Hardware Overview

Carnegie Mellon University

David A. Eckhardt
School of Computer Science
Carnegie Mellon University

deOu@andrew.cmu.edu

1/17

Administrative Overhead

Communication
» Web site is stirring - http://www.cs.cmu.edu/~412
 Official announcements - academic.cs.15-412
* having it beep or wiggle might be good

“How do | stop this thing?”

* Intermission?

Today’s class
* Not exactly Chapter 2
Monday’s class
* Project 1 talk (good thing to attend)
 Class ends 12:00 (MLK Day activities)
» Being registered is good
» disk space, access control lists, etc.

Carnegie Mellon University 2/17

Outline

Computer parts

CPU State

Fairy tales about system calls
System memory layout
Device drivers

Interrupt Vector Table

Direct Memory Access (DMA)

Carnegie Mellon University 3/17

Inside The Box - Historical/Logical

CPU

Memory

Graphics

Ethernet
IDE

Floppy
USB

Carnegie Mellon University 4/17

Inside The Box - Really

CPU

Memory H North Bridge HAGP Graphics

South Bridge

USB — Ethernet
Floppy — scsi

P
IDE (i:

Carnegie Mellon University 517

CPU State

User registers (on Planet Intel)
« General purpose - %eax, %ebx, %ecx, %edx
« Stack Pointer - %esp
* Frame Pointer - %ebp
« Mysterious String Registers - %esi, %edi

Non-user registers
» Processor status register(s)
» User process / Kernel process
* Interrupts on / Interrupts off
* Memory model (small, medium, large, purple, dinosaur)
Floating Point Number registers
* Logically part of “User registers”
« Sometimes “special”’ instead
« Maybe this machine doesn'’t have floating point
« Maybe most processes don’t use floating point

Carnegie Mellon University 6/17

Story time!

Time for some fairy tales
* The getpid() story (shortest legal fairy tale)
* The read() story (toddler version)
* The read() story (grade-school version)

Carnegie Mellon University 7/17

The story of getpid()

User process is computing
» User process calls getpid() library routine
* Library routine calls TRAP(314159)

The world changes
« Some registers dumped into memory somewhere
« Some registers loaded from memory (somewhere else)
 Trap handler builds kernel runtime environment
Process “in kernel mode”
e u.u_reg[R_EAX] = u.u_pid;
Return from interrupt
* Processor state restored to user mode (modulo %eax)

User process returns to computing
* Library routine returns %eax as value of getpid()

Carnegie Mellon University 8/17

A story about read()

User process is computing
 count = read(0, buf, sizeof (buf));

User process “goes to sleep”
Operating system issues the disk read
Time passes

Disk operation complete

Operating system copies data

User process “wakes up”

Carnegie Mellon University

9/17

Another story about read()

P1: read()

* “Trap” to “kernel mode”
Kernel: issue disk read

Kernel: switch to P2
« “Return from interrupt” - but fo P2, not P1!

P2: compute 1/3 of Mandelbrot set
Disk: done!
* Interrupt to “kernel mode”

Kernel: switch to P1
» “Return from interrupt” - but fo P71, not P2!

Carnegie Mellon University 10/17

The Big Picture

Carnegie Mellon University

Kernel| Kernel| Kernel| Kernel
Stack Stack Stack Stack
Kernel
Data
Space
User User User User
Stack Stack Stack Stack
User User User User
Data Data Data Data
Space| |Space| |Space| |Space

Thought experiments

What is the data flow for getpid()?

How does a message get between processes?
» Start: P1’s stack
e ...whoosh, whoosh...
 Finish: P2’s user data space

Why does every process have a kernel stack?
* On a uniprocessor, isn’'t one k-stack enough?
* Only one process is “in kernel mode” at once, right?

Carnegie Mellon University 12/17

What’s a “device driver”?

Opposite of a user process
* Runs “forever”
» Three “threads” (but two different execution environments)

Initiation

« if (device_idle) start_device(request)

* else enqueue(request);

« condition_wait(request); /* switch to another process */
Interrupt handler

 condition_signal(cur_request);

« if (cur_request = queue_next()) start_device(cur_request);
Cleanup

* Transfer results from request buffer to user memory

e Return from trap

Carnegie Mellon University 13/17

Interrupt Vector Table

How do | handle this interrupt?
* Disk interrupt -> disk driver
* Mouse interrupt -> mouse driver

Need to know
* Where to dump registers
« often: property of current process, not of interrupt
* New register values to load into CPU
* key: new program counter, new status register

Table lookup
* Interrupt controller says: this is interrupt source #3
« CPU knows table base pointer, table entry size
* spew, slurp, off we go

Carnegie Mellon University

14/17

Interrupt masking

“Race condition”

* First attempt
« if (device_idle) start_device(request)
* else enqueue(request);

* What about:
« if (device_idle)
 INTERRURPT...device_idle = 1;... RETURN
* enqueue(request)

* Result: no initiation, so no completion

Atomic actions
 Block device interrupt while checking and enqueueing
 Avoid blocking all interrupts
* Avoid blocking “too long”

Carnegie Mellon University

15/17

Direct Memory Access (DMA)

Moving the bits manually
 while (cnt--) *p++ = in_word(drive->data_port);
* Disk sector: 512 bytes = 128 32-bit words
* Disks /ike multi-sector |/O operations
* /O bus is slower than memory bus
« S0: sipping kilobytes over the bus will occupy the CPU

Real DMA

* Tell disk controller where your buffer is
* Disk controller stores words into memory
« one-by-one: “cycle stealing”
* Legacy IBM PC DMA
* A few “DMA channels”
« CPU sets: pointer, length
 Device says “here’s a word for channel 3”
* Devices are cheap, but concurrency limited

Carnegie Mellon University

16/17

The Timer

Behavior
« Count something (CPU cycles, bus cycles, microseconds)
* When you hit a limit, generate an interrupt
* Reload counter (don’t wait for software to do it)

Why interrupt a perfectly good execution?
* Avoid CPU hogs
- for (;;) ;
« Maintain accurate time of day
* battery-backed “calendar” counts only seconds
* poorly

Dual-purpose interrupt
o ++ticks:
» force process switch (probably)

Carnegie Mellon University 17/17

