
Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 1/24

Synchronization (2)

David A. Eckhardt
School of Computer Science
Carnegie Mellon University

de0u@andrew.cmu.edu

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 2/24

Status Rendezvous

Handin: rough summary
• /afs/andrew.cmu.edu/scs/cs/15-412/usr/$USER
• You will need to cross-cell authenticate: one of

• /usr/local/bin/aklog cs.cmu.edu
• /usr/local/bin/afslog cs.cmu.edu

• Watch academic.cs.15-412.announce for precise directions
• (please follow them!)

Partner selection for Project 2
• de0u+partner@andrew

• or de0u+partners@andrew (I am learning)
• By Tuesday 2002-03-04 23:59 EST
• Only 6 as of midnight
• At least one bboard post

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 3/24

Outline

Ways to get mutual exclusion
• Hardware, software

Mutexes & Condition variables

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 4/24

Mutual Exclusion: Reminder

Mutual Exclusion
• Want to protect an atomic instruction sequence
• Do “something” to guard against

• ...CPU switching to another thread
• ...thread running on another CPU

Assumptions
• Atomic instruction sequence will be “short”
• No other thread is “likely” to be competing

Desiderata
• Typical case (no competitor) should be fast
• Atypical case can be slow

• Should not be “too wasteful”

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 5/24

Mutual Exclusion: XCHG instruction

Exchange (XCHG) instruction on 80386 et seq.
int32 xchg(int32 *lock, int32 val) {

register int old;
old = *lock; /* bus is locked */
lock = val; / bus is locked */
return (old);

}

Initialization
• int lock_available = 1;

Lock
• i_won = xchg(&lock_available, 0); /* try-lock */
• while (!xchg(&lock_available, 0)

• /* spin-wait */ ;
Unlock

• xchg(&lock_available, 1); /* had better return 0! */

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 6/24

Does it work?

Mutual Exclusion
• Only one thread can see lock_available == 1

Progress
• Each time lock_available == 1 a waiting thread will snatch it

Bounded Waiting
• No (not always)
• Any particular thread could lose arbitrarily many times

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 7/24

Attaining Bounded Waiting

Textbook algorithm (paraphrased)
waiting[i] = true;
got_it = false;
while (waiting[i] && !got_it)

got_it = xchg(&lock_available, false);
waiting[i] = false;

/* critical section */

j = (i + 1) % n;
while ((j != i) && !waiting[j])

j = (i + 1) % n;

if (j == i)
xchg(&lock_available, true); /* !text*/

else
waiting[j] = false;

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 8/24

Evaluation

One awkward requirement

One unfortunate behavior

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 9/24

Evaluation

One awkward requirement
• Everybody knows size of thread population

• Always & instantly!
• Or uses an upper bound

One unfortunate behavior
• Recall: expect zero competitors
• Algorithm: O(n) in maximum possible competitors

Am I too demanding?
• Baker’s Algorithm has these misfeatures...

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 10/24

Environmental Considerations

Uniprocessor
• Entry: what if xchg() didn’t work the first time?

• Some other process has the lock
• That process isn’t running (because you are)
• xchg() is a poor way to yield the processor

• Exit: what about bounded waiting?
• Next xchg() winner “chosen” by thread scheduler
• How capricious are real thread schedulers?

Multiprocessor
• Entry

• Spin-waiting probably justified
• Exit

• Next xchg() winner “chosen” by memory hardware
• How capricious are real memory controllers?

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 11/24

Other Hardware

Test&Set
boolean testandset(int32 *lock) {

register boolean old;
old = *lock; /* bus is locked */
lock = true; / bus is locked */
return (old);

}

Load-linked, Store-conditional
• For multiprocessors - bus locking considered harmful
• Split XCHG into halves
• Load-linked fetches old value from memory
• Store-conditional stores new value if nobody else did

• Your cache snoops the bus - better than locking it!

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 12/24

Other Hardware

Intel i860 magic lock bit
• Instruction sets processor in “lock” mode

• Locks bus
• Disables interrupts

• Isn’t that dangerous?
• 32-cycle countdown timer triggers unlock
• Exception triggers unlock
• Memory write triggers unlock

Excessive for critical-section entry protocol?
• Yes, but not for ...

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 13/24

Mutual Exclusion: Software

Lamport’s “Fast Mutual Exclusion” algorithm
• 5 writes, 2 reads (if no contention)
• Not bounded-waiting (in theory, i.e., if contention)
• http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-7.html

Passing the buck
• Q: Why not ask the OS to provide mutex_lock()?

• Uniprocessor
• Kernel automatically excludes other threads
• Kernel can easily disable interrupts

• Multiprocessor
• Kernel can issue “remote interrupt” to other CPU

• A: Too expensive
• Because... (you know this song!)

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 14/24

Mutual Exclusion: Tricky Software

Fast Mutual Exclusion for Uniprocessors
• Bershad, Redell, Ellis: ASPLOS V (1992)

Want uninterruptable instruction sequences?
• Pretend!
• After all, they usually aren’t interrupted...

When pretense fails?
• Kernel can simulate unfinished instructions (yuck)
• Special contract between user and OS

• Certain sequences are restartable (idempotent)
• Maybe a special memory area
• Maybe sequences using only selected instructions

• Thread-switch slides program counter back to start

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 15/24

Review

Atomic instruction sequence
• Nobody else may interleave same/“related” sequence
• Short sequence of instructions

• Ok to force competitors to wait
• Probability of collision is “low”

• Avoid expensive exclusion method

Voluntary de-scheduling
• Can’t proceed with this world state
• Wrong to hold world locked while others wait

• It will be a while
• We want others to run - they enable us

• CPU de-scheduling is an OS service!

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 16/24

Atomic instruction sequences

Mutex aka Lock aka Latch
• Use object to specify interfering code sequence/sequences
• Object methods encapsulate entry & exit protocols

Code example
mutex_lock(&store->lock);
cash = store->cash
cash += 50;
personal_cash -= 50;
store->cash = cash;
mutex_unlock(&store->lock);

What’s inside?
• xchg() (or something else)
• spin-wait (on a multiprocessor; maybe limited)
• thread_yield() (especially on uniprocessor)

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 17/24

Voluntary de-scheduling

The Situation
• You hold lock on shared resource, not in “right mode”
• Action sequence

• Unlock shared resource
• Go to sleep until resource changes state

Very Wrong
while (!reckoning)

mutex_lock(&scenario_lk);
if ((date >= 1906-04-18) && (hour >= 5))

reckoning = true;
else

mutex_unlock(&scenario_lk);

wreak_general_havoc();
mutex_unlock(&scenario_lk);

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 18/24

Voluntary de-scheduling

Arguably Less Wrong
while (!reckoning)

mutex_lock(&scenario_lk);
if ((date >= 1906-04-18) && (hour >= 5))

reckoning = true;
else {

mutex_unlock(&scenario_lk);
sleep(1);

}

wreak_general_havoc();
mutex_unlock(&scenario_lk);

Something is missing
• Mutex for shared state: good
• How can we sleep for the right duration?

• Get an expert to tell us!

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 19/24

Condition Variable

Once more, with feeling!
mutex_lock(&scenario_lk);
while (!reckoning)

if ((date >= 1906-04-18) && (hour >= 5))
reckoning = true;

else {
condition_wait(&scenario_lk, &clock);

}
wreak_general_havoc(); /* locked! */
mutex_unlock(&scenario_lk);

What wakes us up?
iterator = universe_iterator();
while (o = iterator->next())

o->update();
/* done with all objects, time can pass */
condition_signal(&clock);

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 20/24

Condition Variable Design

Basic Requirements
• Keep track of threads asleep “for a while”
• Allow notifier thread to wake sleeping thread(s)
• Must be thread-safe

condition_wait(mutex, cvar) - why two params?
• Lock required to access/modify the shared state
• So whoever awakens you will need to hold that lock

• ...you’d better give it up.
• When you wake up, you will need to re-lock to access state
• “Natural” for condition_wait() to handle un-lock/re-lock

• ...but there’s something more subtle

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 21/24

Condition Variable Implementation

Under the hood
• mutex - multiple threads could condition_wait() at same time
• “queue” - of sleeping processes

• May be FIFO or more exotic

condition_wait sequence
• lock(cvar->mutex);
• enqueue(cvar->queue, my_thread_id());
• unlock(mutex);
• ATOMICALLY

• unlock(cvar->mutex);
• pause_thread();

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 22/24

Condition Variable Atomic Sleep

What is this “atomic” stuff?
• ...and why can’t we use a mutex?

Pathological execution sequence

condition_wait(mutex, cvar); condition_signal(cvar);
enqueue(cvar->queue, my_thread_id());
unlock(mutex);
unlock(cvar->mutex);

lock(cvar->mutex);
tid = dequeue(cvar->q);
wake_thread(tid);
unlock(cvar->mutex);

pause_thread(); /* asleep forever */

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 23/24

Achieving condition_wait() Atomicity

Some choices
• Disable interrupts (if you are a kernel)
• Rely on OS to implement conditio variables (yuck?)
• Have a “better” sleep()/wait() interface

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 24/24

Summary

We did it!
• Two objects for two core operations
• Understanding of underlying techniques
• Understanding of environmental factors

What next?
• [Project 2 handout!]
• Semaphores, monitors, Java, deadlock

