Voting with Ghosts

Robbert van Renesse

Andrew S. Tanenbaum

Dept. of Computer Science
Vrije Universiteit
The Netherlands

ABSTRACT

Data replication is a technique for increasing the availability of
data. Two popular algorithms for maintaining consistency
among the replicas are Weighted Voting [1] and Available
Copies [2]). In recent papers [3,4] it has been shown that under
common circumstances Available Copies (AC) performs
better than Weighted Voting (WV). However, the issue of net-
work partitioning due to gateway crashes is ignored in AC.
We present an improvement of WV that, if configured accord-
ingly, performs as well as AC, but, unlike AC, also works
correctly in the face of network partitioning.

1. INTRODUCTION

Data replication in distributed operating systems is a
technique for increasing the availability of data. It can also
increase the performance of the system, since an application
can use nearby copies of the data instead of distant ones. A
serious problem, however, is to make the collection of repli-
cated data look like a single object, even under concurrent
access. Users should always see the most recent version. This
prerequisite is called serial consistency or one-copy serializa-
bility.

Two popular algorithms for achieving serial consistency
are Weighted Voting[1] and Available Copies[2]. Weighted
Voting (WV) trades off read availability for write availability,
and may need more than one copy available to perform an
operation. Available Copies (AC) works as long as there is at
least one available copy, but works incorrectly in the presence
of communication errors or network partitioning.

We propose a method that has none of the disadvantages
of the algorithms stated above. Both WV and AC are special
cases of the proposed method, which we call Voting with
Ghosts (VWG). The read and write availabilities in VWG are
at least as good as those of WV and AC. VWG uses WV as its
basic algorithm, but substitutes so-called ghosts for unavail-
able copies. The ghost may vote in the place of the original
copy, but only for write quorums.
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We will assume that the network can only be partitioned
at certain places (e.g., gateways may fail). We will call a part
of a network that cannot be further partitioned a segment. If a
segment is down, the nodes within that segment will not be
able to communicate with each other, nor with nodes on other
segments. For example, a token ring could be broken prevent-
ing the token from being passed around. An Ethernet segment
that is not terminated at one of its sides will not allow com-
munication either. If a segment is up, all the running nodes in
this segment can communicate among each other. We will
need this property since, as we shall see, a ghost is started on
the same segment as the unavailable copy. The assumption of
a segmented network reflects current network technology [5].

In the following section we will describe the VWG
method in detail. In section 3 we will analyze the method in
the presence of node crashes and network partitions. Section 4
compares VWG to WV and AC. Section 5 draws some con-
clusions.

2. ALGORITHM

VWG uses WV as the basic algorithm. In section 2.1
we will briefly describe WV. In the following section we will
introduce ghosts to increasc the write availability of the basic
algorithm significantly. The last section describes how ghosts
are generated.

2.1. WEIGHTED VOTING

In WV every copy of a replicated object is assigned a
number of votes. To read the object, the user has to collect a
read quorum of r votes; to write the object a write quorum of
w votes is needed. To ensure that there is an intersection
between a read quorum and a write quorum, r +w has to be
greater than the total number of votes in all the copies, N, This
intersection will always contain the most current version of the
object, that is, the contents of the last write operation. To keep
track of versions, a version number is associated with every
object.

A write to a copy of the object contains the new version
number of the object, which is the incremented current version
number. If w #N and the current version number is unknown,
a read quorum is needed to obtain the current version number.
If w=N there is no need to maintain a version number since
every copy will always contain the latest version. A user that
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reads the copies in a read quorum can get the latest version by
taking the one with the highest version number. If a quorum
cannot be obtained, the operation will either fail or wait until
the quorum can be reached.

By having a small read quorum, and therefore a large
write quorum, we obtain a high read availability, but a corre-
spondingly low write availability. If one or more containers (=
storage nodes) crash, and the write quorum can no longer be
acquired, the object will not be available for writing.

2.2. GHOSTS

It is this last problem that can be overcome with ghosts.
In the event of a container crash, a ghost is started within the
same segment. A ghost is a process without storage. It will be
assigned the votes of the crashed object. How the crash of a
container is detected and the ghost is started is the subject of
the next section. For now we will assume that ghosts are
started directly after a container crash.

Since the ghost has no storage, it cannot reply to a read
request, and thus cannot participate in a read quorum. How-
ever, the ghost is allowed to participate in a write quorum. In
this case it discards the data that is received with the subse-
quent write request, and it answers with a special reply. A
write can only succeed if the write quorum contains at least
one non-ghost copy. Basically, the voting algorithm uses
ghosts to detect that a copy is unavailable due to a node crash,
not due to a network partition.

When a container is rebooted, the copies in the container
have to be brought up-to-date. Because although the ghost
pretended that it performed the write operations, in reality it
did not. A copy that is available again, but not yet restored, is
said to be comatose. One strategy to make the copy available
again is to keep acting like a ghost until a write request has
been received.

Alternatively, a ghost can try to acquire a read quorum
to copy the current version. If a read quorum is currently una-
vailable, the recovery will have to wait until either a read
quorum is available, or all the nodes are either available or
comatose. Now the latest version available among the copies
of the objects is automatically the current version. Using this
version the comatose objects can recover and can become
available again.

Note that a write quorum must contain at least one stable
container, that is, a container in which the copies survive
crashes, and the contents and version number remain con-
sistent with each other [6]. Otherwise it is possible that data
be lost if all containers crash. WV, in contrast, requires that
all containers are stable, since there is no recovery involved
after a crash.

2.3. BOOT SERVICE

Container crashes are detected by the boot service.
There is a boot service on each segment that has containers.
All copies and their votes are registered with the boot service.
It polls the containers at regular intervals, and expects an /-
am-ok reply within a maximum time interval. If this reply is
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not received, the boot service will try to reboot the container,
and poll the container again afterwards. If there is still no
positive response, it will ensure that the container will stay
unavailable. This can be done by resetting the hardware,
disconnecting it from the network, or by switching off the
power using an electronic switch. Now, in the same segment,
it will start a ghost for the container. The boot server gives the
votes of the container to the ghost, so that the container may
vote instead of the original. If an application detects that a
container is unavailable, it can speed up the crash detection
process by sending a message to the boot service.

Ghosts crashes are handled in the same way. The boot
service itself is protected against crashes by replicating it on
several nodes in the segment. The boot service can use either
WYV or AC to maintain consistency internally. This con-
sistency is required to get consensus about which containers
are down, and which server is going to restart the container.
Since the servers for the boot service reside on one segment
they do not have to handle partitions. The boot servers can
poll each other to recover from crashes. If the boot service
becomes unavailable anyway, the algorithm degrades to WV.

24. CORRECTNESS

If the correctness of WYV is understood, then the correct-
ness of VWG is easily seen. A write quorum consists of w
votes with at least one non-ghost copy. A read quorum con-
sists of » votes with only non-ghost copies. Since r +w >N
we have a non-empty intersection between the read and the
write quorum. Since the write quorum consists of current
copies (the recovery always takes care of that), and the read
quorum consists of non-ghosts, the intersection consists of
current, non-ghost copies. It is a copy from this set that the
read operation uses.

Serial consistency is guaranteed if reads and writes are
atomic. This can be achieved by using a two-phase commit
protocol [7]. Two-phase commit requires stable storage [6].
However, in a write operation, some (not all) participants can
be ghosts, and they do not have storage at all. Fortunately,
ghosts can still cooperate in an atomic action since they only
pretend 10 execute the operation. They do so by always send-
ing positive responses on messages from the coordinator of the
two-phase commit protocol, and otherwise ignoring the con-
tents of the messages.

3. ANALYSIS

In this section we will analyze the behavior of VWG in
the event of container crashes and network partitions. We
define availability as the mathematical probability of an object
being accessible at any given time. Such an object could be
replicated data as a whole, or just a single copy. An object
could also be a gateway between segments of a network, or a
segment itself. We will assume that the boot service is always
available and creates ghosts immediately after a crash. This is
not unreasonable for the analysis if the availabilities of the
containers are reasonably high, such that ghost creation and
recovery are not often.



Below we give a combinatorial analysis instead of sto-
chastic analysis. A stochastic process model, using Markov
chains, might give a better evaluation, but it relies on certain
critical assumptions such as assuming exponential distribution
of all events [8,9]. This may be realistic for failure rates, but,
for example, repair times have at least a large constant term
representing the service call time. In Markov models, the pro-
bability of a partition is usually ignored. However, in our
experience, wide-area networks are often partitioned. And
even in a local internetwork the probability of a partition can-
not be neglected when compared to the unavailability of a
replica.

An alternative to stochastic process models is simula-
tion, in which case the above-mentioned simplifications need
not be made [3,5]. A disadvantage of simulation is that it does
not provide algebraic expressions for availability of replicated
objects, which are nceded for general analysis of the protocols.
With combinatorial analysis, as done in the next section, these
expressions can be stated, although they are inaccurate if the
availabilities of the components in the configuration are low.
Since this is usually not the case, we believe that combina-
torial analysis provides a reasonable insight in the performance
of the replication protocols.

3.1. NODE CRASHES

For the time being we will assume that the network is
not partitioned and is always available, and that each copy has
the same (independent) availability p and has exactly one vote.
We will calculate the read and write availability of data repli-
cated using VWG. These calculations are based on the relia-
bility theory of k—out—of -N systems [10]. In section 4 we will
compare the results with WV and AC.

K—-out—of -N gives the availability of replicated data if at
least k of its N copies are needed for access. Clearly,
1-out-of -N is the probability that not all copies are inaccessi-
ble: 1 - (1 - p)¥. Using probability theory we can see that:

i

k-1 )
k-out-of -N=1-'3 [N] pra-phN-t
i=0

This formula gives the availability of data if k£ available
copies are needed for a quorum. In VWG the read availability
is r~out—of -N. Since a write operation only needs one avail-
able copy, the write availability of the data is 1-out—of -N.
Fig. 1 gives the read and write availability of VWG for dif-
ferent combinations of r and w as function of the availability
of the copies p. For these statistics hold r +w=N+1=9.
The dotted line in the graphs gives the availability of the data
if it would not have been replicated.

3.2. NETWORK PARTITIONING

In this section we will calculate the read and write avai-
lability in VWG from any part of the network. We will allow
network partitions, and that copies have different availabilities
and numbers of votes. Note that the availability of a replicated
object is different observed from different locations in the net-
work. First we will represent a network as a graph. We
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Fig. 1. The read availability (RA) and write avai-
lability (WA) of a replicated object under VWG as
function of the availability of the copies, for dif-
ferent values of r and w. The dotted lines give the
availability if the object would not have been repli-
cated.

represent containers, segments, and gateways between seg-
ments as nodes in the graph, and the connections between
these parts of the network as edges. Each node in the graph
has an availability and a number of votes attached to it. Seg-
ment nodes always have 0 votes, but a gateway may well have
votes if the machine is also used for storage.

An example of a network and the corresponding graph is
shown in Fig. 2. Here we have a backbone network (1) that
connects four segments (4-7) using two repeaters (2, 3). An
extra gateway (11) is added between segments 5 and 6. Nodes
8 to 14, including gateway 11, are containers. In the graph
representation we see all the parts of this configuration as
nodes. For ease of use we made the segment nodes elliptical
and the gateway nodes square.

A simple algorithm for calculating the availability from
any node in the graph can be constructed as follows. The algo-
rithm considers every possible state of the segmented network.
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Fig. 2. A typical segmented network and its graph representation. The square
nodes are gateways, and the elliptical nodes are network segments.

For each state (up/down combination of all the nodes) it calcu-
lates the probability of this state. This is the product of the
availabilities of the nodes that are up, and the unavailabilities
(one minus the availability) of the nodes that are down. From
the node that we are interested in a check is made whether or
not enough votes can be acquired by traveling the graph, stop-
ping at unavailable nodes. If a quorum can be reached, the
probability of the combination is added to the total availability.
The complete algorithm can be found in Appendix A.

Using the algorithm on the example of Fig. 2, we find
the availabilities in Fig. 3 for quorums of 1, 5, and 16 votes.
Users on segment 7 have, for a read quorum of 5, a relatively
low availability. To improve this, we could try to move a con-
tainer to segment 5, or to increase the number of votes of node
14. For comparison, the last column contains the availabilities
if the data was not replicated, and situated at node 13. (This
column was generated by assigning all votes to node 13, and
none to the other nodes.) For example, a user on segment 5
needing a quorum of 1 vote finds an availability of the data of

0.970. If the data would not have been replicated, but stored"

only on node 13, the availability would have been 0.912.
Moreover, in the unlucky event that node 13 crashes, the data
would be completely unavailable.

4. COMPARISON

WYV and AC are two popular algorithms for maintaining
serial consistency of replicated data. In this section we will
compare the availability of replicated data in these algorithms
to VWG. For the probabilistic analysis we will assume again a
network without partitions, that each copy has one vote, and
that each copy has the same (independent) availability p.

4.1. WEIGHTED VOTING

The pure WYV algorithm has been described in section
2.1. The read availability of the data is r—our~of -N, which is
the same as that of VWG. The write availability is
w—out-of -N. If we want high read availability, we have to
choose a small read quorum. Since r +w >N we will have a
large write quorum, and thus low write availability. The read
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input output
node # avail || quorum | quorum | quorum no repl.
number | votes 1 5 16 dataon 13
1 0 98 977 976 504 918
2 0 95 .950 950 514 891
3 0 95 .950 .948 514 894
4 0 97 970 .965 514 865
5 0 97 970 969 514 912
6 0 97 970 969 S14 941
7 0 97 962 919 514 867
8 1 93 930 901 514 804
9 4 .98 .980 947 514 847
10 1 94 .940 911 514 857
11 4 99 .990 .989 514 931
12 1 .92 920 .892 514 866
13 3 97 970 940 514 970
14 2 85 .850 782 514 737

Fig. 3. The availabilities for different quorums of
the example network.

and write availability for different combinations of r and w are
shown in Fig. 4. The contrast with VWG can be observed by
comparing Fig. 4 to Fig. 1.

VWG gives for any combination of r and w optimal
write availability. In a non-partitionable network we get
optimal overall availability by choosing r =1 and w =N. A
disadvantage of VWG is that copies need to be restored after
crashes. This involves disallowing write access to one copy
during the recovery. If crashes are sufficiently rare, this disad-
vantage need not be a problem.

To allow caching of data, weak representatives[1] can
be used. Weak representatives are temporary copies that do
not have any votes, but can still be included in any quorum.
Especially a user can include a weak representative on the
local machine in read quorums. If the weak representative has
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Fig. 4. The read availability (RA) and write avai-
lability (WA) of a replicated object under WV as
function of the availability of the copies, for dif-
ferent values of r and w.

the current version number, the data can be copied from that
representative, instead of from a remote node. In VWG it is
unnecessary to create ghosts for weak representatives; after a
crash the weak representative disappears completely.

To cut down on the storage requirements witnesses[11]
can be used. Witnesses are copies that only maintain the ver-
sion number of the copy, and not the data themselves. In a
quorum there has to be at least one real copy. Otherwise
witnesses have no effect on the voting mechanism. A concept
similar to a ghost is a temporary witness. A temporary witness
is dynamically substituted for a node when an obsolete copy (a
copy that does not hold the current version) is being written.
A ghost, on the other hand, is substituted for a crashed copy,
and does not maintain the version number of the original at all.

4.2. AVAILABLE COPIES

AC reads one copy, and writes all available copies.
When an unavailable copy becomes available again it is
recovered from any available copy. If no copy is available, the

recovery procedure will have to wait until all sites are coma-
tose (rebooted but not restored), and then select the most
recent version, as is done in VWG. An improvement of this
strategy can be achieved by keeping track of which sites were
available in every update, so recovery can take place with only
the sites that were available at the last update. (This technique
can be applied to VWG as well.)

AC does not tolerate communication errors. If, due to a
bad connection, an available copy appears to be unavailable,
the copy will become inconsistent. In the case of a network
partition the algorithm will allow writes in all parts, thereby
creating inconsistent versions of the data.

avail RA = WA

Fig. 5. The availability (read and write) of AC.

To compare AC with VWG we will assume perfect
communication (no errors, no partitioning). The availability of
replicated data using the AC method is given in Fig. 5. For
both read and write availability only one copy is needed. If we
compare Fig.5 to Fig. 1(a) we see that VWG, with a read
quorum of 1, performs the same as AC. However, VWG also
works correctly with non-perfect communication, and then
allows flexible configuration for read and write availability.
Furthermore, VWG needs to lock only one copy for recovery,
instead of all.

An interesting alternative to AC is Regeneration [12].
Here unavailable copies are immediately replaced by new
copies on other containers (provided that other containers are
available). Using this technique the availability of data can be
restored after container crashes. This technique can also be
used in VWG. After a crash detection, the boot service can
first try to generate a new copy on a different container within
the same segment. If this fails, it can start a ghost as usual.

5. CONCLUSION

Voting with Ghosts combines the advantages of
Weighted Voting and the advantages of Available Copies. It
provides the flexibility of configuration as in WV, and the high
write availability of AC. We have presented a technique for
calculating the availability of replicated data from any point in
an internetwork, to allow designing an optimal configuration.




Using VWG we are currently designing a replicated
directory service for the Amoeba distributed operating system
{13]). A directory maps ASCII names to object identifiers in
the form of capabilities [14]. We will support atomic lookup,
install, and delete operations on directory entries of multiple
directories. In a version-based system this will allow instal-
ling a new version of a set of objects atomically. Amoeba
already provides a boot service to support immortality of ser-
vices.
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Appendix A

(# This algorithm calculates the availability of replicated data in a network of vulnerable *)
(% components with independent availabilities. The availability appears different from node  *)

(* to node. The network can be described using a connection matrix of type bmatrix, where *)
(% bmatrix[il[j] is true if there is a connection between nodes i and j. bmatrix[i][j] is *)
(» false if i = j or if there is no connection. *)
const NNODES = ...; (*# number of nodes in network graph x)
type nodenum = 1..NNODES;

bvector = array[nodenum] of boolean; ivector = array[nodenum] of integer;

rvector = array[nodenum] of read; bmalLg-2;trix = array[nodenum] of bvector;

(% Calculate availability of data in a node of a network graph *)
funstion analyze(
connected: bmatrix; ( graph description )

votes: ivector; (% votes per node )

avail: rvector; (# availability of nodes )

node: nodenum; (* node to investigate »)

quorum: integer (* quorum to acquire ) ): real;

var up, visited: bvector; prob, result: real;
i: nodenum; done: boolean;

(% Recursive function to walk the graph starting in node “src.’’ Returns the number of votes )
(# that it could collect. Pruning is done if the quorum is reached before searching all nodes. *)
function collect(src: nodenum; have: integer): integer;
var dst: nodenum;
begin (% collect *)

if uplsrc] then (% only visit nodes that are up *)
begin
visited[src] := TRUE;
have := have + votes[srcl; (» acquired some votes *)
(# recursively visit all nodes, prune if have >= quorum *)
dst := 1;
while (have < quorum) and (dst <= NNODES) do
begin

if not visited[dst] and connected[src][dst] then
have := collect(dst, have);

dst := dst + 1
end
end;
collect := have
end; (% collect *)
begin (% analyze )
for i’ := 1 to NNODES do up[i] := FALSE;
result := 0;
repeat (# for each up/down combination of nodes *)

(% calculate probability of this up/down combination )
prob := 1.0;
for i := 1 to NNODES do
begin
if up[i] then prob := prob » availli]
else prob := prob % (1 - availlil]);
visited{i] := FALSE
end;
(% if quorum collected add probability to result =)
if collect(node, 0) >= quorum then result := result + prob;
(» calculate next up/down combination )
i:=1;
repeat
up[i] := not up[i];
if upli] or (i = NNODES) then done := TRUE
else begin done := FALSE; i := i + 1 end
until done
until not up[il;
analyze := result
end; (* analyze %)
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