Bootstrapping on x86

Steve Muckle
Wednesday, March 12th 2003
15-412 Spring 2003




Motivation

e What happens when you turn on your PC?
e How do we get to main() in kernel.c?

Carnegie Mellon University 2



Overview

e Requirements of Booting

e Ground Zero
e The BIOS
e The Bootloader

e Our projects: Multiboot, OSKit

Carnegie Mellon University




Requirements of Booting

e |nitialize machine to a known state
e Make sure basic hardware works
e Load a real operating system

e Run the real operating system

Carnegie Mellon University




Ground Zero

e You turn on the machine

e EXxecution begins in real mode at a specific
memory address

e Real mode: only 1mb of memory is
addressable

e Start address is in an area mapped to BIOS
read-only memory

e What's the BIOS?

Carnegie Mellon University 5



Basic Input/Output System
(BIOS)

e Code stored In Electrically Erasable
Programmable Read Only Memory
(EEPROM) on most modern systems

e Useful for testing hardware and loading data
from storage into memory

e Can also be used to configure hardware
details like RAM refresh rate or bus speed

Carnegie Mellon University 6



Basic Input/Output System
(BIOS)

e BIOS performs a Power On Self Test (POST)

e BIOS loads the first sector from a boot device
- could be a floppy, hard disk, CDROM
- without a BIOS, we’d be in a bit of a jam

e |f the last two bytes are AA55, we're In
business

e Otherwise we look somewhere else

Carnegie Mellon University 7



Basic Input/Output System
(BIOS)

e Sector Is copied to 0x7C00
e Execution is transferred to Ox7C00

e If it's a hard disk or CDROM, there’s an extra
step or two (end result is the same)

e Now we’re executing the bootloader — the
first “software” to execute on the PC

Carnegie Mellon University 8



Bootloader

e \WWe're now executing a bootloader
e Some bootloaders exist to load one OS
e Others give you a choice of what to load

e We use grub
http://www.gnu.org/software/grub/

Carnegie Mellon University




Bootloader

e GRUB is larger than one sector

e The sector loaded in by the BIOS just loads...
the rest of the bootloader

e GRUB then presents you with a boot menu

e To load a kernel, it must switch back and
forth between real and protected mode

e |t then jumps to the kernel’'s entrypoint
- How do we know the kernel’s entrypoint?

Carnegie Mellon University 10



Multiboot Specification

e Many OSes require their own bootloader

e Multiboot offers a standard way for kernels to
communicate entrypoint and other info

e The multiboot header 0x1badb002
must be located In the flags
8192 bytes ENEESU

.. i header_addr

e This Is the mysterious load_addr

multiboot.o... load_end_addr

bss end_addr

Carnegie Mellon University

entry_addr

11



OSKkit

e The kernel entrypoint is an assembly function
In multiboot.o

e This calls the first C function, multiboot_main

Carnegie Mellon University 12



OSKkit

e multiboot_main calls:

- base cpu_setup: init GDT, IDT, and TSS

- base multiboot_init. mem: init LMM

- base _multiboot_init_cmdline: parse cmdline
passed to kernel by bootloader

- main (yes, your main in kernel.c!)

- exit, If main ever returns (press a key to
reboot...)

Carnegie Mellon University 13



