Difference arithme-
tic is a fragment of linear arithmetic, 
where predicates are restricted to be 
of the form t − s ≤ c and where t and s 
are variables and c a numeric constant 
(such as 1 and 3). Every atom in Figure 
1 can be put into this form; for example, 
the atom t3,1 ≥ t2,1+3 is equivalent to the 
atom t2,1−t3,1 ≤ −3. For atoms of the form 
s ≤ c and s ≥ c, a special fresh variable z is 
used. We say z is the zero variable, and 
the atoms are represented in difference 
arithmetic as s − z ≤ c and z − s ≤ − c, re-
spectively; for example, the atom t3,2 + 3 
≤ 8 is represented in difference arithme-
tic as t3,2 − z ≤ 5. A set of difference arith-
metic atoms can be checked efficiently 
for satisfiability by searching for nega-
tive cycles in weighted directed graphs. 
In the graph representation, each vari-
able corresponds to a node, and an in-
equality of the form t − s ≤ c corresponds 
to an edge from s to t with weight c. Fig-
ure 2 is a subset of atoms (in difference 
arithmetic form) from the example in 
Figure 1, along with the corresponding 
graph. The negative cycle, with weight 
−2, is shown by dashed lines. The cycle 
corresponds to the following schedule 

that cannot be completed in eight time 
units: 

task 1/job 1 → task 1/job 2 → 
task 1/job 3 → task 2/job 3 

Recall that the scheduling problem in 
Figure 1 is satisfiable but requires as-
signing a different combination of at-
oms to true. 

Interfacing solvers with SAT. We’ve 
outlined a theory solver for difference 
arithmetic and now describe how a 
SAT procedure interacts with this the-
ory solver. The key idea is to create an 
abstraction that maps the atoms in an 
SMT formula into fresh Boolean vari-
ables p1, . . . , pn; for example, the formu-
la ¬(a ≥ 3) ∧ (a ≥ 3 ∨ a ≥ 5) is translated 
into ¬p1 ∧ (p1 ∨ p2), where the atoms a 
≥ 3 and a ≥ 5 are replaced by the Bool-
ean variables p1 and p2, respectively. 
The new abstract formula can then be 
processed by a regular SAT procedure. 
If the SAT procedure finds the abstract 
formula to be unsatisfiable, then so, 
too, is the SMT formula. On the other 
hand, if the abstract formula is found 
to be satisfiable, the theory solver is 
used to check the model produced by 
the SAT procedure. The idea is that any 
model produced by the SAT procedure 
induces a set of literals; for example, 
{p1 → false, p2 → true} is a model for 
the formula ¬p1 ∧ (p1 ∨ p2), inducing the 
set of literals {¬(a ≥ 3), a ≥ 5} that is un-
satisfiable in the theory of arithmetic. 
Therefore, the formula (clause) a ≥ 3∨ 
¬(a ≥ 5) is valid in the theory of arithme-
tic. The abstraction of this formula is 
the clause p1 ∨ ¬p2. We say it is a “theory 
lemma,” and since it is based on a valid 
formula from the theory of arithmetic, 
we can then add it to our original for-
mula, obtaining the new formula:

Figure 2. Example of difference arithmetic. 
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¬p1 ∧ (p1 ∨ p2) ∧ (p1 ∨ ¬p2)

The SAT solver is executed again, tak-
ing the new formula as input, and finds 
the new formula to be unsatisfiable, 
proving the original formula ¬(a ≥ 3) ∧ 
(a ≥ 3 ∨ a ≥ 5) is also unsatisfiable. In 
practice, many theory lemmas are cre-
ated until this process converges. Note, 
too, this process always converges be-
cause there is a finite number of atoms, 
and, consequently, there is a finite 
number of theory lemmas that can be 
created using them. 

Given an unsatisfiable set of theory 
literals S, we say a justification for S 
is any unsatisfiable subset J of S. Any 
unsatisfiable set S is, of course, also a 
justification for itself. We say a justifi-
cation J is non-redundant if there is no 
strict subset J′ of J that is also unsatis-
fiable. It is desirable to have a theory 
solver that produces non-redundant 
justifications, as they may drastically 
reduce the search space. This observa-
tion follows from the fact that smaller 
sets produce smaller theory lemmas 
(clauses) and consequently have fewer 
satisfying assignments. 

Returning to the example in Figure 
2, the negative cycle corresponds to a 
non-redundant unsatisfiable set of dif-

ference atoms. The negation of these 
atoms corresponds to the following 
valid clause in difference arithmetic: 

¬(t3,1 − t3,2 ≤ −2) ∨ ¬(t2,1 − t3,1 ≤ −3) ∨
¬(t1,1 − t2,1 ≤ −2) ∨ ¬(z − t1,1 ≤ 0) ∨ 
¬(t3,2 − z ≤ 5) 

This integration scheme is also known 
as the “lazy offline” approach and in-
cludes many refinements; one is to 
have a tighter integration between the 
two procedures, where the theory solv-
er is used to check partial truth assign-
ments being explored by the SAT solver 
(online integration). In it, additional 
performance gains can be obtained if 
the theory solver is incremental (new 
constraints can be added at minimal 
cost) and backtrackable (constraints 
can be removed at minimal cost). The-
ory deduction rules can also be used to 
prune the search space being explored 
by the DPLL solver (theory propaga-
tion). In difference arithmetic, theory 
propagation can be implemented by 
computing the shortest distance be-
tween two nodes. Returning to the ex-
ample in Figure 2, assume the inequal-
ity t2,1 − t3,1 ≤ −3 is not there. Thus, the 
graph on the right-hand side will not 
contain an edge from t3,1 to t2,1 and, 
consequently, the negative cycle. The 
shortest distance between the nodes 
t2,1 and t3,1 is 1 by following the path 

t2,1 → t1,1→ z → t3,2→ t3,1 

This fact implies that t3,1−t2,1 ≤ 1, and 
one can verify the result by adding the 
inequalities associated with each edge. 
The inequality t3,1−t2,1 ≤ 1 is equivalent 
to t2,1−t3,1 ≥ −1, implying ¬(t2,1 − t3,1 ≤ 
−3). Therefore, if the SAT solver has as-
signed the atoms t1,1 − t2,1 ≤ −2, z − t1,1 
≤ 0, t3,2 − z ≤ 5 and t3,1 − t3,2 ≤ −2 to true, 

then, by theory propagation, the atom 
t2,1 − t3,1 ≤ −3 can be assigned to false, 
thus avoiding the inconsistency (nega-
tive cycle) in Figure 2. 

SMT in Software Engineering 
Software developers use logical for-
mulas to describe program states and 
transformations between program 
states, a procedure at the core of most 
software-engineering tools that ana-
lyze, verify, or test programs. Here, we 
describe a few such applications: 

Dynamic symbolic execution. SMT 
solvers play a central role in dynamic 
symbolic execution. A number of tools 
used in industry are based on dynamic 
symbolic execution, including CUTE, 
Klee, DART, SAGE, Pex, and Yogi,23 de-
signed to collect explored program 
paths as formulas, using solvers to 
identify new test inputs that can steer 
execution into new branches. SMT solv-
ers are a good fit for symbolic execution 
because the semantics of most program 
statements are easily modeled using 
theories supported by these solvers. We 
later introduce the various theories that 
are used, but here we focus on connect-
ing constraints with a solver. To illus-
trate the basic idea of dynamic symbolic 
execution, consider the greatest com-
mon divisor in Program 3.1, taking the 
inputs x and y and producing the great-
est common divisor of x and y. 

Program 3.2 represents the static 
single assignment unfolding corre-
sponding to the case where the loop is 
exited in the second iteration. Asser-
tions are used to enforce that the condi-
tion of the if statement is not satisfied 
in the first iteration and is in the second 
iteration. The sequence of instructions 
is equivalently represented as a formula 
where the assignment statements have 
been turned into equations. 

The resulting path formula is satis-
fiable. One satisfying assignment that 
can be found using an SMT solver is of 
the form: 

x0 = 2, y0 = 4, m0 = 2, x1 = 4, y1 = 2, m1 = 0 

It can be used as input to the origi-
nal program; in this example, the call 
GCD(2,4) causes the loop to be entered 
twice, as expected. 

Fuzz testing is a software-testing 
technique that provides invalid or unex-
pected data to a program. The program 

Program 3.1. Greatest common divisor 
program. 

int GCD (int x, int y)
 while (true) {
   int m = x % y;
   if (m == 0) return y;
  x = y;
  y = m;
 }
}

Program 3.2. Greatest common divisor path formula. 

int GCD (int x0, int y0) {
 int m0 = x0 % y0; (m0 = x0 % y0) ∧
 assert (m0 != 0); ¬(m0 = 0) ∧
 int x1 = y0; (x1 = y0) ∧
 int y1 = m0; (y1 = m0) ∧
 int m1 = x1 % y1; (m1 = x1 % y1) ∧
 assert (m1 == 0); (m1 = 0)
}
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being fuzzed is opaque, and fuzzing 
is performed by perturbing input vec-
tors using random walks. “White-box 
fuzzing” combines fuzz testing and 
dynamic symbolic execution and is ac-
tively used at Microsoft. Complement-
ing traditional fuzz testing, it has been 
instrumental in uncovering several sub-
tle security-critical bugs that traditional 
testing methods are unable to find. 

Program model checking. Dynamic 
symbolic execution finds input that can 
guide execution into bugs. This method 
alone does not guarantee that programs 
are free of all the errors being checked 
for. The goal of program model check-
ing tools is to automatically check for 
freedom from selected categories of 
errors. The idea is to explore all pos-
sible executions using a finite and suf-
ficiently small abstraction of the pro-
gram state space. The tools BLAST,25 
SDV,2 and SMV from Cadencea perform 
program model checking. Both SDV 
and SMV are used as part of commercial 
tool offerings. The program fragment in 
Program 3.3 is an example of finite-state 
abstraction, accessing requests using 
GetNextRequest. The call is protect-
ed by a lock. A question is whether it is 
possible to exit the loop without having 
a lock. The program has a very large, po-
tentially unbounded, number of states, 
since the value of the program variable 
count can grow arbitrarily. 

However, from the point of view 
of locking, the actual values of count 
and old _ count are not interesting. 
On the other hand, the relationship 
between these program variables con-
tains useful information. Program 3.4 
is a finite-state abstraction of the same 
locking program. The Boolean vari-
able b encodes the relation count == 
old _ count. In it, we use the symbol 
∗ to represent a Boolean expression that 
nondeterministically evaluates to true 
or false. The abstract program contains 
only Boolean variables, thus a finite 
number of states. We can now explore 
the finite number of branches of the 
abstract program to verify the lock is al-
ways held when exiting the loop. 

SMT solvers are used for construct-
ing finite-state abstractions, like the 
one in Program 3.4. Abstractions can 
be created through several approaches; 
in one, each statement in the program 

a	 http://www.kenmcmil.com

is individually abstracted; for example, 
consider the statement count = count 
+ 1. The abstraction of it is essentially 
a relation between the current and the 
new values of the Boolean variable b. 
SMT solvers are used to compute the re-
lation by proving theorems, as in 

count == old _ count → 
count+1 != old _ count 

which is equivalent to checking unsat-
isfiability of the negation 

count == old _ count ∧ 
count+1 == old _ count

The theorem says if the current value of 
b is true, then after executing the state-
ment count = count + 1, the value of 
b will be false. Note that if b is false, 
then neither of the following conjec-
tures is valid: 

count != old _ count → 
count+1 == old _ count 
count != old _ count → 
count+1 != old _ count 

In each, an SMT solver will produce a 
model for the negation of the conjec-

Most SMT solvers 
rely on efficient 
satisfiability 
procedures for 
propositional logic 
(SAT solvers) for 
performing case 
analysis efficiently.

Program 3.3. Processing requests using 
locks. 

do {
 lock ();
 old_count = count;
 request = GetNextRequest();
 if (request != NULL) {
  unlock();
  ProcessRequest(request);
  count = count + 1;
 }
}
while (old_count != count);
unlock();

Program 3.4. Processing requests using 
locks, abstracted. 

do {
 lock ();
 b = true;
 request = GetNextRequest();
 if (request != NULL) {
  unlock();
  ProcessRequest(request);
  if (b) b = false; else b = ∗;
 }
}
while (!b);
unlock();
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ture. Therefore, the model is a counter-
example of the conjecture, and when 
the current value of b is false, nothing 
can be said about its value after the ex-
ecution of the statement. The result 
of these three proof attempts is then 
used to replace the statement count = 
count + 1; by if (b) b = false; else 
b = *;. A finite state model checker can 
now be used on the Boolean program 
and will establish that b is always true 
when control reaches this statement, 
verifying that calls to lock() are bal-
anced with calls to unlock() in the 
original program. 

Static program analysis. Static pro-
gram analysis tools work like dynamic-
symbolic-execution tools, checking 
feasibility of program paths. On the 
other hand, they never require execut-
ing programs and can analyze software 
libraries and utilities independently of 
how they are used. One advantage of 
using modern SMT solvers in static pro-
gram analysis is they accurately capture 
the semantics of most basic operations 
used by mainstream programming lan-
guages. The program fragment in Pro-
gram 3.5 illustrates the need for static 
program analysis to use bit-precise rea-
soning, searching for an index in a sort-
ed array arr containing a key. 

The assert statement is a precon-
dition for the procedure, restricting the 
input to fall within the bounds of the 
array arr. The program performs sev-
eral operations involving arithmetic, so 
a theory and corresponding solver that 
understands arithmetic is arguably a 
good match. However, it is important 
for software-analysis tools to take into 
account that languages (such as Java, 

C#, and C/C++) all use fixed-width bit-
vectors as representation for values of 
type int, meaning the accurate theory 
for int is two-complements modular 
arithmetic. Assuming a bit-width of 
32b, the maximal positive 32b integer 
is 231−1, and the smallest negative 32b 
integer is −231. If both low and high are 
230, low + high evaluates to 231, which is 
treated as the negative number −231. The 
presumed assertion 0 ≤ mid < high does 
therefore not hold. Fortunately, several 
modern SMT solvers support the theory 
of “bit-vectors,” accurately capturing 
the semantics of modular arithmetic. 
The bug does not escape an analysis 
based on the theory of bit-vectors. Such 
analysis would check that the array read 
arr[mid] is within bounds during the 
first iteration by checking the formula 

(low > high ∨ 0 ≤ low < high < arr.length) 
∧ (low ≤ high → 0 ≤ (low + high)/2 < arr.
length) 

As in the case of code fragment 3.5, the 
formula is not valid. The values low = 
high = 230, arr.length = 230+1 pro-
vide a counterexample. The use of SMT 
solvers for bit-precise static-analysis 
tools is an active area of research and 
development in Microsoft Research. 
Integration with the solver Z314 and the 
static analysis tool PREfix led to the au-
tomatic discovery of several overflow-
related bugs in Microsoft’s codebase. 

Program verification. The ideal of 
verified software is a long-running 
quest since Robert Floyd and C.A.R. 
Hoare introduced (in the late 1960s) 
program verification by assigning logi-
cal assertions to programs. Extended 

static checking uses the methods de-
veloped for program verification but in 
the more limited context of checking 
absence of runtime errors. The SMT 
solver Simplify16 was developed in the 
context of the extended static-checking 
systems ESC/Modula 3 and ESC/Java.21 
This work was and continues to be 
the inspiration for several subsequent 
verification tools, including Why19 and 
Boogie.3 These systems are actively 
used as bridges from several different 
front ends to SMT-solver back ends; for 
example, Boogie is used as a back end 
for systems that verify code from lan-
guages (such as an extended version of 
C# called Spec#), as well as low-level 
systems code written in C. Current 
practice indicates that a lone software 
developer can drive these tools to ver-
ify properties of large codebases with 
several hundred thousand lines of 
code. A more ambitious project is the 
Verifying C-Compiler system,11 target-
ing functional correctness properties 
of Microsoft’s Viridian Hyper-Visor. 
The Hyper-Visor is a relatively small 
(100,000 lines) operating-system layer, 
yet formulating and establishing cor-
rectness properties is a challenge. The 
entire verification effort for this layer is 
estimated by Microsoft to take around 
60 programmer years. 

Program-verification applications 
often use theories not already sup-
ported by existing specialized solvers 
but that are supported indirectly using 
axiomatizations with quantifiers. As an 
example of such a theory, in object-ori-
ented-type systems used for Java and 
C#, it is the case that objects are relat-
ed using a single inheritance scheme; 
that is, every object inherits from at 
most one unique immediate parent. 
To illustrate the theory, let array-of(x) 
be the array type constructor for arrays 
of values of type x. In some program-
ming languages, if x is a subtype of y, 
then array-of(x) is a subtype of array-

Program 3.5. Binary search. 

int binary_search(
 int[] arr, int low, int high, int key) {
  assert (low > high || 0 <= low < high);
  while (low <= high) {
   //Find middle value
   int mid = (low + high)/2;
   assert (0 <= mid < high);
   int val = arr[mid];
   //Refine range
   if (key == val) return mid;
   if (val > key) low = mid+1;
   else high = mid–1;
  }
  return –1;
}

Figure 3. Axioms for sub.

( ∀x: sub(x, x))

( ∀x,y,z: sub(x, y) ∧ sub(y, z) → sub(x, z))

( ∀x,y: sub(x, y) ∧ sub(y, x) → x = y)

( ∀x,y,z: sub(x, y) ∧ sub(x, z) → sub(y, z) ∨ sub(z, y))

( ∀x,y: sub(x, y) → sub(array-of(x), array-of(y)))
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of(y). In this case, we say arrays behave 
in a monotone way with respect to in-
heritance. Using first-order axioms, we 
specify in Figure 3 that the inheritance 
relation sub(x, y) is a partial order sat-
isfying the single inheritance property 
and that the array type constructor 
array-of(x) is monotone with respect to 
inheritance. 

The theory of object inheritance il-
lustrates why SMT solvers targeted at 
expressive program analysis benefit 
from general support for quantifiers. 

All the applications we have treat-
ed so far also rely on a fundamental 
theory we have not described: the the-
ory of equality and free functions. The 
axioms used for object inheritance 
used the binary predicate sub and the 
function array-of. All we know about 
array-of is that it is monotone over 
sub, and, for this reason, we say the 
function is free. Decision procedures 
for free functions are particularly im-
portant because it is often possible to 
reduce decision problems to queries 
over free functions. Given a conjunc-
tion of equalities between terms using 
free functions, a congruence closure 
algorithm can be used to represent the 
smallest set of implied equalities. This 
representation can help check if a mix-
ture of equalities and disequalities are 
satisfiable, checking that the terms on 
both sides of each disequality are in 
different equivalence classes. Efficient 
algorithms for computing congruence 
closure are the subject of long-running 
research17 in which terms are repre-
sented as directed acyclic graphs, or 
DAGS. Figure 4 outlines the operation 
of a congruence closure algorithm on 
the following limited example 
a = b, b = c, f(a, g(a)) ≠ f(b, g(c)) 

In Figure 4(a), we spelled out a DAG 
for all terms in the example; in Figure 
4(b), the equivalences a = b and b = c are 
represented by dashed lines; in Figure 
4(c), nodes g(a) and g(c) are congruent 
because a = c is implied by the first two 
equalities; and finally, in Figure 4(d), 
nodes f(a, g(a)) and f(b, g(c)) are also 
congruent, hence the example is unsat-
isfiable due to the required disequality 
f(a, g(a)) ≠ f(b, g(c)). 

Modeling. SMT solvers represent 
an interesting opportunity for high-
level software-modeling tools. In some 
contexts these tools use domains from 
mathematics (such as algebraic data-
types, arrays, sets, and maps) and have 
also been the subject of long-running 
research in the context of SMT solvers. 
Here, we introduce the array domain 
that is frequently used in software 
modeling. 

The theory of arrays was introduced 
by John McCarthy in a 1962 paper28 
as part of forming a broader agenda 
for a calculus of computation. It in-
cluded two functions: read and write. 
The term read(a, i) produces the val-
ue of array a at index i, and the term 
write(a, i, v) produces an array equal 
to a, except for possibly index i, which 
maps to v. To make the terminology 
closer to how arrays are read in pro-
grams, we write a[i] instead of read(a, 
i). These properties are summarized 
through two equations: 

write(a, i, v)[i] = v 
write(a, i, v)[j] = a[j] for i ≠ j 

They state that the result of reading 
write(a, i, v) at index j is v for i = j. Read-
ing the array at any other index produc-
es the same value as a[j]. Consider, for 
example, the program swap, swapping 
the entries a[i] and a[j]. 

void swap (int [] a, int i, int j)

{
int tmp = a[i];
a[i] = a[j];
a[j] = tmp;
}

The statement that a[i] contains the 
previous value of a[j]can be expressed 
as
a[j] = write(write(a, i, a[j]), j, a[i])[i] 

SMT solvers are  
a good fit for 
symbolic execution 
because the 
semantics of 
most program 
statements are 
easily modeled 
using theories 
supported by  
these solvers. 

Figure 4. Example of congruence closure. 
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One advantage of 
using modern SMT 
solvers in static 
program analysis 
is they accurately 
capture the 
semantics of most 
basic operations 
used by mainstream 
programming 
languages. 

Here, we summarize a few areas in the 
context of software modeling where 
SMT solvers are used. Model programs 
are behavioral specifications that can 
be described succinctly and at a high 
level of abstraction. These descrip-
tions are state machines that use ab-
stract domains. SMT solvers are used 
to perform bounded model-checking 
of such descriptions. The main idea of 
bounded model-checking is to explore 
a bounded symbolic execution of a pro-
gram or model. Thus, given a bound 
(such as 17), the transitions of the state 
machines are unrolled into a logical for-
mula describing all possible executions 
using 17 steps. Model-based designs 
use high-level languages for describing 
software systems. Implementations are 
derived by refinements. Modeling lan-
guages present an advantage, as they 
allow software developers to explore a 
design space without committing all 
design decisions up front. SMT solv-
ers are the symbolic reasoning engines 
used in model-based designs; for ex-
ample, they are used for type-checking 
designs and in the search for different 
consistent choices. Model-based test-
ing uses high-level models of software 
systems, including network protocols, 
to derive test oracles. SMT solvers have 
been used in this context for exploring 
related models using symbolic execu-
tion. Model-based testing is used on a 
large scale by Microsoft developers in 
the context of disclosure and documen-
tation of Microsoft network protocols.24 
The model-based tools use SMT solvers 
for generating combinations of test in-
puts, as well as for performing symbolic 
exploration of models. 

Combining Theory Solvers 
How to combine multiple theory solv-
ers is a fundamental problem for 
SMT solvers. As we discussed earlier, 
applications ranging from test-case 
generation to software verification re-
quire a combination of theories; for 
example, a combination of arithmetic 
and arrays is needed to reason about 
Program 3.5. Fundamental questions 
include: Is the union of two decidable 
theories still decidable? Is the union 
consistent? And how can we combine 
different theory solvers? In general, 
combining theory solvers is a very 
difficult problem. However, useful 
special cases have good answers. An 

established framework for combining 
theory solvers is known as the Nelson-
Oppen combination method,29 which 
assumes theories do not share sym-
bols except for the equality relation. 
When the only shared symbol is the 
equality relation, we say the theories 
are disjoint; for example, the theory of 
linear arithmetic uses the constants, 
functions, and relations +, 0, 1, ≤, and 
the theory of arrays uses the disjoint 
set read, write. It should also be pos-
sible to merge the models from the 
two theory solvers into one without 
contradicting assumptions one theory 
might have about the size of models. 
A condition that guarantees solutions 
can be combined is known as “stable 
infiniteness”; a theory T is stably infi-
nite if whenever a (quantifier-free) for-
mula is satisfiable in T, then it is satis-
fiable in a model of T with an infinite 
universe (size). 

In many practical cases, the dis-
jointness and stable infiniteness con-
ditions are easily satisfied when com-
bining theory solvers. However, not all 
theory combinations satisfy these side 
conditions, and research over the past 
10 years has sought to generalize the 
framework where signatures are non-
disjoint or where theories are non-sta-
bly infinite.22,34

Convexity, complexity, and propo-
sitional search. Convexity is an impor-
tant notion in the context of combin-
ing theories. A theory is convex if for all 
sets of ground literals S and all sets of 
equalities between variables E if S im-
plies the disjunction of E, then it also 
implies at least one equation of E; for 
example, the theory of free functions is 
convex, but difference arithmetic over 
integers is not. 

Convexity plays an important role in 
operations research, as well as in SMT, 
because efficient, polynomial time 
techniques exist for combining solv-
ers for convex theories.31 The key prop-
erty is that the equalities can be de-
duced, without backtracking, instead 
of guessed, with backtracking. On the 
other hand, nonconvex theories incur 
a potential exponential time combina-
tion overhead. It therefore becomes an 
additional requirement on solvers in 
the Nelson-Oppen combination meth-
od that they also indicate which vari-
ables are implied equal based on a set 
of assertions. 
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The advent in the late-1990s of ef-
ficient methods for propositional 
search allowed viewing the theory 
combination problem from a differ-
ent, more advantageous perspective. 
The delayed theory combination9 
method creates one atomic equal-
ity for every pair of variables shared 
between solvers. These additional 
atomic equalities are assigned to 
true or false by a SAT solver. In this 
approach, the SAT solver is used to 
guess the correct equalities between 
shared variables. If the theory solvers 
disagree with the (dis)equalities, then 
the conflict causes the SAT solver to 
backtrack. The approach is oblivious 
to whether or not theories are convex. 
Delayed theory combination poten-
tially pollutes the search space with 
a large number of mostly useless new 
atomic equalities. The “Model-based 
theory combination” method14 al-
lows more efficient handling of con-
vex and non-convex theories, asking 
the solvers to generate a model. The 
atomic equality predicates are cre-
ated only if two shared variables are 
equal in a model. 

Conclusion 
Over the past 10 years, SMT has be-
come the core engine behind a range 
of powerful technologies and an active, 
exciting area of research with many 
practical applications. We have pre-
sented some of the basic ideas but did 
not cover many details and heuristics; 
other recent topics in SMT research6 
include proof-checking, integration 
with first-order quantifiers, quantifier 
elimination methods, and extraction 
of so-called Craig interpolant formu-
las from proofs. We also did not cover 
several existing and emerging appli-
cations, including sophisticated run-
time analysis of real-time embedded 
systems,b estimating asymptotic run-
time bounds of programs, and pro-
gram synthesis. 

SMT-solving technologies have had 
a positive effect on a number of ap-
plication areas, providing rich feed-
back in terms of experimental data. 
The progress in the past six years has 
relied heavily on experimental evalua-
tions that uncovered new theoretical 
challenges, including better repre-
sentations and algorithms, efficient 
methods for combining procedures, 

theories for quantifier reasoning, and 
various extensions to the basic search 
method. 	
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