
Carnegie Mellon University 1/17

Hardware Overview

David A. Eckhardt
School of Computer Science
Carnegie Mellon University

de0u@andrew.cmu.edu



Carnegie Mellon University 2/17

Administrative Overhead

Communication
• Web site is stirring - http://www.cs.cmu.edu/~412
• Official announcements - academic.cs.15-412

• having it beep or wiggle might be good

“How do I stop this thing?”
• Intermission?

Today’s class
• Not exactly Chapter 2

Monday’s class
• Project 1 talk (good thing to attend)
• Class ends 12:00 (MLK Day activities)
• Being registered is good

• disk space, access control lists, etc.



Carnegie Mellon University 3/17

Outline

Computer parts
CPU State
Fairy tales about system calls
System memory layout
Device drivers
Interrupt Vector Table
Direct Memory Access (DMA)



Carnegie Mellon University 4/17

Inside The Box - Historical/Logical

CPU

Memory

Graphics

USB

Floppy

IDE

Ethernet



Carnegie Mellon University 5/17

Inside The Box - Really

CPU

North Bridge

South Bridge

Memory AGP Graphics

USB
Floppy
IDE

P
C
I

Ethernet

SCSI



Carnegie Mellon University 6/17

CPU State

User registers (on Planet Intel)
• General purpose - %eax, %ebx, %ecx, %edx
• Stack Pointer - %esp
• Frame Pointer - %ebp
• Mysterious String Registers - %esi, %edi

Non-user registers
• Processor status register(s)

• User process / Kernel process
• Interrupts on / Interrupts off
• Memory model (small, medium, large, purple, dinosaur)

Floating Point Number registers
• Logically part of “User registers”
• Sometimes “special” instead

• Maybe this machine doesn’t have floating point
• Maybe most processes don’t use floating point



Carnegie Mellon University 7/17

Story time!

Time for some fairy tales
• The getpid() story (shortest legal fairy tale)
• The read() story (toddler version)
• The read() story (grade-school version)



Carnegie Mellon University 8/17

The story of getpid()

User process is computing
• User process calls getpid() library routine
• Library routine calls TRAP(314159)

The world changes
• Some registers dumped into memory somewhere
• Some registers loaded from memory (somewhere else)
• Trap handler builds kernel runtime environment

Process “in kernel mode”
• u.u_reg[R_EAX] = u.u_pid;

Return from interrupt
• Processor state restored to user mode (modulo %eax)

User process returns to computing
• Library routine returns %eax as value of getpid()



Carnegie Mellon University 9/17

A story about read()

User process is computing
• count = read(0, buf, sizeof (buf));

User process “goes to sleep”
Operating system issues the disk read
Time passes
Disk operation complete
Operating system copies data
User process “wakes up”



Carnegie Mellon University 10/17

Another story about read()

P1: read()
• “Trap” to “kernel mode”

Kernel: issue disk read
Kernel: switch to P2

• “Return from interrupt” - but to P2, not P1!
P2: compute 1/3 of Mandelbrot set
Disk: done!

• Interrupt to “kernel mode”
Kernel: switch to P1

• “Return from interrupt” - but to P1, not P2!



Carnegie Mellon University 11/17

The Big Picture

Kernel
Stack

Kernel
Data

Space

User
Stack

User
Data

Space

User
Stack

User
Data

Space

User
Stack

User
Data

Space

User
Stack

User
Data

Space

Kernel
Stack

Kernel
Stack

Kernel
Stack



Carnegie Mellon University 12/17

Thought experiments

What is the data flow for getpid()?

How does a message get between processes?
• Start: P1’s stack
• ...whoosh, whoosh...
• Finish: P2’s user data space

Why does every process have a kernel stack?
• On a uniprocessor, isn’t one k-stack enough?

• Only one process is “in kernel mode” at once, right?



Carnegie Mellon University 13/17

What’s a “device driver”?

Opposite of a user process
• Runs “forever”
• Three “threads” (but two different execution environments)

Initiation
• if (device_idle) start_device(request)
• else enqueue(request);
• condition_wait(request); /* switch to another process */

Interrupt handler
• condition_signal(cur_request);
• if (cur_request = queue_next()) start_device(cur_request);

Cleanup
• Transfer results from request buffer to user memory
• Return from trap



Carnegie Mellon University 14/17

Interrupt Vector Table

How do I handle this interrupt?
• Disk interrupt -> disk driver
• Mouse interrupt -> mouse driver

Need to know
• Where to dump registers

• often: property of current process, not of interrupt
• New register values to load into CPU

• key: new program counter, new status register

Table lookup
• Interrupt controller says: this is interrupt source #3
• CPU knows table base pointer, table entry size

• spew, slurp, off we go



Carnegie Mellon University 15/17

Interrupt masking

“Race condition”
• First attempt

• if (device_idle) start_device(request)
• else enqueue(request);

• What about:
• if (device_idle)
• INTERRUPT...device_idle = 1;...RETURN
• enqueue(request)

• Result: no initiation, so no completion

Atomic actions
• Block device interrupt while checking and enqueueing
• Avoid blocking all interrupts
• Avoid blocking “too long”



Carnegie Mellon University 16/17

Direct Memory Access (DMA)

Moving the bits manually
• while (cnt--) *p++ = in_word(drive->data_port);
• Disk sector: 512 bytes = 128 32-bit words
• Disks like multi-sector I/O operations
• I/O bus is slower than memory bus
• So: sipping kilobytes over the bus will occupy the CPU

Real DMA
• Tell disk controller where your buffer is
• Disk controller stores words into memory

• one-by-one: “cycle stealing”
• Legacy IBM PC DMA

• A few “DMA channels”
• CPU sets: pointer, length
• Device says “here’s a word for channel 3”
• Devices are cheap, but concurrency limited



Carnegie Mellon University 17/17

The Timer

Behavior
• Count something (CPU cycles, bus cycles, microseconds)
• When you hit a limit, generate an interrupt
• Reload counter (don’t wait for software to do it)

Why interrupt a perfectly good execution?
• Avoid CPU hogs

• for (;;) ;
• Maintain accurate time of day

• battery-backed “calendar” counts only seconds
• poorly

Dual-purpose interrupt
• ++ticks;
• force process switch (probably)


