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Synchronization

 Happy birthday, NCSA Mosaic
- April 22, 1993
* Survey

- Which OSs strike you as “tragic”? Why?
- Who knows how to pronounce “quixotic”?

* Today: Exokernel
- “Exterminate All Operating System Abstractions”
* No class Monday



Overview

* The Exokernel worldview
- Tragedy
- Salvation
My personal reaction to the Exokernel worldview



Tragedy

* Thedefining tragedyof the OS community
- OS = hardware multiplexor
- and OS = hardware abstractor
* OS abstraction is @uixotic goal
- Always-appropriate abstractions anegpossible
- Always-efficient implementations amepossible
* “The only way to win Is not to play”



“Abstractions Considered Harmful’??

* No.
* Theright abstractions are good.

- But there Is n@ingleright abstraction

- But each machine runssangle OS

* A single process model
* A single VM system

e One sizecannotfit all

- BEver



What's the harm in trying?

* You say “quixotic goal” like it's @adthing...
* Abstraction-heavy OSs are

- Complex

- Large

- Unreliable

- Hard to change
- Slow



What's the harm in trying?

* You say “quixotic goal” like it's @adthing...
* Abstraction-heavy OSs are

- Complex

- Large

- Unreliable

- Hard to change
- Slow

* Not justonebad thing! Everybad thing!



Defining The Tragedy

* OS = any software yotannot avoid

e |ssue not “PLO vs. PL4”

- If you need to be administrator to install it, it's OS
- Even if it runs In “user mode”

* Application software = anybody can avoid it



The Exokernel Thesis

* Q: Which jobs belong to the OS?

e A: Safe multiplexing of physical resources

- Jobs which require the use of force
* Timer interrupts force context switches
- Preventing unfair initiation of force
* Protecting my memory from your wild pointer

* Other jobs best done by other code structures

- Abstractions provided byoluntary use of libraries



What'swrong with OS abstractions?

e Complexity means bugs
e Complexity means inertia

e Complexity means slowness
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Complexity means bugs

e |f “virtual memory” means

- Copy-on-write

- Memory-mapped files

- User-wired pages

- Paging out parts of the OS kernel
 Then “virtual memory” will be buggy

- Forall processes
* (unless 15-412 students do the job)
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Complexity means inertia

* Providing lots of fancy abstractionshsrd

- Needs large, complex code
- Large, complex code evolves slowly

* Everything depends on the OS
- Changing the OS requires changing everything
- Costly, slow

* Only illuminati can change the OS
- “Linus doesn't scale”

12



Complexity means slowness

* Garbage collectors donitant dirty pages stored
- If they're In the copied region of from-space
* Databases donitant dirty buffers written
- If the transaction hasn't committed yet
 Databases dontant 1-block read-ahead

- Bank withdrawals aren't sequential by account #
e A *free” OS optimization for one usage pattern...

- ...Is amandatory OS slowdowfor another pattern
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The Horror iIsVlandatory

* There isonly onefile system
- No other way to access the disk
* There isonly oneVM system

- Only one page size, replacement policy, ...
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“Virtual Machine Considered
Harmful”

 The process model is bad

- Everyprocess model is bad
e CISC vs. RISC

- Processors should provi@desic instructions
* L oad, store, copy register, add

- Let compilersbuild them into abstractions
* Procedure call, switch()

* “End-to-end Arguments In System Design”
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Eliminate OS Abstractions

e Export hardware securely
* No machine-independent wrappers

e Abstraction-free kernel exokernel
- All parts visible
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Exokernel

e Safely allocate/deallocate/multiplex ...

- memorypages
- CPUtime slots

- disk sectors

- TLB slots(& address-space id #'s)
- Interrupts & traps

- DMA channels, bus bridges

- 1/O devices
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The Real Hardware

e Real TLB, not abstract TLB

— If version #13 has 32 entries and #14 has 64, deal

— If version #17 had a broken reference bit, detect &
deal

 Real memory, not abstract memory

- You can ask for frames #31, #62
* ...because you know they don't collidefirs TLB

* You specify your own PTE entries
- Don't forget to flush your TLB!!
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SecureMultiplexing??

Guardsprevent evil
PTEs you Install map tgour frames

Packets you send are fromur frames
- Cannot “helpfully” free frame before complete
Packets you receive are intour frames
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“Is there an OS In the house?”

Memory

Polling
CPU scheduling

Pac
Pac

Pac

Ket transmission
ket filtering

Ket buffering
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Xok Memory

e Three OS data structures

- per-process x86 page table
- page access matrix
- free page list
* Process can view its PTs
- Check dirty, referenced bits for gc
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Xok Memory

* Process requests changes
- Simple, fast system call checks access
* Process may store a frame to disk

- Or anywhere else
- Then use frame for another page

* Process may maintain free-frame pool
- It can/must handle its page faults
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Abstract-OS Event Polling

 Wake me up when...

- Client packet arrives, OR

- Some client TCP connection can accept data
e Unix solution: select()/poll() system call

- Works only on file descriptors
- Expensive
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Xok Event Polling

e Publish list of integers and comparisons

- &socket->recv->count, &zero, GREATER
- &socket->xmit->count, &16384, LESS

 Kernel generates, optimizes machine code

- (pins pages)
e Scheduler runs per-process “runnable predicate”
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Xok Packet Transmission

txpending = 1;
send(interface, lovec, &txpending);
- List of (address, length) pairs defines packet

- “txpending” integer decremented when done

* might make process runnable
* Application must avoid overwriting packet
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Xok Packet Filtering

Application provides packet filter
Kernel compiles into machine code

Kernel checks for packet theft
- This filter overlaps with an open filter, not yours
Filtering != storage
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Xok Packet Storage

* Process provides ring buffers in memory

e Kernel inserts packet
- No room? Drop
e Kernel writes received-length field
- Probably in receiver's “runnable predicate”
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It's Weird. Is ItGood?

* EXOS —voluntary POSIX emulation library
- Provides file system, process semantics
- Can run gcc, csh, etc.

 Simple socket-based HTTP server
- 2X faster EXOS vs. OpenBSD

e Cheetah HTTP Server

- Customized file system & TCP
- 3X-8Xthroughput of web servers on OpenBSD
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Web Server Story

Reguest/Response via TCP sockets
Pre-fork()'d process pool for requests
~1le data copied from disk to kernel to user

Flle data copied user to kernel to network

Slow

- System calls block, fork() is slow
- Checksum data before transmission
- Memory-to-memory copies
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Cheetah/Xok story

* Event loop instead of polling
- Asleep until something Is ready (disk, net)
- Make it busy, sleep again

* Network retransmit buffers == file system cache
— No duplication, no copy bandwidth

e StoreTCP data checksummside file

- Computed offline when file is stored
- Not computed for every transmission!
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Eckhardt's Reactions

* 800% performance Is exciting!

- Wake-up call is good

- Concepts & approach are a contribution
* There are issues
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Objection: Multiplex !'= Allocate

 TLB slots exposed

- How many formy process?
e CPU quantum expires

- Who sets quantum length?

— Which process is next?

- “Next process” choice Is rate-monotonic or not
e Can't be rate-monotonjost for those who opt ih
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Objection: Multiplex !'= Allocate

e Disk interrupt!
- Run newly-runnable process or just-interrupted one?
* These questionsiust be answered

* Answers are mandatory abstractions
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Objection: Cooperative Multi-
tasking?
* When kernel needs a frame

- It asksa process to free one!
* Process should

e Store page to disk (if neccesary)
 Unmap page->frame
* Free frame

e \What If it doesn't???

e How can you distinguish “slow” from “no”???
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Performance/Abstraction Issues

(Identified in 2002 paper)

“Runnable predicates” scale poorly
- How to do better w/o OS-level abstractions???
Run-time code generation brittle, hard to port

- Inertia???

No packet scheduler, so no connection fairness

- Would be anandatory abstractioh

35



Applicabllity

* Do regular applications work well?
* Are genius programmers required?

- Cheetah authors unusually high-powered...

* |s this really a general OS paradigm?
- Is the tragedy over?
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Summary

* “One size fits all” abstractionson't.
* Abstraction mismatches apainful.
* Multiplexing does not require abstractian

e Abstraction = box

- Think “outside the box” for speed

— Codeoutside the box?
e Me?
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