
Carnegie Mellon University 1/17

The Process

David A. Eckhardt
School of Computer Science
Carnegie Mellon University

de0u@andrew.cmu.edu

Carnegie Mellon University 2/17

How’s it going?

You should have tried simics
• (really)

How about a blob?
• Put some characters somewhere on the screen
• Then loop forever

Weekends are fine
• but please don’t skip this one!

Polls
• Concurrency expertise: Monitor? P()/V()? Mutex? Condition?
• Anybody reading comp.risks?

• Hmm... theoretically possible to do an exam question...

Carnegie Mellon University 3/17

Outline

Lecture versus book
• Parts of Chapter 3
• Most of Chapter 4

Process as pseudo-machine
• (that’s all there is)

Process life cycle
Process kernel states
Process kernel state

Carnegie Mellon University 4/17

The computer

Stuff

Stack

Registers

Keyboard

Screen

Timer

Carnegie Mellon University 5/17

The Process

Code

Data

Heap

Stack

Registers

stdin

stdout

Timer

Carnegie Mellon University 6/17

Process life cycle

Birth
• (or, well, fission)

School
Work
Death

(Nomenclature courtesy of The Godfathers)

Carnegie Mellon University 7/17

Birth

Where do new processes come from?
• (Not: under a cabbage leaf, by stork, ...)

What do we need?
• Memory contents
• CPU register contents (all N of them)
• “I/O ports”

• File descriptors
• Hidden stuff (timer state, current directory, umask)

Intimidating?
• How to specify all of that stuff?

• What is your {name,quest,favorite_color}?

Gee, we already have one process we like...

Carnegie Mellon University 8/17

Birth - fork()

Memory
• copy all of it

• maybe using VM tricks so it’s cheaper

Registers
• copy all of them

• all but one: parent learns child’s process ID, child gets 0

File descriptors
• “copy all of them”?

• can’t copy the files!
• copy references to open-file state

Hidden stuff
• do whatever is “obvious”

Carnegie Mellon University 9/17

Now what?

Two copies of the same process is boring

Transplant surgery!
• Implant new memory!

• New program text
• Implant new registers!

• Old ones don’t point well into the new memory
• Keep (most) file descriptors

• Good for cooperation/delegation
• Hidden state?

• Do whatever is “obvious”

What do we call this procedure?
• execve(char *path, char *argv[], char *envp[])!

Carnegie Mellon University 10/17

Birth - other ways

There is another way
• Well, two

spawn()
• carefully specify all features of new process
• don’t need to copy stuff you will immediately toss

rfork() (Plan 9), clone() (Linux)
• build new process from old one
• specify which things get shared vs. copied

Carnegie Mellon University 11/17

School

execve(char *path, char *argv[], char *envp[]);
• becomes

char **environ;
main(int argc, char *argv[])

• How does the magic work?

Kernel process setup
• Toss old data memory (or page references)
• Toss old stack memory
• Load executable file
• and...

Carnegie Mellon University 12/17

The stack!

Kernel builds stack for new process
• Transfer argv[] and envp[] to top of new process stack
• Hand-craft stack frame for _:~:_main()
• Set registers

• stack pointer (to top frame)
• program counter (to start of _:~:_main())

_:~:_main(argc, argv, envp)
• (not its real name: _main(), ~main())
• environ = envp;
• exit(main(argc, argv));

Where does _:~:_main() come from?
• .../crt0.o

Carnegie Mellon University 13/17

Work

Process states
• Running

• user mode
• kernel mode

• Runnable
• user mode
• kernel mode

• Sleeping
• in condition_wait()

• [Forking]
• Zombie

Exercise for the reader
• Draw the transition diagram

Carnegie Mellon University 14/17

Death

exit(reason);

Software exception
• SIGXCPU - used “too much” CPU time

Hardware exception
• SIGSEGV - no memory there for you!

kill(pid, sig);
• ^C - kill(getpid(), SIGINT);
• start logging - kill(daemon_pid, SIGUSR1);
• Lost in Space - kill(Will_Robinson, SIGDANGER);

• I apologize to IBM for lampooning their serious signal
• No, I apologize for the apology...

Carnegie Mellon University 15/17

Process cleanup

Resource release
• Open files - close()

• TCP - 2 minutes (or more)
• Solaris disk offline - forever (“None shall pass!”)

• Memory - release

Accounting
• Record resource usage in a magic file

Zombie
• process state reduced to exit code
• wait around until parent calls wait()

Carnegie Mellon University 16/17

Kernel process state

The dreaded “PCB” (poly-chloro-biphenol?)
• Process Control Block

The laundry list
• CPU register save area
• process “identifier” (number), parent process identifier
• countdown timer value

• (maybe: in-line linked list)
• memory segment info

• user memory segment list
• kernel stack reference

• scheduler info
• linked list slot
• priority
• kernel sleep “channel” (condition variable)

Carnegie Mellon University 17/17

Ready to start?

Not so complicated...
• fork()
• exec()
• getpid()
• exit()
• wait()

What could possibly go wrong?

