
1

Mobile Code Safety

Dave Eckhardt
de0u@andrew.cmu.edu

2

Synchronization

� Checkpoint 2 megabyte bonanza
� No class Friday
� Book reports Friday midnight

3

Today's Lecture

� Safety for “Mobile Code”
� Includes 18.7

� Among other things!!

4

Outline

� Motivation
� Careful hardware
� Careful interpreter
� Trusted compiler / Signed code
� Byte code verifier

� Security policies

� Software Fault Isolation
� Proof-Carrying Code

5

Mobile code?

� Code from “somewhere else”
� Java applet

� Morris Internet worm

� Melissa virus

� Is this a feature or a bug??
� Useful mobile code

� PostScript / PDF

� NeWS “pie menus”

6

Pie Menus

� Intuitive for users
� Not popular with

window system
providers

� Can random users
replace default menus
with pies?
� NeWS: yes

� catalog.com/hopkins/piemenus

7

Network Tracing

� Who has run tcpdump/snoop/ethereal/...?
� How do they work?

� Can we afford to copy every packet to user space?

8

Packet Filters

� Concept
� Tell network stack which packets you want

� tcpdump host piper.nectar.cs.cmu.edu

� Network stack copies them to user memory
� Just the headers? Part of the body?

� Approach
� tcpdump writes a packet filter program

� Network stack runs it for each packet

� Program does return(nbytes) or return(0)

9

Packet Filter Example

(000) ldh [12]
(001) jeq #0x800 jt 2 jf 6
(002) ld [26]
(003) jeq #0x8002c250 jt 12 jf 4
(004) ld [30]
(005) jeq #0x8002c250 jt 12 jf 13
(006) jeq #0x806 jt 8 jf 7
(007) jeq #0x8035 jt 8 jf 13
(008) ld [28]
(009) jeq #0x8002c250 jt 12 jf 10
(010) ld [38]
(011) jeq #0x8002c250 jt 12 jf 13
(012) ret #68
(013) ret #0

10

Packet Filter Issues

� tcpdump loads filter program into OS!
� Is this ok?

(010) ld [1048576]

� How about this?
(010) ld [-50]

� How about a real program?
(000) ldh [12]
(001) jeq #0x800 jt 1 jf 1

11

Packet Filter Restrictions

� Abstract machine, not real instructions
� Must be run by interpreter

� Addresses are range-checked
� Small scratch-pad memory for program use
� No loops!

� Can't checksum an arbitrary-length packet

12

Packet Filter History

� History
� J. C. Mogul, R.F. Rashid, and M.J. Accetta, The

packet filter: An efficient mechanism for user-level
network code. SOSP 11 (1987)
http://citeseer.nj.nec.com/mogul87packet.html

� Xerox Alto (1976) (single address space)

13

Careful Hardware

� Approach
� Define safe & unsafe behaviors

� Embed police function in hardware

� Example
� Hardware virtual memory / memory protection

� Clock interrupts

� Multics/Hydra/CAP/EROS

14

“Careful Hardware” Issues

� Context-switch overhead
� Switching to user mode (and back)

� Too expensive for every packet

� Hardware protection doesn't cover software issues
� Can Steve's fancy packet filter delete my files

15

Careful Interpreter

� Approach
� Run each instruction “by hand”

� Enforce safety policy

� Example
� Packet filters

� JavaScript (uh-oh)

16

“Careful Interpreter” Issues

� Requires special language / abstract machine
� Can be very slow
� Hard to get safety policy right

� People often focus on features
� Pop up a nice temporary dialog box
� Specify window position, stacking

� Hard to add good rules later
� Don't allow pop-behind ads...
� Allow only finite loops...

17

Trusted Compiler

� Approach
� Language designed for safety

� No “pointer arithmetic”
� Automatic memory management

� Compiler rejects code violating safety policy

� Compiler contains no bugs

� Example
� ML, Modula-3

18

“Trusted Compiler” Issues

� Executable really from trusted compiler?
� Compile before every execution?

� Code signing (see below)?

� Compiler really contains no bugs?
� Certainly not in the optimizer!!

� Language-embedded safety policy is very static!
� Probably ignores many concerns

� Very hard to adjust afterward

19

Signed Code

� Intuition
� Too hard to verify code is safe

� Too hard to specify safety policy

� Surely Microsoft is careful and honest?
� s/Microsoft/Andrew Systems Group/

20

Signed Code

� Approach
� $TRUSTED_ORG builds program

� Safe design, language, programmers, compiler
� No last-minute viruses in QA group!

� $TRUSTED_ORG digitally signs program
� Or at least puts fancy holograms on the CD

� Code consumer verifies signature
� Ok to run it!

� Example: Microsoft ActiveX

21

“Signed Code” Issues

� Good news
� Supports any source language

� We can certify C++ code!

� No restrictons on executable performance

� Bad news
� Microsoft signs everything they write

� Outlook, IE, IIS, ...

� So does/would Sun, Red Hat, OpenBSD...

� Better than nothing...

22

Byte Code Verifier

� Approach
� Allow any compiler, any author

� Require abstract machine code

� Scan program before execution
� “Prove” code is safe

� Compile abstract code to real machine code?

� Verify certain operations during execution

� Example: Java

23

Byte Code Verifier - Checks

� Class file well formed?
� Correct magic number

� No extra/missing bytes

� File parses successfully

� Class is “sane”
� Every class has a real superclass

� “Final” classes/members are not overridden

24

Byte Code Verifier - Dataflow

� Concept
� Stack-based virtual machine

� Scan every instruction
� ...every way it's reachable

� Checks @ each instruction
� Stack state the same (size, #objects)

� Register accesses type check

� Type check: operators, calls, assignments

� http://java.sun.com/sfaq/verifier.html

25

Byte Code Verifier – Example

class HelloWorldApp {
 public static void main(String[]
args) {
 String s;
 if (args.length < 1)
 s = "Hello World!";
 System.out.println(s);
 }
}

� println() call reachable via two paths, one bad

26

Byte Code Verifier

� Shouldn't the compiler catch that?
� Yes (it does)

� So why must we verify it?
� That's the whole point

� How good is this verifier?
� Occasional bugs

� Limited proving power

� Only low-level safety

27

Limited Proving Power

class HelloWorldApp {
 public static void main(String[]
args) {
 String s;
 if (args.length < 1)
 s = "Hello World!";
 if (args.length < 1)
 System.out.println(s);
 }
}

� Still fails

28

Only Low-level Safety

� Verifier provides “language safety”
� Can't step outside type system

� Can't crash virtual machine

� JIT optimizer can depend on initialized variables

� Lots of good stuff

� Doesn't address program-level safety
� Opening files, accessing network

29

Higher-level Issues

� Initial approach
� “Applets can't access the file system at all”

� Can't even save preferences

� “Applets signed by corporate IT can access files”
� The best you can do for arbitrary programs?

� Doesn't address web applets

� Pluggable security policies
� “Applets can access files in

$HOME/.prefs/$classname”

30

Pluggable Security Policies

� Load class into JVM
� Via verifier, so it's sort-of-ok

� Class associated with protection domain
� Depending on class loader, signatures, ...

� Protection domain contains Permission patterns
� Before doing something dangerous

FilePermission perm = new
FilePermission("/temp/testFile",
"read");
AccessController.checkPermission(perm)
;

31

Pluggable Security Policies

� checkPermission() examines stack
� Class can “donate” protection domain to callees

� doPrivileged { ... }

� Otherwise, consult default domain

� Text 18.7
� API docs for java.security.AccessController
� Where do permissions come from????

� research.sun.com/research/techrep/2002/smli_tr-
2002-108.ps

32

Software Fault Isolation

� Goals
� Want to run real machine code

� No byte code
� No restrictive stack scanner

� Focus: memory safety
� Don't read unauthorized memory
� Don't write unauthorized memory

33

Software Fault Isolation

� Approach
� Edit machine code before execution

� load instruction?
� if ((address < ...) && (address > ...) load ...

� same for store

� Optimize out redundant checks

� Resulting code must be memory-safe
� Even if original code wasn't!

34

“Software Fault Isolation” Issues

� Execution can be slow
� Especially if you check loads (!!)

� Especially if code accesses multiple memory regions

� Especially if memory regions aren't power-of-2 size

� ...

� Implements only memory safety
� Not: “read table entry only if valid bit on”

35

Software Fault Isolation

� Wahbe, Lucco, Anderson, & Graham. Efficient
software-based fault isolation. SOSP 14 (1993)

36

Proof-Carrying Code

� Goals
� Want to run real unedited machine code

� Want to support more than memory safety
� “valid bit” example
� Mutex is acquired before ...
� Mutex is released after ...
� Execution time limit

37

Proof-Carrying Code

� Publish a safety policy
� Safe invocation of each instruction

� Precondition (which memory is readable...)

� Postcondition (termination, ...)

� Safety predicate generator

� Code comes with proof of safety predicate
� Generated by code author - somehow

� Attached like a symbol table

38

Proof-Carrying Code

� Running code
� Predicate generator produces safety predicate

� Instruction 0 is safe because it's an ADD
� Instruction 1 is safe because it reads from safe memory
� Instruction 2 is safe because it stores to safe memory

� Verify that alleged proof actually proves predicate

� Safe to run the code!

39

Proof-Carrying Code

� Where do proofs come from???
� Consumer publishes safety predicate generator

� So it's clear what must be proven

� Compiler may be able to produce proof
� Maybe with user assistance

� User can hand-write proof
� Especially for hand-written assembly language

� What code is mutated?
� Proof no longer valid... (or no harm done!)

40

“Proof-Carrying Code” Issues

� Good news
� Can run “optimal” code

� Verification “typically” fast

� Bad news
� Automatic proof generation is hard

� No library of agreed-upon safety policies

� Proof verification can be expensive
� Naively, a gigabyte of memory!

41

Summary

� Performance?
� Time to start running

� Throughput while running

� Safety policy
� Static (language designer)

� Dynamic (system administrator)

� Trust model
� Trust people, programs, or proofs?

42

Summary

� Careful hardware – could EROS make it happen?
� Careful interpreter – ok for slow applications
� Trusted compiler / Signed code – dubious
� Byte code verifier – has its uses, limits
� Software Fault Isolation – hmm...
� Proof-Carrying Code – hmm...

