
Carnegie Mellon University 1/21

Memory Hierarchy

David A. Eckhardt
School of Computer Science
Carnegie Mellon University

de0u@andrew.cmu.edu



Carnegie Mellon University 2/21

Outline

Lecture versus book
• Some of Chapter 2
• Some of Chapter 10

Memory hierarchy
• A principle (not just a collection of hacks)



Carnegie Mellon University 3/21

Am I in the wrong class?

“Memory hierarchy”: OS or Architecture?
• Yes

Why cover it here?
• OS manages several layers

• RAM cache(s)
• Virtual memory
• File system buffer cache

• Learn core concept, apply as needed



Carnegie Mellon University 4/21

You can’t have it all

Memory Desiderata
• big
• fast
• cheap
• compact
• cold
• non-volatile (can remember w/o electricity)

Pick one
• ok, maybe two

Why?
• Bigger -> slower (speed of light)
• Bigger -> more defects (assuming constant per unit area)
• Faster, denser -> hotter (at least for FETs)



Carnegie Mellon University 5/21

Users want it all

The ideal
• Infinitely large, fast, cheap memory
• Users want it (those pesky users!)
• They can’t have it

• Ok, so cheat!

Locality of reference
• Users don’t really access 4 gigabytes uniformly by byte
• 80/20 “rule”

• 80% of the time is spent in 20% of the code
• Great, only 20% of the memory needs to be fast!

Deception strategy
• harness 2 (or more) kinds of memory together
• secretly move information among memory types



Carnegie Mellon University 6/21

Cache

Small, fast memory...
• ...backed by a large, slow memory
• ...indexed according to the large memory’s address space
• ...containing the most popular parts (now)

SRAM cache holds popular pixels
• DRAM holds popular image areas

• Disk holds popular satellite images
• Tape holds one orbit’s worth of images

Clean general-purpose implementation?
• No: tradeoffs different at each level

• size ratio: data address / data size
• speed ratio
• access time = f(address)

But the idea is general-purpose



Carnegie Mellon University 7/21

Deception Picture

The questions
• Line size
• Placement/search
• Miss policy
• Eviction
• Write policy

L1

CPU

cache

L2 cache

RAM

disk

CD-R



Carnegie Mellon University 8/21

Today’s Examples

L1 CPU cache
• Smallest, fastest
• Maybe on the same die as the CPU
• Maybe 2nd chip of multi-chip module
• As far as CPU is concerned, this is the memory

Disk block cache
• Holds disk sectors in RAM
• Entirely defined by software
• You will implement one



Carnegie Mellon University 9/21

Line size

“Line size” = item size
• Many caches handle fixed-size objects

• Simpler
• Predictable operation times

L1 cache line size
• 4 32-bit words (486, IIRC)

Disk cache line size
• Maybe disk sector (512 bytes)
• Maybe “file system block” (small # of sectors)



Carnegie Mellon University 10/21

Picking a Line Size

What should it be?
• See “locality of reference”

• (“typical” reference pattern)

Too big
• Waste throughput

• Fetch a megabyte, use 1 byte
• Reduce “hit rate”

• String move: *q++ = *p++
• Better have at least two cache lines!

Too small
• Waste latency

• Frequently need to fetch another line



Carnegie Mellon University 11/21

Content-Addressable Memory

RAM
• store(address, value)
• fetch(address) -> value

CAM
• store(address, value)
• fetch(value) -> address

• Are we having P2P yet?

“It’s always the last place you look”
• Not with a CAM!

Cool!
• But fast CAMs are small (speed of light)



Carnegie Mellon University 12/21

Placement/search

Placement = “Where can we put ____?”
• “Direct mapped” - each item has one place

• Think: hash function
• “Fully associative” - each item can be any place

• Think: CAM

Direct Mapped
• Placement & search are trivial
• False collisions are common

• String move: *q++ = *p++
• Each iteration could be two cache misses!

Fully Associative
• No false collisions
• Cache size limited by CAM size



Carnegie Mellon University 13/21

Sample choices

L1 cache
• Often direct mapped
• Sometimes 2-way associative
• Depends on phase of transistor

Disk block cache
• Fully associative

• Open hash table = large variable-time CAM
• Fine since “CAM” lookup time << disk seek time

Choosing associativity
• Trace-driven simulation
• Packaging constraints



Carnegie Mellon University 14/21

Miss policy

Miss policy: {Read,Write} X {Allocate,Around}
• Allocate: miss -> allocate a slot
• Around: miss -> don’t change cache state

L1 cache
• Mostly read-allocate, write-allocate
• But not for “uncacheable” memory

• ...such as Ethernet card ring buffers
• “Memory system” provides “cacheable” bit
• Some CPUs have “write block” instructions

Disk block cache
• Mostly read-allocate, write-allocate
• What about reading (writing) a huge file?
• see (e.g.) madvise()



Carnegie Mellon University 15/21

Eviction

“The steady state of disks is ‘full’”.
• Each placement requires an eviction
• Easy for direct-mapped caches
• Otherwise, policy is necessary

Ideal policy - consult an oracle!
• Evict whichever item won’t be used longest
• Useful only in simulation comparisons

Least-recently-used (LRU)
• LRU may be a reasonable approximation of Ideal

• (“Past performance does not guarantee future results”)
• Or it may be the worst possible thing

• Cache size: 4 (fully associative)
• Reference pattern: 1, 2, 3, 4, 5, ...



Carnegie Mellon University 16/21

Eviction

Random
• Pick a random item to evict
• Randomness protects against pathological cases

Could “Random” be good?
• What would it take?

L1 cache
• LRU is easy for 2-way associative!

Disk block cache
• Frequently LRU, frequently modified

• “Prefer metadata”
• Other hacks



Carnegie Mellon University 17/21

Write policy

Assume a write hit (not write-around)

Write-through
• Store new value in cache
• Also store it through to next level
• Simple

Write-back
• Store new value in cache
• Store it to next level only on eviction

• “Mandatory optimization”: “dirty bit”
• May save substantial work



Carnegie Mellon University 18/21

Write policy

L1 cache
• It depends
• May be write-through if next level is L2 cache

Disk block cache
• Write-back
• Popular mutations

• Pre-emptive write-back if disk idle
• Bound write-back delay (crashes happen)



Carnegie Mellon University 19/21

Translation caches

Address mapping
• CPU presents virtual address (CS:EIP)
• Fetch segment descriptor from L1 cache (or not)
• Now fetch page table entry from L1 cache (or not)
• Now fetch the actual word from L1 cache (or not)

“Translation lookaside buffer” (TLB)
• Observe result of segmentation, virtual->physical mapping
• Key = virtual address
• Value = physical address



Carnegie Mellon University 20/21

Challenges

Write-back failure
• Power failure?

• Battery-backed RAM!
• Crash?

• Maybe the old disk cache is ok after reboot?

Coherence
• What about shared caches?

• Multiprocessor: 4 L1 caches share L2 cache
• TLB: v->p all wrong after context switch

• What about non-participants?
• I/O device does DMA

• Solutions
• Snooping
• Invalidation messages



Carnegie Mellon University 21/21

Summary

Memory hierarchy has many layers
• Size: kilobytes through terabytes
• Access time: nanoseconds through minutes

Common questions, solutions
• Each instance is a little different

• But there are lots of cookbook solutions


