
What You Need to Know
for Project One

Steve Muckle
Monday, January 20 2003

15-412 Spring 2003



Carnegie Mellon University 2

Overview

Introduction
Project One Motivation and Demo
Mundane Details in x86
PIC and hardware interrupts, software interrupts and 
exceptions, the IDT, privilege levels, segmentation

Writing a Device Driver
Installing and Using Simics



Carnegie Mellon University 3

This is your life before today.



Carnegie Mellon University 4

This is your life until May 2nd.



Carnegie Mellon University 5

Just kidding…

My name is Steve
I hope to make things bearable
Feel free to stop by outside of office hours

New project set this semester!
- should be fun, more realistic
- improved tools



Carnegie Mellon University 6

Project 1 Motivation

What are our hopes for project 1?
- introduction to kernel programming
- need better understanding of the x86 arch
- hands-on experience with hardware 

interrupts and device drivers
- get acquainted with the simulator (Simics) 

and development tools (cons)



Carnegie Mellon University 7

Project 1 Demo

Project 1 consists of using the console, 
keyboard and timer to create a simple clock

Demo…



Carnegie Mellon University 8

Mundane Details in x86

Kernels work closely with hardware
This means you need to know about 
hardware
Some knowledge (registers, stack 
conventions) is assumed from 15-213
You will learn more x86 details as the 
semester goes on
Use the Intel PDF files as reference 
(http://www.cs.cmu.edu/~412/projects.html)



Carnegie Mellon University 9

Mundane Details in x86: 
Privilege Levels

Processor has 4 
“privilege levels” (PLs)
Zero most privileged, 
three least privileged
Processor executes at 
one of the four PLs at 
any given time
PLs protect privileged 
data, cause general 
protection faults



Carnegie Mellon University 10

Mundane Details in x86:
Segmentation 

One way to use PLs: segmentation
Segments are defined areas of memory with 
particular access/usage constraints
A segment descriptor looks like this:



Carnegie Mellon University 11

Mundane Details in x86: 
Segmentation

Logical Address

Linear Address

Physical Address

Segmentation

Paging

(consists of 16 bit segment selector, 32 bit offset)

(32 bit offset)

(32 bit offset)



Carnegie Mellon University 12

Mundane Details in x86:
Segmentation

Segments need not be backed by physical 
memory and can overlap
Segments defined for these projects:

Kernel Code Kernel Data User Code User Data

0xFFFFFFFF

0x00000000



Carnegie Mellon University 13

Mundane Details in x86: 
Getting into Kernel Mode

How do we get from user mode (PL3) to 
kernel mode (PL0)?

- Exception (divide by zero, etc)

- Software Interrupt (int n instruction)

- Hardware Interrupt (keyboard, timer, etc)



Carnegie Mellon University 14

Mundane Details in x86: 
Exceptions

Sometimes user processes do stupid things
int gorganzola = 128/0;
char* idiot_ptr = NULL; *idiot_ptr = 0;
These cause a handler routine to be 
executed at PL0
Examples include divide by zero, general 
protection fault, page fault



Carnegie Mellon University 15

Mundane Details in x86:
Software Interrupts

A device gets the kernel’s attention by raising 
an interrupt
User processes get the kernel’s attention by 
raising a software interrupt
x86 instruction int n
(more info on page 346 of intel-isr.pdf)
Executes handler routine at PL0 



Carnegie Mellon University 16

Mundane Details in x86: 
Interrupts and the PIC

Devices raise interrupts through the 
Programmable Interrupt Controller (PIC)
The PIC serializes interrupts, delivers them
There are actually two daisy-chained PICs

CPU
PIC 1 PIC 2

Timer Keyboard IDE 1 IDE 2



Carnegie Mellon University 17

Mundane Details in x86:
Interrupts and the PIC

IDE Bus7

IDE Bus6

Coprocessor5

General I/O4

General I/O3

General I/O2

General I/O1

Real Time Clock0

PIC 2

LPT17

Floppy6

LPT25

COM14

COM23

Second PIC2

Keyboard1

Timer0

PIC 1
To Processor



Carnegie Mellon University 18

Mundane Details in x86: 
Interrupt Descriptor Table (IDT)

Processor needs info on what handler to run when
Processor reads appropriate IDT entry depending 
on the interrupt OR exception OR int n instruction
An entry in the IDT looks like this:



Carnegie Mellon University 19

Mundane Details in x86: 
Interrupt Descriptor Table (IDT)

The first 32 entries in the IDT correspond to 
processor exceptions. 32-255 correspond to 
hardware/software interrupts.
Some interesting entries:

More information in section 5.12 of intel-sys.pdf.

Keyboard32

Page fault14

Divide by zero0

InterruptIDT Entry



Carnegie Mellon University 20

Mundane Details in x86:
Communicating with Devices

I/O Ports
- use instructions like inb, outb
- use separate address space
Memory-Mapped I/O
- magic areas of memory tied to devices
- console is one of them



Carnegie Mellon University 21

Writing a Device Driver

Traditionally consist of two separate halves
- named “top” and “bottom” halves
- BSD and Linux use these names differently
One half is interrupt driven, executes quickly, 
queues work
The other half processes queued work at a 
more convenient time



Carnegie Mellon University 22

Installing and Using Simics

Simics is an instruction set simulator
Makes testing kernels MUCH easier
Runs on both x86 and Solaris



Carnegie Mellon University 23

Installing and Using Simics:
Running on AFS

We use mtools to copy to disk image files
Proj1 Makefile sets up config file for you
You must exec simics in your project dir
The proj1.tar.gz includes:
- simics-linux.sh
- simics-solaris.sh



Carnegie Mellon University 24

Installing and Using Simics:
Running on Personal PC

Runs under Linux, Solaris
As of now you need a 128.2.*.* IP
Download simics-linux.tar.gz from 
/afs/andrew.cmu.edu/scs/cs/15-412b/
Install mtools RPM (pointer on course www)
Install OSkit libs (directions on course www)
Tweak Makefile



Carnegie Mellon University 25

Installing and Using Simics: 
Debugging

Run simulation with r, stop with ctl-c
Magic instruction
- xchg %bx,%bx (wrapper in interrupts.h)
Memory access breakpoints
- break 0x2000 –x OR break (sym init_timer)
Symbolic debugging
- psym foo OR print (sym foo)
Demo


