
Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 1/24

Deadlock (1)

David A. Eckhardt
School of Computer Science
Carnegie Mellon University

de0u@andrew.cmu.edu

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 2/24

Status Rendezvous

Partner selection for Project 2
• Largely complete

• If you are unpartnered, you got mail last night

Project 2
• Out: today
• In: Wednesday, February 19

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 3/24

Outline

Textbook
• Chapter 8

Deadlock
• What it is
• How to get one
• One approach to not getting one as a gift

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 4/24

Definition of Deadlock

Deadlock
• Set of N processes
• Each waiting for an event
• caused by another process in the set

Simplest form
• Process 1 owns printer, wants tape drive
• Process 2 owns tape drive, wants printer

Less-obvious
• Three tape drives
• Three processes

• each has one tape drive
• each wants “just” one more

• Can’t point finger
• but the problem is there anyway

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 5/24

Deadlock Requirements

Mutual exclusion
• resources must be “owned”, not simultaneously shared

Hold & Wait
• a process can hold one resource while waiting to get another

No preemption
• no way to force a process to yield a resource it has

Circular Wait
• process 0 needs something process 4 has
• process 4 needs something process N has
• process N needs something process M has
• process M needs something process 0 has

Deadlock requires all four

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 6/24

Process/Resource graph

Allocation: arrow from resource to process (green)
Request: arrow from process to resource (red)

Tape 1 Tape 2 Tape 3

P1 P2 P3

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 7/24

Interchangeable resources

Tapes

P1 P2 P3

Disks

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 8/24

Some Cycles are Ok

Only rescuer-free cycles are deadlocks

Tapes

P1 P2 P3

Disks

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 9/24

Dining Philosophers

The scene
• 412 staff at a Chinese restaurant
• a little short on cutlery

YL

ZA

SM RM

DE

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 10/24

Dining Philosophers

Processes
• 5, one per person

Resources
• 5 bowls

• each dedicated to a diner (ignore)
• 5 chopsticks

• 1 between every adjacent pair of diners

Who cares?
• illustrates contention, starvation, deadlock

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 11/24

Dining Philosophers

 int stick[5] = { -1 };
 condition want[5]; /* stick */
 mutex table = { true };

start_eating (int diner)
 right = (diner + 1) % 5;
 left = (diner + 4) % 5;
 mutex_lock(table);
 while (stick[right] != -1)
 condition_wait(want[right], table);
 stick[right] = diner;
 while (stick[left] != -1)
 condition_wait(want[left], table);
 stick[left] = diner;
 mutex_unlock(table);

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 12/24

Dining Philosophers

done_eating (int diner)
 right = (diner + 1) % 5;
 left = (diner + 4) % 5;
 mutex_lock(table);
 stick[diner] = stick[diner] = -1;
 condition_signal(want[right]);
 condition_signal(want[left]);
 mutex_unlock(table);

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 13/24

Dining Philosophers Deadlock

What if everybody reaches right at the same time?

YL

ZA

SM RM

DE

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 14/24

Deadlock - What to do?

Prevention
• restrict behavior or resources
• violate one of the 4 conditions

Avoidance
• dynamically examine requests
• keep system in “safe state”

Detection/Recovery
• maybe deadlock won’t happen today
• gee, it seems quiet
• oops, here is a cycle
• abort some processes

Just reboot when it gets “too quiet”

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 15/24

Prevention - 1

Violate mutual exclusion
• Don’t have single-user resources

Problem
• Not going to work out for chopsticks

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 16/24

Prevention - 2

Violate Hold&Wait
• Acquire resources all-or-none

start_eating(int diner)
 right = (diner + 1) % 5;
 left = (diner + 4) % 5;
 done = false;
 mutex_lock(table);
 while (1)
 if (stick[left] == -1 && stick[right] == -1)
 stick[left] = stick[right] = diner
 mutex_unlock(table)
 return
 condition_wait(somebody_finished, table);

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 17/24

Violating Hold&Wait

Problem - starvation
• Larger resource set makes grabbing harder
• No guarantee a diner eats in bounded time

Problem - low utilization
• Must allocate 2 chopsticks and waiter
• Nobody else can use waiter while you eat

Problem - not everybody knows in advance

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 18/24

Prevention - 3

Violate non-preemption
• steal resources from sleeping processes

 start_eating(int diner)
 right = (diner + 1) % 5;
 rright = (diner + 2) % 5;
 left = (diner + 4) % 5;
 lleft = (diner + 3) % 5;
 mutex_lock(table);
 while (1)
 if (stick[right] == -1)

stick[right] = diner
 else if (stick[rright] != rright)

/* right cannot be eating */
/* take right’s stick */
stick[right] = diner

 ...same for left...
 mutex_unlock(table);

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 19/24

Violating Non-preemption

Problem
• Some resources cannot be cleanly preempted

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 20/24

Prevention - 4

Avoid circular wait
• impose total order on all resources
• require acquisition in strictly increasing order

• static: allocate memory, then files
• dynamic: ooops, need resource 0; dump all, start over

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 21/24

Assigning a Total Order

 start_eating(int diner)
 if diner == 4
 right = (diner + 4) % 5;
 left = (diner + 1) % 5;
 else
 right = (diner + 1) % 5;
 left = (diner + 4) % 5;
 mutex_lock(table);
 while (stick[right] != -1)
 condition_wait(want[right], table);
 stick[right] = diner;
 while (stick[left] != -1)
 condition_wait(want[left], table);
 stick[left] = diner;
 mutex_unlock(table);

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 22/24

Assigning a Total Order

Problem
• may not be possible to force allocation order

• some trains go east, some go west

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 23/24

Deadlock Prevention problems

Typical resources require mutual exclusion

Allocation restrictions can be painful
• all-at-once

• hurts efficiency
• may starve

• resource needs may be unpredictable
• preemption may be impossible

• or may lead to starvation
• ordering restrictions may not be feasible

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 24/24

Deadlock prevention summary

Great if you can find a tolerable approach

Awfully tempting to just let processes try their luck

