What You Need to Know
for Project Three

Steve Muckle
Wednesday, February 19t 2003
15-412 Spring 2003

Overview

e Introduction to the Kernel Project

e Mundane Detalils in x86
registers, paging, the life of a memory access, context
switching, system calls, kernel stacks

e Loading Executables

e A Quick Debug Story

e Style Recommendations (or pleas)
e Attack Strategy

Carnegie Mellon University 2

Introduction to the Kernel
Project

e P3 Is the most conceptually challenging

e You will need to adjust how you think about
program execution

e P1 introduced you to programming without
making commonly made assumptions

e In P3 you need to provide assumptions to
users

Carnegie Mellon University 3

Introduction to the Kernel
Project: Kernel Features

e Your kernels will feature:
- preemptive multitasking
- multiple virtual address spaces
- a “small” selection of useful system calls
- robustness (hopefully)

Carnegie Mellon University

Introduction to the Kernel Project:
Preemptive Multitasking

e Preemptive multitasking is
forcing multiple user
processes to share the CPU

e You will use the timer
interrupt to do this

e Reuse your timer code from
P1 if possible

Carnegie Mellon University 5

Introduction to the Kernel Project:
Preemptive Multitasking

e Simple round robin scheduling will suffice
e Context switching is tricky but cool

Carnegie Mellon University

Introduction to the Kernel Project:
Multiple Virtual Address Spaces

e The x86 architecture supports paging

e You will use this to provide a virtual address
space for each user process

e Each user process will be isolated from other
user processes

e We will also use paging to provide protection
for the kernel

Carnegie Mellon University 7

Introduction to the Kernel
Project: System Calls

e You used them in P2
e Now you get to implement them

e Examples include fork, exec, and of course,
minclone

e There are easier ones like getpid

Carnegie Mellon University 8

Mundane Details in x86

e We |looked at some of these for P1

e Now It Is time to get the rest of the story
e How do we control processor features?

e What does an x86 page table look like?
e What route does a memory access take?

e How do you switch from one process to
another?

Carnegie Mellon University 9

Mundane Detalls in x86:
Registers

e General purpose regs (not interesting)
- %eax, %ebx, %ecx, etc...

e Segment Selectors (somewhat interesting)
- %cCs, %ss, %ds, %es, %fs, %gs

e %elp (interesting)
e EFLAGS (interesting)

e Control Registers (very interesting)
- %cr0, %crl, %cr2, %cr3, %cr4

Carnegie Mellon University 10

Mundane Detalils Iin x86:
General Purpose Registers

e The most boring kind of register

e Yeax, Yebx, %ecx, Y%edx, %edi, %esl,
%ebp, Yesp

e Yeax, %oebp, and %esp are exceptions, they
are slightly interesting
- %eax Is used for return values
- %esp Is the stack pointer
- %ebp Is the base pointer

Carnegie Mellon University 11

Mundane Detalils Iin x86:
Segment Selector Registers

e Slightly more interesting

e %cs specifies the segment used to access
code (also specifies privilege level)

e %ss specifies the segment used for stack
related operations (pushl, popl, etc)

e %ds, %es, %fs, %gs specify segments used
to access regular data

e Mind these during context switches...

Carnegie Mellon University 12

Mundane Detalls in x86:
The Instruction Pointer (%elp)

e |t's Interesting
e Cannot be read from or written to
e Controls what instructions get executed

e ‘nuf said.

Carnegie Mellon University 13

Mundane Detalls in x86:
The EFLAGS Register

e It’s interesting

31 2221201918 17 161514 13121110 8 8 7 6 54 3 2 1 0
|

: IHHAMERDERE NN E RN ERE

Reserved (set t0 0) ol s LLetmlF[CLT] P IFLFLFLEfFLFLF L e
L

ID — ldentification Flagé |
VIP — Virtual Interrupt Pending

VIF — Virtual Interrupt Flag
AC — Alignment Check
VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag

IOPL— 1/O Privilege Level
IF — Interrupt Enable Flag
TF — Trap Flag

I:l Reserved

Figure 2-3. System Flags in the EFLAGS Register

e Contains a bunch of flags, including interrupt-
enable, arithmetic flags

Carnegie Mellon University 14

Mundane Detalils Iin x86:
Control Registers

e Very interesting!
e An assortment of important flags and values

e %cr0 contains powerful system flags that
control things like paging, protected mode

e %crl is reserved (now that's really
Interesting)

e %cr2 contains the address that caused the
last page fault

Carnegie Mellon University 15

Mundane Detalils Iin x86:
Control Registers, cont’

e %ocr3 contains the address of the current
page directory, as well as a couple paging
related flags

e %cr4 contains... more flags (not as
Interesting though)
- protected mode virtual interrupts?
- virtual-8086 mode extensions?
- No thanks

Carnegie Mellon University 16

Mundane Detalls in x86:
Registers

e How do you write to a special register?

e Most of them can simply be written to using
the movl instruction

e Some (like CRs) you need PLO to access
e We will provide inline assembly wrappers

e EFLAGS is a little different, but you will not
be writing to it anyway

Carnegie Mellon University 17

Mundane Detalls in x86:
Paging

e The x86 offers several page sizes
e We will use 4k pages
e The x86 uses a two level paging scheme

e The top of the paging structure Is called a
page directory

e The second level structures are called page
tables

Carnegie Mellon University 18

Mundane Detalls in x86: 434

Page Directories and Tables :

Current Process’
Page Directory Address

CR3

Carnegie Mellon University 19

Mundane Detalls in x86:
Page Directory

e The page directory is

4k IN SiZe Page-Directory Entry (4-KByte Page Table}_
31 1211 98765 4
¢ COntaInS Page-Table Base Address Availl |G E oA f' wl |
. = i <
pointers

to page tables Available for system programmer’s useJ ‘

Global page (lgnored)

e Not all entries Page size (0 indicates 4 KBytes)

Reserved (set to 0)

have to be Accessed

Cache disabled

. Write-through
Val |d User/Supervisor
Read/\Write

Present

Figure from page 87 of intel-sys.pdf

Carnegie Mellon University

000
- ' . 000
Mundane Detalls in x86: T
Page Table
e The page table is also
4k in Size Page-Table Entry (4-KByte Page)
. 31 1211 9876543210
® COntaInS . F PIP|UIR
. Page Base Address Avail ? DA El .'T k J1F
pointers !
to pag €S Available for system programmer’'s use J ‘
. Global Page
o NOt a” entries Page Table Attribute Index
Dirty
have to be Accessed
Cache Disabled
valid Write-Through
User/Supervisor
Read/\Write
Present

Figure from page 87 of intel-sys.pdf

Carnegie Mellon University 21

Mundane Detalils Iin x86:
The Life of a Memory Access

Logical Address (consists of 16 bit segment selector, 32 bit offset)

L Segmentation

L Linear Address (32 bit offset)

L> Paging
L> Physical Address

(32 bit offset)

Carnegie Mellon University 22

Mundane Detalils Iin x86:
The Life of a Memory Access

Logical Address (consists of 16 bit segment selector, 32 bit offset)

Lb Segmentation
Lb Linear Address (32 bit offset)

e The 16 bit segment selector comes from
a segment register

e The 32 bit offset Is added to the base
address of the segment

e That gives us a 32 bit offset into the
virtual address space

Carnegie Mellon University 23

Mundane Detalls in x86:
Segmentation

e Segments need not be backed by physica

memory and can overlap
e Segments defined for these projects:

OXFFFFFFFF

User Code

0x00000000

User Data

Carnegie Mellon University

24

Mundane Detalils Iin x86:
The Life of a Memory Access

Linear Address (32 bit offset)

I—> Physical Address

(32 bit offset)

e Top 10 bits index into page directory,
point us to a page table

e The next 10 bits index Into page table,
point us to a page

e The last 12 bits are an offset into that
page

Carnegie Mellon University 25

Mundane Detalils Iin x86:
The Life of a Memory Access

e Whoa there slick... what if the page directory
entry isn’'t there?

e What happens if the page table entry isn’t
there?

e |t's called a page fault, it's an exception, and
it lives in IDT entry 13

e You will have to write a handler for this
exception and do something intelligent

Carnegie Mellon University 26

Mundane Detalils Iin x86:
The Life of a Memory Access

Logical Address (consists of 16 bit segment selector, 32 bit offset)

L Segmentation

L Linear Address (32 bit offset)

L> Paging
L> Physical Address

(32 bit offset)

Carnegie Mellon University 27

Mundane Detalls in x86:
Context Switching

e We all know that
processes take turns
running on the CPU

e This means they have
to be stopped and
started over and over

e How does this occur?

Carnegie Mellon University 28

Mundane Detalls in x86:
Context Switching

e The x86 architecture provides a hardware
mechanism for “tasks”

e This makes context switching easy

e |t Is actually faster to manage processes In
software

e We can also tallor our process abstraction to
our particular needs

e YOU must have at least one hardware task
defined, OSKit takes care of this for you

Carnegie Mellon University 29

Mundane Detalls in x86:
Context Switching

e Context switching Is a very delicate
procedure

e Great care must be taken so that when the
process Is started, it does not know It ever
stopped

e Registers must be exactly the same (%.cr3 is
the only control register you have to update)

e |t's stack must be exactly the same
e |t's page directory must be in place

Carnegie Mellon University 30

Mundane Detalls in x86:
Context Switching

e Hints on context switching:
- use the stack, it Is a convenient place to
store things
- If you do all your switching in one location,
you have eliminated one thing you have to
save (%eilp)
- new processes will require some special
care

Carnegie Mellon University 31

Mundane Detalls in x86:
System Calls

e System calls use software interrupts

e Install a handler just as you did for the timer,
keyboard

e Use one software interrupt to implement all of
your system calls

e |f you are rusty on the IDT refer back to P1

Carnegie Mellon University 32

Mundane Detalls in x86:
Kernel Stacks

e User processes should have a separate stack
for their kernel activities

e |t should be located in kernel space

e How does the stack pointer get switched to
the kernel stack?

User-Level
Stack

Kernel Stack |« PCB

Carnegie Mellon University 33

Mundane Detalls in x86:
Kernel Stacks

e When the CPU switches from user mode to
kernel mode the stack pointer is changed

e The new stack pointer is stored in the
configuration of the CPU hardware task

e We provide a function to change this value
set_espO(void* ptr)

Carnegie Mellon University 34

Loading Executables

e You are probably
expecting a file system

e But... you have not
written one yet

e \We have cooked up a
small utility to help you

Carnegie Mellon University

35

Loading Executables:
exec20Db]

e Takes a file as input

e Spits out a .c file containing a char array
initialized to the contents of the input file

e You can compile this into your kernel

Carnegie Mellon University 36

Loading Executables:
The Loader

e You have access to the bytes

e You need to load them into the process’
address space

e Guess what... you get to write a loader!

e Don’t worry, it's not hard

e The executables will be In NMAGIC a.out
format

e References to resources are Iin the handout

Carnegie Mellon University 37

A Quick Debug Story

e Ha! You'll have to have
been to lecture to hear
this story.

Carnegie Mellon University 38

A Quick Debug Story

e The moral is, please

start early.

Al [

N
~ .

<

////// "y /

P

Carnegie Mellon University

39

Style Recommendations

e Do not use a global when a local would do.

e Comment where comments are needed
- not “comment everywhere”
- hot “do not comment”

e Do NOT hand in your project in one file called
kernel.c
- Do not hand in your project in one file called
anything, actually
- Dave might bite your kneecaps

Carnegie Mellon University 40

Attack Strategy

e There is an attack
strategy in the handout

e It represents where we
think you should be In
each of the four weeks

e You WILL have to turn
In checkpoint two

Carnegie Mellon University 41

Attack Strategy

e Please read the handout a couple times over
the next few days

e Then start writing pseudocode!

Carnegie Mellon University 42

Good Luck on
Project 2!

