
1

Review 2

Dave Eckhardt
de0u@andrew.cmu.edu

2

Synchronization

� Exam will be closed-book
� But you may bring a 1-sided 8.5x11 sheet of notes

� 6 point font or larger

� Weakly non-cumulative
� Emphasis on new material
� You will need to use some “old” knowledge

3

Synchronization

� About today's review
� Mentioning key concepts

� No promise of exhaustive coverage

� Reading some of the textbook is advisable

4

Synchronization

� Faculty evaluation forms
� middle of class?

� Read bboards during final exam period
� Read bboards during final exam period
� SCS Facilities hacking jobs

5

Core “Phase I” concepts

� Process model
� You should be a memory-map expert

� Kernel space, user space

� Process vs. thread

� Mutual exclusion
� mutex, cvar, what's inside, why

� Deadlock

6

IPC

� Communicating process on one machine
� Naming

� Name server?

� File system?

� Message structure
� Sender id, priority, type

� Capabilities: memory region, IPC rights

� Synchronization/queueing/blocking

7

IPC

� Group receive
� Copy/share/transfer
� A Unix surprise

� sendmsg()/recvmsg() pass file descriptors!

8

RPC Overview

� RPC = Remote Procedure Call
� Extends IPC in two ways

� IPC = Inter-Process Communication
� OS-level: bytes, not objects

� IPC restricted to single machine

� Marshalling
� Server location

9

RPC Overview

� Call semantics
� Asynch? Batch? Net/server failure?

� Client flow, server flow
� Stub routines, dispatch skeleton

� Java RMI

10

Marshalling

� Values must cross the network
� Machine formats differ

� Integer byte order
� www.scieng.com/ByteOrder.PDF

� Floating point format
� IEEE 754 or not

� Memory packing/alignment issues

11

Marshalling

� Define a “network format”
� ASN.1 - “self-describing” via in-line tags

� XDR – not

� “Serialize” language-level object to byte stream
� Rules typically recursive

� Serialize a struct by serializing its fields in order

� Implementation probably should not be

12

Marshalling

� Issues
� Some types don't translate well

� Ada has ranged integers, e.g., 44..59
� Not everybody really likes 64-bit ints
� Floating point formats are religious issues

� Performance!
� Memory speed� network speed

� The dreaded “pointer problem”
� See lecture notes

13

File System Interface

� Abstraction of disk/tape storage
� Records, not sectors

� Type information

� Naming
� Directory tree

� Complexity due to linking

� Soft vs. hard links

14

File System Interface

� Mounting
� Ownership, permissions
� Semantics of multiple open()s

15

Operations on Files

� Create – locate space, enter into directory
� Write, Read – according to position pointer
� Seek – adjust position pointer
� Delete – remove from directory, release space
� Truncate

� Trim data from end

� Often all of it

� Append, Rename

16

File System Layers

� Device drivers
� read/write(disk, start-sector, count)

� Block I/O
� read/write(partition, block) [cached]

� File I/O
� read/write(file, block)

� File system
� manage directories, free space, mounting

17

Disk Structures

� Boot area (first block/track/cylinder)
� File system control block

� Key parameters: #blocks, metadata layout

� Unix: superblock

� Directories
� “File control block” (Unix: inode)

� ownership/permissions

� data location

18

Memory Structures

� In-memory partition tables
� Cached directory information
� System-wide open-file table

� In-memory file control blocks

� Process open-file tables
� Open mode (read/write/append/...)

� “Cursor” (read/write position)

19

VFS layer

� Goal
� Allow one machine to use multiple file system types

� Unix FFS
� MS-DOS FAT
� CD-ROM ISO9660
� Remote/distributed: NFS/AFS

� Standard system calls should work transparently

� Solution
� Insert a level of indirection!

20

VFS layer – file system operations

struct vfsops {
 char *name;
 int (*vfs_mount)();
 int (*vfs_statfs)();
 int (*vfs_vget)();
 int (*vfs_unmount)();
 ...
}

21

Directories

� External interface
� vnode = lookup(vnode, name)

� Traditional Unix FFS
� List of (name,inode #) - not sorted

� Names are variable-length

� Lookup is linear
� How long does it take to delete N files?

� Common alternative: hash-table directories

22

Allocation - FAT

-1

-1

0

-1

3

5

2

7

hello.java

dir.c

0

1

sys.ini 4

23

Unix Index Blocks

999876

999875 42

3001

3002

10459

16

15

3002

10459

3002

10459

7500

3503

24

Cache tricks

� Read-ahead
for (i = 0; i < filesize; ++i)
 putc(getc(infile), outfile);
� System observes sequential reads

� can pipeline reads to overlap “computation”, read latency

� Free-behind
� Discard buffer from cache when next is requested

� Good for large files

� “Anti-LRU”

25

Recovery

� System crash...now what?
� Some RAM contents were lost

� Free-space list on disk may be wrong

� Scan file system
� Check invariants

� Unreferenced files
� Double-allocated blocks
� Unallocated blocks

� Fix problems
� Expert user???

26

NFS & AFS

� VFS interception
� NFS & AFS

� Architectural assumptions & goals

� Namespace

� Authentication, access control

� I/O flow

� Rough edges

27

NFS Assumptions, goals

� Workgroup file system
� Small number of clients

� Very small number of servers

� Single administrative domain
� All machines agree on “set of users”

� ...which users are in which groups

� Client machines run mostly-trusted OS
� “User #37 says read(...)”

28

NFS Assumptions, goals

� “Stateless” file server
� Files are “state”, but...

� Server exports files without creating extra state
� No list of “who has this file open”
� No “pending transactions” across crash

� Result: crash recovery “fast”, protocol “simple”

� Some “stateful” operations
� File locking

� Handled by separate service outside of NFS

29

AFS Assumptions, goals

� Global distributed file system
� Uncountable clients, servers

� “One AFS”, like “one Internet”
� Why would you want more than one?

� Multiple administrative domains
� username@cellname
� davide@cs.cmu.edu de0u@andrew.cmu.edu

30

AFS Assumptions, goals

� Client machines are un-trusted
� Must prove they act for a specific user

� Secure RPC layer

� Anonymous “system:anyuser”

� Client machines have disks
� Can cache whole files over long periods

� Write/write and write/read sharing are rare
� Most files updated by one user, on one machine

31

AFS Assumptions, goals

� Support many clients
� 1000 machines could cache a single file

� Some local, some (very) remote

32

AFS Callbacks

� Observations
� Client disks can cache files indefinitely

� Even across reboots

� Many files nearly read-only
� Contacting server on each open() is wasteful

� Server issues callback promise
� If this file changes in 15 minutes, I will tell you

� callback break message

� 15 minutes of free open(), read()

33

Disk scheduling

� Spinning platter/waving arm model
� Seek time vs. rotational latency
� FCFS, SSTF, SCAN, LOOK, C-SCAN, C-

LOOK, SPTF, WSPTF
� Fairness, mean response time, variance, starvation
� Freeblock scheduling

� Concept

34

Disk Array Overview

� Historical practices
� Striping, mirroring

� The reliability problem

� More disks ⇒ frequent array failures

� Cannot tolerate 1/N reliability

� Parity, ECC, why parity is enough
� Erasure channels

� Good terminology to display at parties

35

Disk Array Overview

� RAID “levels” (really: flavors)
� Understand RAID 0, 1, 4 vs. 5

� What they're good for, why

36

Host Naming Overview

� Three names for your PC
� Why?

� Two resolution protocols
� DNS, ARP

37

Three names for your my PC

� PIPER.NECTAR.CS.CMU.EDU
� What's a “nectar”?

� What's a “piper”?

� 128.2.194.80
� 00-20-AF-D9-FD-CA
� All are globally unique

� Won't one do?

38

Questions about names

� Who uses the name?
� For what?

� Who owns/defines the namespace?
� How long is the name valid?

39

Three names for my PC

� User specifies host name
� Data packet sent to IP address
� Last-hop router must know MAC address
� Two lookup problems

� Name -> IP address: global, pretty stable

� IP address -> MAC address: local, variable

� Two protocols
� DNS – multi-level tree

� ARP – local broadcast

40

Lamport Clocks Overview

� Light cones
� Meeting for beer
� “Happened before” partial order
� Logical clocks

� “Happened before" partial order

� Potential causality

� Another definition of concurrency

41

Lamport Clocks Overview

� Advanced techniques
� Total orders

� Fair distributed mutual exclusion

42

Protection Overview

� Protection vs. Security
� Inside vs. outside “the box”

� Objects, operations, domains
� Access control (least privilege)
� 3 domain models
� Domain switch (setuid example)
� Multics ring architecture

43

Protection Overview

� Access Matrix
� Concept and real-world approaches

� Capability revocation

44

Mobile Code Safety Outline

� Motivation
� Packet-filter example

� Careful hardware, careful interpreter
� Trusted compiler / signed code
� Java 2-level verification

� Low-level properties via byte-code verifier
� High-level properties via pluggable security modules

� Software fault isolation, proof-carrying code

45

Mobile Code Safety Metrics

� Performance?
� Time to start running

� Throughput while running

� Safety policy
� Static (language designer)

� Dynamic (system administrator)

� Trust model
� Trust people, programs, or proofs?

46

Mobile Code Safety Summary

� Careful hardware – could EROS make it happen?
� Careful interpreter – ok for slow applications
� Trusted compiler / Signed code – dubious
� Byte code verifier – has its uses, limits
� Software Fault Isolation – hmm...
� Proof-Carrying Code – hmm...

47

Plan 9, XOK, Eros

� “Incorporated by reference”
� Hard to test on these directly

� Can I meet the challenge?

48

Security Overview

� Goals & threats
� Authentication (impersonation)

� Secrecy (theft, eavesdropping)

� Integrity (cracking)

� Signature (repudiation)

� TEMPEST (and low-tech snooping)

49

Security Overview

� Malware
� Trojans, trapdoors

� Buffer overflow

� Viruses, worms

� Password files, salt
� Biometrics vs. cheating

50

Security Overview

� “Understand cryptography”
� Secure hashing

� One-time pad

� Symmetric (private-key) crypto

� Asymmetric (public-key) crypto
� Has private keys and public keys

� Kerberos
� Symmetric crypto
� Central server avoids the n2 problem

51

Transactions

� A different kind of critical section
� "ACID" Transaction Model

� Atomic, consistent, isolated, durable

� Unifying concept for system building
� Write-ahead logging, replay during restart
� Concurrency control (serializability)
� Distributed transactions, 2-phase commit

52

Preparation Suggestions

� Sleep well (two nights)
� Scan lecture notes
� Read any skipped textbook sections
� Understand the code you turned in

� Even what your partner wrote

53

Preparation Suggestions

� Prepare a sheet of notes
� RoboCup, but not too much...
� Read comp.risks & Effective Java

� Ok, after the exam will suffice

� Don't panic!
� Budget time wisely during exam

