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Administrative Overhead

Communication
• Web site is stirring - http://www.cs.cmu.edu/~412
• Official announcements - academic.cs.15-412

• having it beep or wiggle might be good

“How do I stop this thing?”
• Intermission?

Today’s class
• Not exactly Chapter 2

Monday’s class
• Project 1 talk (good thing to attend)
• Class ends 12:00 (MLK Day activities)
• Being registered is good

• disk space, access control lists, etc.
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Outline

Computer parts
CPU State
Fairy tales about system calls
System memory layout
Device drivers
Interrupt Vector Table
Direct Memory Access (DMA)
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Inside The Box - Historical/Logical
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Inside The Box - Really
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CPU State

User registers (on Planet Intel)
• General purpose - %eax, %ebx, %ecx, %edx
• Stack Pointer - %esp
• Frame Pointer - %ebp
• Mysterious String Registers - %esi, %edi

Non-user registers
• Processor status register(s)

• User process / Kernel process
• Interrupts on / Interrupts off
• Memory model (small, medium, large, purple, dinosaur)

Floating Point Number registers
• Logically part of “User registers”
• Sometimes “special” instead

• Maybe this machine doesn’t have floating point
• Maybe most processes don’t use floating point
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Story time!

Time for some fairy tales
• The getpid() story (shortest legal fairy tale)
• The read() story (toddler version)
• The read() story (grade-school version)
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The story of getpid()

User process is computing
• User process calls getpid() library routine
• Library routine calls TRAP(314159)

The world changes
• Some registers dumped into memory somewhere
• Some registers loaded from memory (somewhere else)
• Trap handler builds kernel runtime environment

Process “in kernel mode”
• u.u_reg[R_EAX] = u.u_pid;

Return from interrupt
• Processor state restored to user mode (modulo %eax)

User process returns to computing
• Library routine returns %eax as value of getpid()
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A story about read()

User process is computing
• count = read(0, buf, sizeof (buf));

User process “goes to sleep”
Operating system issues the disk read
Time passes
Disk operation complete
Operating system copies data
User process “wakes up”
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Another story about read()

P1: read()
• “Trap” to “kernel mode”

Kernel: issue disk read
Kernel: switch to P2

• “Return from interrupt” - but to P2, not P1!
P2: compute 1/3 of Mandelbrot set
Disk: done!

• Interrupt to “kernel mode”
Kernel: switch to P1

• “Return from interrupt” - but to P1, not P2!
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The Big Picture
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Thought experiments

What is the data flow for getpid()?

How does a message get between processes?
• Start: P1’s stack
• ...whoosh, whoosh...
• Finish: P2’s user data space

Why does every process have a kernel stack?
• On a uniprocessor, isn’t one k-stack enough?

• Only one process is “in kernel mode” at once, right?
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What’s a “device driver”?

Opposite of a user process
• Runs “forever”
• Three “threads” (but two different execution environments)

Initiation
• if (device_idle) start_device(request)
• else enqueue(request);
• condition_wait(request); /* switch to another process */

Interrupt handler
• condition_signal(cur_request);
• if (cur_request = queue_next()) start_device(cur_request);

Cleanup
• Transfer results from request buffer to user memory
• Return from trap
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Interrupt Vector Table

How do I handle this interrupt?
• Disk interrupt -> disk driver
• Mouse interrupt -> mouse driver

Need to know
• Where to dump registers

• often: property of current process, not of interrupt
• New register values to load into CPU

• key: new program counter, new status register

Table lookup
• Interrupt controller says: this is interrupt source #3
• CPU knows table base pointer, table entry size

• spew, slurp, off we go
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Interrupt masking

“Race condition”
• First attempt

• if (device_idle) start_device(request)
• else enqueue(request);

• What about:
• if (device_idle)
• INTERRUPT...device_idle = 1;...RETURN
• enqueue(request)

• Result: no initiation, so no completion

Atomic actions
• Block device interrupt while checking and enqueueing
• Avoid blocking all interrupts
• Avoid blocking “too long”



Carnegie Mellon University 16/17

Direct Memory Access (DMA)

Moving the bits manually
• while (cnt--) *p++ = in_word(drive->data_port);
• Disk sector: 512 bytes = 128 32-bit words
• Disks like multi-sector I/O operations
• I/O bus is slower than memory bus
• So: sipping kilobytes over the bus will occupy the CPU

Real DMA
• Tell disk controller where your buffer is
• Disk controller stores words into memory

• one-by-one: “cycle stealing”
• Legacy IBM PC DMA

• A few “DMA channels”
• CPU sets: pointer, length
• Device says “here’s a word for channel 3”
• Devices are cheap, but concurrency limited
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The Timer

Behavior
• Count something (CPU cycles, bus cycles, microseconds)
• When you hit a limit, generate an interrupt
• Reload counter (don’t wait for software to do it)

Why interrupt a perfectly good execution?
• Avoid CPU hogs

• for (;;) ;
• Maintain accurate time of day

• battery-backed “calendar” counts only seconds
• poorly

Dual-purpose interrupt
• ++ticks;
• force process switch (probably)


