
Scheduling

Dave Eckhardt
de0u@andrew.cmu.edu

Synchronization

� “Pop Quiz”
� Project 2
� Outline

� Chapter 6

CPU-I/O Cycle

� Process view: 2 states
� Running

� Waiting for I/O

� Life Cycle
� I/O (load), CPU, I/O, CPU, .., CPU (exit)

CPU Burst Lengths

� Overall
� Exponential fall-off in CPU burst length

� CPU-bound
� Batch job

� Long CPU bursts

� I/O-bound
� Copy, Data acquisition, ...

� Tiny CPU bursts

Preemptive?

� Four opportunities to schedule
� Running process waits (I/O, child, ...)

� Running process exits

� Waiting process becomes runnable (I/O done)

� Other interrupt (clock, page fault)

� Multitasking types
� Preemptive: All four cause scheduling

� “Cooperative”: only first two

CPU Scheduler

� Invoked when CPU becomes idle
� Current task blocks

� Clock interrupt

� Select next task
� Quickly
� PCB's in: FIFO, priority queue, tree

� Switch (using “Dispatcher”)

Dispatcher

� Set down running task
� Save register state

� Update CPU usage information

� Store PCB in “run queue”

� Pick up designated task
� Activate new task's memory

� Protection, mapping

� Restore register state

� Transfer to user mode

Scheduling Criteria

� Maximize/trade off
� CPU utilization (“busy-ness”)

� Throughput (“jobs per second”)

� Process view
� Turnaround time (everything)

� Waiting time (runnable but not running)

� User view
� Response time (input/output latency)

Algorithms

� Don't try these at home
� FCFS

� SJF

� Priority

� Reasonable
� Round-Robin

� Multi-level (plus feedback)

� Multiprocessor, real-time

FCFS- First Come, First Served

� Basic idea
� Run task until relinquishes CPU

� When runnable, place at end of FIFO queue

� Waiting time very dependent on mix
� “Convoy effect”

� N tasks each make 1 I/O request, stall

� 1 tasks executes very long CPU burst

� Lather, rinse, repeat

SJF- Shortest Job First

� Basic idea
� Choose task with shortest next CPU burst

� Provably “optimal”
� Minimizes average waiting time across tasks

� Practically impossible (oh, well)
� Could predict next burst length...

� Text presents exponential average
� No evaluation (Why not? Hmm...)

Priority

� Basic idea
� Choose “most important” waiting task

� Does “high priority” mean p=0 or p=255?

� Priority assignment
� Static: fixed property (engineered?)

� Dynamic: function of task behavior

� Big problem: Starvation
� Possible hack: aging

Round-Robin

� Basic idea
� Run each task for a fixed “time quantum”

� When quantum expires, append to FIFO queue

� “Fair”
� But not “provably optimal”

� Choosing quantum length
� Infinite = FCFS, Infinitesimal = “Processor sharing”

� Balance “fairness” vs. context-switch costs

True “Processor Sharing”

� CDC Peripheral
Processors

� Memory latency
� Long, predictable

� Every instruction

� Solution: round robin
� Quantum = 1 instruction

� ~ Intel “superthreading”

Memory

Processor Core

R
eg

is
te

r
S

e
t

R
e

gi
st

e
r

S
e

t

R
e

gi
st

e
r

S
et

R
eg

is
te

r
S

e
t

R
e

gi
st

e
r

S
e

t

Multi-level Queue

� N independent process queues
� One per priority

� Algorithm per queue
� Interactive: round-robin
� Batch: FCFS

� Inter-queue scheduling
� Strict priority

� Time slicing (e.g., weighted round-robin)

Multi-level Feedback Queue

� N queues, different quanta
� Exhaust your quantum?

� Demoted to slower queue
� Longer quantum
� Lower priority

� Can you be promoted back up?
� Maybe I/O promotes you

� Maybe you “age” upward

� Popular “time-sharing” scheduler

Multiprocessor Scheduling

� Common assumptions
� Homogeneous processors (same speed)

� Uniform memory access (UMA)

� Load sharing / Load balancing
� Single global ready queue – no false idleness

� Processor Affinity
� Some processor may be more desirable or necessary

� Special I/O device
� Fast thread switch

Multiprocessor Scheduling - “SMP”

� Asymmetric multiprocessing
� One processor is “special”

� Executes all kernel-mode instructions
� Schedules other processors

� “Special” aka “bottleneck”

� Symmetric multiprocessing - “SMP”
� “Gold standard”

� Tricky

Real-time Scheduling

� Hard real-time
� System must always meet performance goals

� Or it's broken (think: avionics)

� Designers must describe task requirements
� Worst-case execution time of instruction sequences

� “Prove” system response time
� Argument or automatic verifier

� Cannot use indeterminate-time technologies
� Disks!

Real-time Scheduling

� Soft real-time
� “Occasional” deadline failures tolerable

� CNN video clip on PC
� DVD playback on PC

� Much cheaper than hard real-time
� Real-time extension to timesharing OS

� POSIX real-time extensions for Unix
� Can estimate (vs. prove) task needs

� Priority scheduler

� Preemptible OS

Mars Pathfinder probe (1997)

� “Information bus” (blackboard/whiteboard/...)
� High-priority bus manager thread

� Meteorological data gathering
� Occasional activity

� Low-priority weather data thread

� Communication with Earth
� Medium-priority communication thread

� Watchdog thread: “too quiet”? Reboot

What could go wrong?

� Weather data locks “bus” memory to publish
� High-priority bus manager must wait
� Interrupt makes communication runnable

� “Medium” priority, so preempts weather data

� Highest-priority runnable task, so it spin-waits

What could go wrong?

Bus memory

CPU

WX Bus Comm

History of an Idea

� Priority Inheritance Protocols: An Approach to
Real-Time Synchronization
� IEEE Transactions on Computers 39:9

� Lui Sha (CMU SEI)
� Ragunathan Rajkumar (IBM Research -> CMU ECE)
� John Lehoczky (CMU Statistics)

History of an Idea

� Events
� 1987-12 “Manuscript” received

� 1988-05 Revised

� 1990-09 Published

� 1997-07 Rescues Mars Pathfinder

� History courtesy of Mike Jones
� http://www.cs.cmu.edu/~rajkumar/mars.html

Scheduler Evaluation Approaches

� “Deterministic modeling”
� aka “hand execution”

� Queueing theory
� Math gets big fast

� Math sensitive to assumptions
� May be unrealistic (aka “wrong”)

� Simulation
� Workload model or trace-driven

� GIGO hazard (either way)

Summary

� Round-robin is ok for simple cases
� Certainly 80% of the conceptual weight

� Certainly good enough for P3

� “Real” systems
� Some multi-level feedback

� Probably some soft real-time

