
1

RPC

Dave Eckhardt
de0u@andrew.cmu.edu

2

Synchronization

� No Lecture Friday
� Book report assignment

� On Homework page, due mid-April

� Book approval hotline: de0u+books@andrew

� Paper collections fine
� Send: titles, URLs, page counts
� Avoid: “Some Exokernel papers”

� Today: RPC
� Text: 4.6 (far from exhaustive)

3

Overview

� RPC = Remote Procedure Call
� Extends IPC in two ways

� IPC = Inter-Process Communication
� OS-level: bytes, not objects

� IPC restricted to single machine

� Marshalling
� Server location
� Call semantics

4

RPC Model

� Approach
d = computeNthDigit(CONST_PI, 3000);
� Abstract away from “who computes it”

� Should “work the same” when remote Cray does

� Issues
� Must specify server somehow
� What “digit value” is “server down”?

� Exceptions useful in “modern” languages

5

Marshalling

� Values must cross the network
� Machine formats differ

� Integer byte order
� www.scieng.com/ByteOrder.PDF

� Floating point format
� IEEE 754 or not

� Memory packing/alignment issues

6

Marshalling

� Define a “network format”
� ASN.1 - “self-describing” via in-line tags

� XDR – not

� “Serialize” language-level object to byte stream
� Rules typically recursive

� Serialize a struct by serializing its fields in order

� Implementation probably should not be

7

Marshalling

� Issues
� Some types don't translate well

� Ada has ranged integers, e.g., 44..59
� Not everybody really likes 64-bit ints
� Floating point formats are religious issues

� Performance!
� Memory speed� network speed

� The dreaded “pointer problem”

8

Marshalling

struct node {
 int value;
 struct node *neighbors[4];
}

n = occupancy(nodes, nnodes);
bn = best_neighbor(node);
i = value(node);

� Implications?

9

Marshalling

n = occupancy(nodes, nnodes);
� Marshall array – ok

bn = best_neighbor(node);
� Marshall graph structure – not so ok

i = value(node);
� Avoiding marshalling graph – not obvious

10

Server location

� Which machine?
� Multiple AFS cells on the planet

� Each has multiple file servers

� Approaches
� Special hostnames: www.cmu.edu

� Machine lists
� AFS CellSrvDB /usr/vice/etc/CellServDB

� DNS SRV records (RFC 2782)

11

Server location

� Which port?
� Must distinguish services on one machine

� Fixed port assignment
� AFS: fileserver UDP 7000, volume location 7003
� /etc/services or www.iana.org/assignments/port-numbers
� RFC 2468 www.rfc-editor.org/rfc/rfc2468.txt

� Dynamic port assignment
� Contact “courier” / “matchmaker” service via RPC
� ...on a fixed port assignment!

12

Call semantics

� Typically, caller blocks
� Matches procedure call semantics

� Blocking can be expensive
� By a factor of a million!

� Asynchronous RPC
� Transmit request, do other work, check for reply

� Like programming language “futures”

13

Call Semantics

� Batch RPC
� Send list of procedure calls

� Later calls can use results of earlier calls

� Issues
� Abort batch if one call fails?

� Yet another programming language?

� Typically wrecks “procedure call” abstraction
� Must make N calls before 1st answer

14

Call Semantics

� Batch RPC Examples
� NFS v4 (maybe), RFC 3010

� Bloch, A Practical Approach to Replication of
Abstract Data Objects

15

Call semantics

� Network failure
� Retransmit

� How long?

� Server reboot
� Does client deal with RPC session restart?

� Did the call “happen” or not?

16

Client Flow

� Client code calls stub routine
� “Regular code” which encapsulates the magic

� Stub routine
� Locates communication channel

� Else: costly location/set-up/authentication

� Marshals information
� Including procedure #

� Sends message, awaits reply

� Unmarshals reply, returns

17

Server Flow

� Thread/process pool runnning skeleton code
� Skeleton code

� Waits for request

� Locates client state
� Authentication/encryption context

� Unmarshals parameters

� Calls “real code”

� Marshals reply

� Sends reply

18

Deployment

� Define interface
� Get it right, you'll live with it for a while

� Run stub generator
� Link stubs with client & server
� Run a server!

19

Java RMI

� Remote Method Invocation
� Serialization: programmer/language cooperation

� Dangerously subtle!
� Bloch, Effective Java

� RMI > RPC

� Remote methods� remote procedures

� Parameters can be (differently) remote
� Client on A can call method on B passing object on C

(slowly)

20

Summary

� RPC is lots of fun
� So much fun that lots of things don't do it

� SMTP

� HTTP

� Read Effective Java
� No class Friday

