
Carnegie Mellon University 1/18

OS Overview

David A. Eckhardt
School of Computer Science
Carnegie Mellon University

de0u@andrew.cmu.edu

Carnegie Mellon University 2/18

Administrivia

“Book reports”
• Suggestions: de0u+412books@andrew.cmu.edu

Project 1
• Expect: individual
• Probably: out Monday (for two weeks)

PC Survey
• Who would prefer to work primarily on non-128.2 machine?

Office Hours, Syllabus
• The web site should be less vacuous Thursday or Friday

A word about C++/...
• The word is “tilt!”

Carnegie Mellon University 3/18

Outline

“OS Concepts”, Ch. 1

What is an OS?
• “A home for a process”
• Brief history
• Special topics for special hardware

Next time
• Hardware, meet Software

• Including one “important conceptual contribution”

Carnegie Mellon University 4/18

What is an OS?

Consensus elusive
• PalmOS: 1 user, 1 task
• IBM VM/CMS: 1000 users, 1 (DOS box) task apiece
• Capability-based OS: user?
• Size: 16 kilobytes? 16 megabytes?
• Portable: “yes!” (or: “why?”)

...but I know one when I see one!
• (like other obscenities)

Carnegie Mellon University 5/18

Common Features

Abstraction layer
• People want files, not sectors
• People want I/O, not interrupts
• People want date & time, not “ticks since boot”
• Or: “Obstruction layer”

• See: “Exokernel”

Virtualization
• Give everybody “their own” machine
• VM/SP is “strong” virtualization
• Unix process is not far off

Protected Sharing (Controlled Interference)
• Shared keyboard/display I/O
• Shared memory

Carnegie Mellon University 6/18

Single-process OS

Examples
• DEC’s RT-11
• CP/M (and its clone, MS-DOS)
• Apple DOS
• UCSD p-system

Typical features
• One active program
• Some memory management
• A “file system”
• A command interpreter

• “Built-in” commands: DIR, SET, ^C
• “External” commands: compiler, editor

Carnegie Mellon University 7/18

Mainframe “Batch” OS

Examples
• IBM HASP?

Typical features
• One active program
• I/O library

• card reader, tape drive, printer
• Load next program on completion or abort

But...
• Wasteful: often much of machine is idle

Carnegie Mellon University 8/18

Multiprogramming Batch OS

Key insight
• Sometimes two programs fit in memory
• Each program is often waiting for I/O
• Two for the price of one!

OS requirements
• Job scheduling (semi-ordered entry to memory)

• (no longer a hot research topic)
• Processor scheduling (multiplexing CPU somehow)
• Input/Output stream abstraction (virtual card reader/punch)

• JCL!
• Memory mapping or linkage discipline
• (Hopefully) crash isolation

Examples
• IBM MVT, MVS

Carnegie Mellon University 9/18

Timesharing

Key Insight
• (none)

Timesharing = Interactive Multiprogramming
• Memory cheap enough for “lots” of processes
• Terminals cheap enough for “lots” of users

Examples
• CTS, ITS, TENEX
• VM/CMS
• MVS/TSO
• Multics
• Unix

Carnegie Mellon University 10/18

Timesharing

Typical features
• Swapping processes out of memory
• Virtual memory
• Fancy process scheduling (priorities, ...)

Inter-user/process communication!
• Why not? You’re all logged in all day...

Carnegie Mellon University 11/18

Multiprocessors

Requirements
• cheap processors
• shared memory with some coherence

Advantages
• Throughput (linear if you’re lucky)
• Resource sharing efficiency (one box, one net port)

• (but maybe: resource hot-spot inefficiency)
• Machine can keep running if one processor dies

Asymmetric Multiprocessing
• typical: only one processor runs the OS kernel
• other processors run user tasks
• cheap hack: easy to adapt a 1-processor OS
• lose: kernel is a “hot spot”

Symmetric Multiprocessing
• re-entrant multi-threaded kernel

Carnegie Mellon University 12/18

Distributed Applications

Concept
• Yodeling from one mountain peak to another

Client-server
• WWW

Message passing / “Peer-to-peer”
• e-mail
• USENET
• music/movie “sharing”
• “ad-hoc networking”
• “sensor” nets

Carnegie Mellon University 13/18

Loosely-Coupled Distributed Applications

Sample Challenges
• time delays may be large

• Vinge, “Fire Upon the Deep”
• Clarke, “Songs of Distant Earth”

• group membership generally un-knowable
• “messages” must be somewhat self-contained
• temporal coherence often very weak
• no authority to trust

Advantages
• large systems can grow with minimal central planning

• large, useful systems: e-mail, USENET, WWW
• aggregate throughput can be enormous
• systems can keep “working” despite damage

Carnegie Mellon University 14/18

Distributed File Systems

Typical features
• single global namespace

• everybody agrees on mapping between files & names
• many servers, but invisible

• server name not part of file name
• file motion among servers is transparent

• authentication across administrative boundaries
• some client autonomy (avoid server hot spots)

Examples
• AFS
• OpenAFS, Arla

“Storage” is hot
• So maybe the time has come

Carnegie Mellon University 15/18

Distributed Operating Systems

Intuition
• Mixture of remote and local resources
• Interactive process

• local memory, processor, display, keyboard, mouse
• remote file system

• Server process
• local memory, processor (maybe disk)

• Amoeba, Plan 9, ~Mach

Common emphases
• “capabilities” for objects (remote or local)

• (non-forgeable handles require cryptography)
• User-centric namespaces

• My “/tmp” is mine
• One namespace: “files”, processes, memory, devices

Carnegie Mellon University 16/18

Real-time Systems

Sometimes time matters
• Music (“small” glitches sound bad)
• Gaming (must match hand/eye coordination)
• Factory process control
• Avionics

“Hard” real-time
• “glitch” means something goes boom
• avoid things with unpredictable timing

• virtual memory, disks
• seriously over-engineer

“Soft” real-time
• Ok to do it right “most of the time”
• Minor changes to existing OS help a lot

• fancy scheduler, fancy mutexes
• memory locking

Carnegie Mellon University 17/18

Mobile computing

Examples
• PDAs
• laptops
• sensor networks

Standard resources are tight
• memory
• processor speed
• screen size

New worries
• intermittent connectivity
• self-organization
• power

Carnegie Mellon University 18/18

Summary

Resource abstraction
• packets -> reliable byte streams
• disk sectors -> files
• resource naming

Resource Sharing/protection
• CPU time slicing
• Memory swapping/paging
• Disk quotas

Communication & Synchronization
• Messaging
• Synchronizing & coherence

