
Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 1/17

Synchronization (1)

David A. Eckhardt
School of Computer Science
Carnegie Mellon University

de0u@andrew.cmu.edu



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 2/17

Status Rendezvous

Everybody has run simics?
• de0u+licenses@andrew

• not de0u+licenses@cs
• not de0u+license@andrew

• will generate a “bounce” message
• https://www.simics.net/evaluation/scripts/academic.php

Handin
• Watch academic.cs.15-412.announce

Partner selection for Project 2
• de0u+partner@andrew

• or de0u+partners@andrew (I am learning)
• By Tuesday 2002-03-04 23:59 EST

Steve is out of town
• Variant office hours this week
• See academic.cs.15-412.announce



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 3/17

Outline

Me vs. Chapter 7
• Mind your P’s and Q’s
• Atomic sequences vs. voluntary de-scheduling

• “Sim City” example
• You will need to read the chapter
• Hopefully my preparation/review will clairfy it

Three critical-section necessities

Two-process solution
N-process “Bakery Algorithm”



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 4/17

Mind your P’s and Q’s

What you write
choosing[i] = true;
number[i] = max(number[0], number[1], ...) + 1;
choosing[i] = false;

What happens...
number[i] = max(number[0], number[1], ...) + 1;
choosing[i] = false;

Or maybe...
choosing[i] = false;
number[i] = max(number[0], number[1], ...) + 1;



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 5/17

My computer is broken?!

No, your computer is “modern”
• Processor “write pipe” queues memory stores

• ...and coalesces “redundant” writes!
• Magic “memory barrier” instructions available

• ...stall processor until write pipe is empty

Ok, now I understand
• Probably not
• http://www.cs.umd.edu/~pugh/java/memoryModel/

• "Double-Checked Locking is Broken" Declaration
• See also “release consistency”

Textbook’s memory model
• ...is “what you expect”



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 6/17

Atomic sequences vs. voluntary de-scheduling

Two fundamental operations
• Atomic instruction sequence
• Voluntary de-scheduling

Multiple implementations of each
• Uniprocessor vs. multiprocessor
• Special hardware vs. special algorithm
• Different OS techniques
• Performance tuning for special cases

Multiple client abstractions
• Textbook covers: semaphore, critical region, monitor
• Very relevant

• mutex/condition variable (POSIX pthreads)
• Java “synchronized” keyword (3 uses)



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 7/17

Atomic instruction sequence

Problem class
• Short sequence of instructions
• Nobody else may interleave same sequence

• or a “related” sequence
• “Typically” nobody is trying

Example
• Multiprocessor simulation (think: “Sim City”)
• Coarse-grained “turn” (think: hour)
• Lots of activity within turn

• Think: M:N threads, M=objects, N=#processors



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 8/17

Commerce

Multithreaded commerce

• Should the store call the police?
• Is deflation good for the economy?

Observations
• Instruction sequence is “short”

• Ok to force competitors to wait
• Probability of collision is “low”

• Avoid expensive exclusion method

Customer 1 Customer 2
cash = store->cash; cash = store->cash;
cash += 50; cash += 20;
personal_cash -= 50; personal_cash -= 20;
store->cash = cash; store->cash = cash;



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 9/17

Voluntary de-scheduling

Problem class
• “Are we there yet?”
• “Waiting for Godot”

Example - “Sim City” disaster daemon
while (date < 1906-04-18) sleep(date) ;
while (hour < 5) sleep(hour) ;
iterate over squares:

wreak_havoc(square);

Observations
• Making others wait is wrong

• It will be a while
• We want others to run - they enable us

• CPU de-scheduling is an OS service!



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 10/17

Voluntary de-scheduling

While (not ready)
• Atomic instruction sequence

• Scan shared state
• State indicates “it will be a while”
• Register (in state) interest in the happy event
• Release control of shared state
• De-schedule yourself (until somebody says “event!”)



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 11/17

Nomenclature

Textbook’s code skeleton / naming
do {

entry section
critical section

...computation on shared state...
exit section
remainder section

...private computation...
} while (1);

What’s muted by this picture?
• Critical section contents

• Sleep?
• Or just atomic sequence?



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 12/17

“Critical Section Problem”

“Entry/exit protocol problem”
• Mutual Exclusion

• At most one process executing critical section
• Progress

• Choosing next entrant cannot involve nonparticipants
• Choosing protocol must have bounded time

• Bounded waiting
• Cannot wait forever once you begin entry protocol
• ...bounded number of entries by others

Conventions for 2-process algorithms
• P[i] = “us”, P[j] = “the other”
• {i,j} = {0,1}
• j == 1 - i



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 13/17

First idea

Taking turns
int turn = 0;

while (turn != i)
;

...critical section...
turn = j;

How’d we do?
• Mutual exclusion - yes
• Progress - no

• Strict turn-taking is fatal
• If P[i] never tries to enter, P[j] will wait forever



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 14/17

Second idea

Registering interest
boolean want[2] = {false, false};

want[i] = true;
while (want[j])

;
...critical section...
want[i] = false;

Evaluation
• Mutual exclusion - yes
• Progress - almost

Customer 0 Customer 1
want[0] = true want[1] = true
while (want[1]) ; while (want[0]) ;



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 15/17

Rubbing two ideas together

Taking turns when necessary
boolean want[2] = {false, false};
int turn = 0;

want[i] = true;
turn = j;
while (want[j] && turn == j)

;
...critical section...
want[i] = false;

Proof sketch of exclusion, by contradiction
• Both in c.s. implies want[i] == want[j] == true
• That implies both while loops exited because “turn != j”
• Cannot have (turn == 0 && turn == 1), so one exited first
• w.l.o.g., P0 exited first, so turn==0 before turn==1
• So P1 had to set turn==0 before P0 set turn==1
• So P0 could not see turn==0, could not exit loop first, C!



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 16/17

Bakery Algorithm

Take a ticket from the dispenser
• Unlike “reality”, two people can get the same ticket number
• Sort by (lowest wallet dollar bill serial number, ticket number)

Two-phase entry protocol
• Pick a number

• Look at all presently-available numbers
• Add 1 to highest you can find

• Wait until you have the lowest number curently issued
• Well, the lowest (serial,ticket) number, anyway



Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 17/17

Bakery Algorithm

Code
boolean choosing[n] = { false, ... };
int number[n] = { 0, ... } ;

choosing[i] = true;
number[i] = max(number[0], number[1], ...) + 1;
choosing[i] = false;

for (j = 0; j < n; ++j) {
while (choosing[j])

;
while ((number[j] != 0) &&

((number[j], j) < (number[i], i)))
;

}
...critical section...
number[i] = 0;


