
The Context Switch

Dave Eckhardt
de0u@andrew.cmu.edu

Outline

� Project 2 Q&A
� Context switch

� Motivated by yield()

Mysterious yield()
� P1

� while (1)
� yield(P2)

� P2
� while(1)

� yield(P1)

User-space Yield
� Consider pure user-space threads

� The opposite of Project 2

� yield(user-thread-3)
� save registers on stack

� /* magic happens here */

� restore registers from stack

� Return

Memory Picture

Thread blocks

Thread stacks

Code, Data

No magic!
� yield(user-thread-3)

� save registers on stack

� threadblock->pc = &there;

� threadblock=findtcb(user-thread-3);

� stackpointer = threadblock->sp;

� jump(threadblock->pc); /* e.g., asm(...) */

� there:
� restore registers from stack
� return

� What values does the program counter have?

Remove unnecessary work...
� yield(user-thread-3)

� save registers on stack

� threadblock=findtcb(user-thread-3);

� stackpointer = threadblock->sp;

� restore registers from stack

� return

User vs. Kernel
� Kernel process vs. user-space thread

� User-space threads: shared memory

� Separate kernel processes: indepdendent memory

� Kernel context switches aren't just yield()
� Message passing from P1 to P2

� P1 sleeping on disk I/O, so run P2

� CPU preemption by clock interrupt

Kernel Memory Picture

User stack

Kernel stacks

Process control blocks

User code

Kernel code

Yield steps
� P1 calls yield(P2)
� INT 40 -> Boom!
� Processor trap protocol

� Saves registers on P1's kernel stack

� Activates kernel virtual memory

� Loads new registers

� Starts trap handler

Yield steps
� P1 (in kernel) calls yield(P2)
� yield()

� return(process_switch(P2))

� P1 trap handler done
� Processor return-from-trap protocol

� Restores registers from P1's kernel stack

� Adjusts virtual memory

� INT 40 instruction “completes”
� Back in user-space

� P1 yield() routine returns

That's not right!
� What about process_switch()?

� ATOMICALLY
� enqueue_tail(runqueue, cur_pcb);
� cur_pcb = dequeue(runqueue, P2);
� save registers (on P1's kernel stack)
� Stackpointer = cur_pcb->sp;
� restore registers (from P2's kernel stack)
� return

� Process_switch() “takes a while to return”
� When P1 calls it, it “returns to” P2

� When P2 calls it, it “returns to” P1 – eventually

Clock interrupts
� P1 doesn't “ask for” clock interrupt

� Clock handler forces P1 into kernel
� Like an “involuntary system call”
� Looks same way to debugger

� P1 doesn't say who to yield to
� Scheduler chooses next process

I/O completion
� P1 calls read()
� In kernel

� read() starts disk read

� read() calls condition_wait(&buffer);

� condition_wait() calls process_switch()

� While P2 is running
� Disk completes read, interrupts P2 into kernel

� Interrupt handler calls condition_signal(&buffer);

� condition_signal() MAY call process_switch()
� P1, P2, P3... will “return” from process_switch()

Summary
� Similar steps for user space, kernel space
� Primary differences

� Kernel has open-ended competitive scheduler

� Kernel more interrupt-driven

� Implications for 412 projects
� P2: understand thread_create() stack setup

� P3: understand kernel context switch

