Exokernel

Dave Eckhardt
deQu@andrew.cmu.edu



Synchronization

 Happy birthday, NCSA Mosaic
- April 22, 1993
* Survey

- Which OSs strike you as “tragic”? Why?
- Who knows how to pronounce “quixotic”?

* Today: Exokernel
- “Exterminate All Operating System Abstractions”
* No class Monday



Overview

* The Exokernel worldview
- Tragedy
- Salvation
My personal reaction to the Exokernel worldview



Tragedy

* Thedefining tragedyof the OS community
- OS = hardware multiplexor
- and OS = hardware abstractor
* OS abstraction is @uixotic goal
- Always-appropriate abstractions anegpossible
- Always-efficient implementations amepossible
* “The only way to win Is not to play”



“Abstractions Considered Harmful’??

* No.
* Theright abstractions are good.

- But there Is n@ingleright abstraction

- But each machine runssangle OS

* A single process model
* A single VM system

e One sizecannotfit all

- BEver



What's the harm in trying?

* You say “quixotic goal” like it's @adthing...
* Abstraction-heavy OSs are

- Complex

- Large

- Unreliable

- Hard to change
- Slow



What's the harm in trying?

* You say “quixotic goal” like it's @adthing...
* Abstraction-heavy OSs are

- Complex

- Large

- Unreliable

- Hard to change
- Slow

* Not justonebad thing! Everybad thing!



Defining The Tragedy

* OS = any software yotannot avoid

e |ssue not “PLO vs. PL4”

- If you need to be administrator to install it, it's OS
- Even if it runs In “user mode”

* Application software = anybody can avoid it



The Exokernel Thesis

* Q: Which jobs belong to the OS?

e A: Safe multiplexing of physical resources

- Jobs which require the use of force
* Timer interrupts force context switches
- Preventing unfair initiation of force
* Protecting my memory from your wild pointer

* Other jobs best done by other code structures

- Abstractions provided byoluntary use of libraries



What'swrong with OS abstractions?

e Complexity means bugs
e Complexity means inertia

e Complexity means slowness

10



Complexity means bugs

e |f “virtual memory” means

- Copy-on-write

- Memory-mapped files

- User-wired pages

- Paging out parts of the OS kernel
 Then “virtual memory” will be buggy

- Forall processes
* (unless 15-412 students do the job)

11



Complexity means inertia

* Providing lots of fancy abstractionshsrd

- Needs large, complex code
- Large, complex code evolves slowly

* Everything depends on the OS
- Changing the OS requires changing everything
- Costly, slow

* Only illuminati can change the OS
- “Linus doesn't scale”

12



Complexity means slowness

* Garbage collectors donitant dirty pages stored
- If they're In the copied region of from-space
* Databases donitant dirty buffers written
- If the transaction hasn't committed yet
 Databases dontant 1-block read-ahead

- Bank withdrawals aren't sequential by account #
e A *free” OS optimization for one usage pattern...

- ...Is amandatory OS slowdowfor another pattern

13



The Horror iIsVlandatory

* There isonly onefile system
- No other way to access the disk
* There isonly oneVM system

- Only one page size, replacement policy, ...

14



“Virtual Machine Considered
Harmful”

 The process model is bad

- Everyprocess model is bad
e CISC vs. RISC

- Processors should provi@desic instructions
* L oad, store, copy register, add

- Let compilersbuild them into abstractions
* Procedure call, switch()

* “End-to-end Arguments In System Design”

15



Eliminate OS Abstractions

e Export hardware securely
* No machine-independent wrappers

e Abstraction-free kernel exokernel
- All parts visible

16



Exokernel

e Safely allocate/deallocate/multiplex ...

- memorypages
- CPUtime slots

- disk sectors

- TLB slots(& address-space id #'s)
- Interrupts & traps

- DMA channels, bus bridges

- 1/O devices

17



The Real Hardware

e Real TLB, not abstract TLB

— If version #13 has 32 entries and #14 has 64, deal

— If version #17 had a broken reference bit, detect &
deal

 Real memory, not abstract memory

- You can ask for frames #31, #62
* ...because you know they don't collidefirs TLB

* You specify your own PTE entries
- Don't forget to flush your TLB!!

18



SecureMultiplexing??

Guardsprevent evil
PTEs you Install map tgour frames

Packets you send are fromur frames
- Cannot “helpfully” free frame before complete
Packets you receive are intour frames

19



“Is there an OS In the house?”

Memory

Polling
CPU scheduling

Pac
Pac

Pac

Ket transmission
ket filtering

Ket buffering

20



Xok Memory

e Three OS data structures

- per-process x86 page table
- page access matrix
- free page list
* Process can view its PTs
- Check dirty, referenced bits for gc

21



Xok Memory

* Process requests changes
- Simple, fast system call checks access
* Process may store a frame to disk

- Or anywhere else
- Then use frame for another page

* Process may maintain free-frame pool
- It can/must handle its page faults

22



Abstract-OS Event Polling

 Wake me up when...

- Client packet arrives, OR

- Some client TCP connection can accept data
e Unix solution: select()/poll() system call

- Works only on file descriptors
- Expensive

23



Xok Event Polling

e Publish list of integers and comparisons

- &socket->recv->count, &zero, GREATER
- &socket->xmit->count, &16384, LESS

 Kernel generates, optimizes machine code

- (pins pages)
e Scheduler runs per-process “runnable predicate”

24



Xok Packet Transmission

txpending = 1;
send(interface, lovec, &txpending);
- List of (address, length) pairs defines packet

- “txpending” integer decremented when done

* might make process runnable
* Application must avoid overwriting packet

25



Xok Packet Filtering

Application provides packet filter
Kernel compiles into machine code

Kernel checks for packet theft
- This filter overlaps with an open filter, not yours
Filtering != storage

26



Xok Packet Storage

* Process provides ring buffers in memory

e Kernel inserts packet
- No room? Drop
e Kernel writes received-length field
- Probably in receiver's “runnable predicate”

27



It's Weird. Is ItGood?

* EXOS —voluntary POSIX emulation library
- Provides file system, process semantics
- Can run gcc, csh, etc.

 Simple socket-based HTTP server
- 2X faster EXOS vs. OpenBSD

e Cheetah HTTP Server

- Customized file system & TCP
- 3X-8Xthroughput of web servers on OpenBSD

28



Web Server Story

Reguest/Response via TCP sockets
Pre-fork()'d process pool for requests
~1le data copied from disk to kernel to user

Flle data copied user to kernel to network

Slow

- System calls block, fork() is slow
- Checksum data before transmission
- Memory-to-memory copies

29



Cheetah/Xok story

* Event loop instead of polling
- Asleep until something Is ready (disk, net)
- Make it busy, sleep again

* Network retransmit buffers == file system cache
— No duplication, no copy bandwidth

e StoreTCP data checksummside file

- Computed offline when file is stored
- Not computed for every transmission!

30



Eckhardt's Reactions

* 800% performance Is exciting!

- Wake-up call is good

- Concepts & approach are a contribution
* There are issues

31



Objection: Multiplex !'= Allocate

 TLB slots exposed

- How many formy process?
e CPU quantum expires

- Who sets quantum length?

— Which process is next?

- “Next process” choice Is rate-monotonic or not
e Can't be rate-monotonjost for those who opt ih

32



Objection: Multiplex !'= Allocate

e Disk interrupt!
- Run newly-runnable process or just-interrupted one?
* These questionsiust be answered

* Answers are mandatory abstractions

33



Objection: Cooperative Multi-
tasking?
* When kernel needs a frame

- It asksa process to free one!
* Process should

e Store page to disk (if neccesary)
 Unmap page->frame
* Free frame

e \What If it doesn't???

e How can you distinguish “slow” from “no”???

34



Performance/Abstraction Issues

(Identified in 2002 paper)

“Runnable predicates” scale poorly
- How to do better w/o OS-level abstractions???
Run-time code generation brittle, hard to port

- Inertia???

No packet scheduler, so no connection fairness

- Would be anandatory abstractioh

35



Applicabllity

* Do regular applications work well?
* Are genius programmers required?

- Cheetah authors unusually high-powered...

* |s this really a general OS paradigm?
- Is the tragedy over?

36



Summary

* “One size fits all” abstractionson't.
* Abstraction mismatches apainful.
* Multiplexing does not require abstractian

e Abstraction = box

- Think “outside the box” for speed

— Codeoutside the box?
e Me?

37



Papers

 End-to-end Arguments In System Design
- Saltzer, Reed, Clark: SOSP 5 (1981)

e Exterminate All Operating System Abstractions
- Engler & Kaashoek: HotOS 5 (1995)

* Fast and Flexible Application-Level Networking
on Exokernel Systems

- Ganger, Engler, Kaashoek, Briceno, Hunt, Pinckney
- ACM TOCS 20:1 (2002)

38



