
Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 1/19

Threads

David A. Eckhardt
School of Computer Science
Carnegie Mellon University

de0u@andrew.cmu.edu



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 2/19

How’s it going?

You should have something running
• Like, everything but the clock
• If you haven’t run simics, today’s the day!



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 3/19

Outline

Textbook chapters
• Already: Chapters 1 through 4
• Today: Chapter 5 (roughly)
• Soon: Chapters 7 & 8

• Transactions (7.9) will be deferred

Thread as schedulable registers
• (that’s all there is)

Misc. topics
• Why threads?
• Thread flavors (ratios)
• (Against) cancellation
• Thread-specific Data

Race conditions
• 1 simple, 1 “ouch”



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 4/19

Single-threaded process

Code

Data

Heap

Stack

Registers

stdin

stdout

Timer



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 5/19

Multi-threaded process

Code

Data

Heap

Stack Registers

stdin

stdout

Timer

Stack

Stack

Registers

Registers



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 6/19

Why threads?

Performance
• Simplistic: copying registers cheaper than copying process

• also: context switching...
• Looking deeper: cheap access to shared resources

Multiplayer game server
• Many players
• Access (& update) shared world state

1 process per player?
• Processes share objects only via system calls
• Hard to make game objects = operating system objects
• Expensive to devote a process per game object

1 thread per player
• Easy access to game objects in memory
• Shared access to OS objects (files)



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 7/19

More Performance

Responsiveness
• Conveniently suspend stalled operation
• Allow another operation to progress
• ...without horrible manual coding

Multiprocessor speedup
• More CPUs can’t help a single-threaded process!
• PhotoShop color dither operation

• Divide image into regions
• One dither thread per CPU
• Can (sometimes) get linear speedup



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 8/19

User-space threads (N:1)

Internal threading
• Processes optionally thread via special library
• Thread switch “just” copies registers

• register save/restore, stack swap

Features
• No change to operating system
• System call may block all threads

• (special non-blocking system calls can help)
• “Cooperative scheduling” awkward/insufficient

• How many calls to yield()?
• Does not take advantage of multiprocessor machines



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 9/19

Pure kernel threads (1:1)

OS-supported threading
• OS models thread/process ownership

• memory regions shared & reference-counted
• Every thread is sacred

• Kernel-managed register set
• Kernel stack
• Independently scheduled

Features
• “Real” (timer-triggered) scheduling
• Takes advantage of multiprocessor machines
• User-space libraries must be rewritten
• Kernel threads may be costly

• must be created via system call
• require kernel memory (PCB, stack)



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 10/19

Many-to-many (M:N)

Middle ground
• OS provides kernel threads
• M user threads share N kernel threads

Sharing patterns
• Dedicated

• User thread 12 owns kernel thread 1
• Shared

• 1 kernel thread per hardware CPU
• Each executes next runnable thread

• Many variations, see text

Features
• Great when it works!



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 11/19

(Against) Cancellation

Thread cancellation
• We don’t want the result of that computation

• (think “Cancel button”)
•

Asynchrounous (immediate) cancellation
• Stop execution
• Free stack, registers
• Poof!
• But...

• Hard to garbage collect thread resources (open files, ...)
• Invalidates data structure consistency!

Deferred (“pretty please”) cancellation
• Write down “thread #314, please go away”
• Requires threads to check or define safe cancellation points
• The only safe way (IMHO)



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 12/19

Thread-specific Data

A little anti-sharing
• Threads share code, data, heap
• How to write these?

• printf(“I am thread %d\n”, thread_id());
• thread_status[thread_id()] = BUSY;
• printf(“Client machine %s\n”, thread_var(0));

No magic, so...
• thread_id() = system call?

• too expensive!
• thread_id() = { extern int thread_id; return (thread_id); }

• shared memory: all int’s have same value

Two options
• Think about what’s not shared...



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 13/19

Thread-specific data: implementation

Reserved register
• Many microprocessors have 32 (or more) user registers
• Devote one to thread data pointer

• struct thread_private
• int thread_id;
• void *thread_vars[N_TH_VAR];

• X86 architecture has four general-purpose registers (oops)

Stack trick
• Assume all thread stacks have same size
• Store private data area at top of stack
• Compute “top of stack” given any address within stack

• “exercise for the reader”



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 14/19

Race conditions

What could go wrong?
• What you think

• ticket = next_ticket++;
• What really happens (in general)

• ticket = temp = next_ticket;
• ++temp;
• next_ticket = temp;

Murphy’s Law (of threading)
• The world is allowed to arbitrarily interleave execution
• Sooner or later it will choose the most painful way



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 15/19

Race condition example

Blow-by-blow

Thread 1 Thread 2
ticket = temp = next_ticket;

ticket = temp = next_ticket;
++temp;

++temp;
next_ticket = temp;

next_ticket = temp;



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 16/19

The #! shell-script hack

What’s a “shell script”?
• A file with a bunch of (shell-specific) shell commands

What’s “#!”?
• A venerable hack
• You say

• execl(“/foo/script”, “script”, “arg1”, 0);
• /foo/script begins...

• #!/bin/sh
• The kernel does...

• execl(“/bin/sh”, “/foo/script”, “arg1”, 0);

How convenient!
• (Solaris does something similar for Java class files)



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 17/19

The setuid invention

The concept
• A program with stored privileges
• When executed, runs with two identities

• invoker’s identity
• file owner’s identity

Example - printing a file
• Want every user to be able to queue files
• Don’t want users to delete other user’s files from queue
• Solution

• Queue directory owned by user “printer”
• Setuid “queue-file” program

• Create queue file as user “printer”
• Copy user data as user “joe”

• User “printer” controls user “joe”’s access to directory



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 18/19

The race condition

Process 1 Process 2
ln -s /foo/script /tmp/script

execl(“/tmp/script”);
become “printer”
execl(‘/bin/sh”, “/tmp/
script”);

rm /tmp/script
ln -s /my/exploit /tmp/script

script = open(‘/tmp/script”,
0);
execute /my/exploit ...



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 19/19

How to solve race conditions?

Carefully analyze operation sequences

Find subsequences which must be uninterrupted
• “Critical section”

Use a synchronization mechanism
• Next time!


