
Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 1/26

Deadlock (2)

David A. Eckhardt
School of Computer Science
Carnegie Mellon University

de0u@andrew.cmu.edu

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 2/26

Status Rendezvous & Outline

Project 2
• Questions?
• Some people have started!

• Good!

Outline
• Review: Prevention/Avoidance/Detection&Recovery
• Avoidance
• Detection & Recovery

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 3/26

Deadlock - What to do?

Prevention
• restrict behavior or resources
• violate one of the 4 conditions

Avoidance
• dynamically examine requests
• keep system in “safe state”

Detection/Recovery
• maybe deadlock won’t happen today
• gee, it seems quiet
• oops, here is a cycle
• abort some processes

Just reboot when it gets “too quiet”

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 4/26

State Space

Each node is a resource allocation graph
• Allocation/Deallocation moves system among nodes
• Islands of deadlock surrounded by “dangerous” states

• Blocking for some requests will cause deadlock

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 5/26

Avoidance - Approach

Processes describe worst-case behavior
• Actual usage is always a subset

System rejects unsafe states
• Each request is evaluated for potential trouble
• Imagine granting request

• Could any request from that state cause deadlock?

Safe state
• Informally - at least 1 state away from deadlock
• Formally - “safe sequence” must exist

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 6/26

Avoidance - Safe Sequence

Assumptions
• Every process will ask for everything it declared
• But will eventually finish work & exit

Safe sequence <P1, P2, ... Pn>
• System can satisfy P1’s growth to max

• with currently-free resources
• When P1 exits, system can satisfy P2’s growth to max

• with current-free + P1-growth
• When P2 exits, system can satisfy P3’s growth to max

• with current-free + P1-growth + P2-growth

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 7/26

Avoidance - Key Ideas

Safe state
• “Some safe sequence exists”
• Prove it by finding one

Unsafe state
• No safe sequence exists

• some Pw could legally ask for “too much”
• enough that Px would need to wait
• enough that Py would need to wait

• Deadlock could result
Unsafe may not be fatal

• Processes might exit early
• Processes might not use max resources today

System efficiency reduced
• Lots of unsafe states
• Many would not actually deadlock (today)

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 8/26

Avoidance - Unique Resources

Edges
• Claim (future request)
• Request
• Assign

Tape 1 Tape 2 Tape 3

P1 P2 P3

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 9/26

Avoidance - Unique Resources

Claim -> Request

Tape 1 Tape 2 Tape 3

P1 P2 P3

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 10/26

Avoidance - Unique Resources

Request -> Assignment

Tape 1 Tape 2 Tape 3

P1 P2 P3

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 11/26

Avoidance - Unique Resources

Non-cycle-forming requests are ok

Tape 1 Tape 2 Tape 3

P1 P2 P3

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 12/26

Avoidance - Unique Resources

A request we should not grant

Tape 1 Tape 2 Tape 3

P1 P2 P3

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 13/26

Avoidance - Unique Resources

Pretend to grant it
• Would you have a cycle?

• Lots!
• So what!? Everything looks fine...

Tape 1 Tape 2 Tape 3

P1 P2 P3

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 14/26

Avoidance - Unique Resources

No safe sequence
• No process can, without waiting

• Acquire maximum-declared set of resources
• Complete & release resources

Anybody going to sleep might never wake up
• So we can’t grant this (seemingly ok) request

Tape 1 Tape 2 Tape 3

P1 P2 P3

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 15/26

Avoidance - Multi-instance Resources

Example
• N interchangeable tape drives
• Could represent by N tape-drive nodes
• Needless computational expense

Business credit-line model
• Bank assigns maximum loan amount
• Business pays interest on current borrowing amount

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 16/26

Avoiding bank failure

Bank is “ok” when there is a safe sequence
• One company can

• Borrow up to its credit limit
• Do well
• IPO
• Pay back its full loan amount

• And then another company, etc.
No safe sequence?

• Company tries to borrow up to limit
• Bank has no cash
• Company must wait (and the next, and the next...)

In real life
• Company cannot make payroll
• Company goes bankrupt
• Loan not paid back

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 17/26

Banker’s Algorithm

int cash;
int credit_limit[N];
int borrowed[N];
int could_borrow[N]; /*credit_limit-borrowed*/

boolean is_safe(void)
int future = cash;
boolean done[N] = { false };

while (find debtor d:
!done[d] && could_borrow[d] < future)

future += borrowed[d];
done[d] = true;

if (FORALL(d) done[d])
return (true);

else
return (false);

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 18/26

Banker’s Algorithm

Can we loan more money to a company?
• Pretend we did

• update cash, borrowed[], and could_borrow[]
• Is it safe?

• Yes: ok!
• No: un-do to pre-pretending state, say “not at this time”

Multi-resource Version
• Generalizes easily to N independent resource types (see text)

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 19/26

Avoidance - Summary

Good news
• No static “laws” about resource requests
• Processes can pre-declare any set of resources
• Allocation decisions flexible according to other processes

Bad news
• Avoidance bans many states with many positive scenarios
• Many totally ok paths through state space unavailable

• System throughput reduced
• 3 processes, can allocate only 2 tape drives!?!?

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 20/26

Detection & Recovery - Approach

Don’t be paranoid
• Don’t refuse requests that might lead to trouble (someday)
• Most things work out ok in the end

Even paranoids have enemies
• Sometimes a deadlock will happen
• Need a plan for noticing
• Need a policy for reacting

• Somebody must be told “try again later”

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 21/26

Detection - Key Ideas

“Occasionally” scan for wait cycles

Expensive
• Must lock out all request/allocate/deallocate activity

• Global mutex is the “global variable” of concurrency
• Detecting cycles is an N-squared kind of thing

Throughput balance
• Too often - system becomes (very) slow

• Before every sleep? Only in small systems
• Too rarely - system becomes (extremely) slow

Policy candidates
• Scan every <interval>
• Scan when CPU is “too idle”

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 22/26

Detection - Algorithms

Detection: Unique Resources
• Search for cycles in graph (see above)

Detection: Multi-instance Resources
• Slight variation on Banker’s Algorithm

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 23/26

Recovery - Abort

Evict processes from the system

All processes in the cycle?
• Simple & blame-free policy
• Lots of re-execution work later

Just one process in the cycle?
• Should re-scan for immediate creation of shorter cycle
• Policy question: which one?

• Priority?
• Work remaining?
• Work to clean up?

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 24/26

Recovery - Resource Preemption

Re-running processes is expensive
• Long-running tasks may never complete

• Starvation

Tell one/some/all waiting processes “No”
• Policy question: which one?

• Always choose lowest-numbered?
• Starvation!

What does “no” mean?
• Can’t retry the request!
• Must release other resources, “walk away”, “come back”
• “State rollback” can be messy

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 25/26

Summary - Overall

Deadlock is...
• Set of processes
• Each one waiting for something held by another

Approaches
• Prevention - Pass a law against one of:

• Mutual exclusion (right!)
• Hold & wait (maybe...)
• No preemption (maybe?)
• Circular wait (sometimes)

• Avoidance - “Stay out of danger”
• Not all “danger” turns into “trouble”

• Detection & Recovery
• Frequency: delicate balance
• Preemption is hard

• Rebooting

Copyright 2003, David A. Eckhardt <davide+receptionist@cs.cmu.edu> 26/26

Summary - Starvation

Starvation is a ubiquitous danger

Prevention is one extreme
• Need something “illegal”? Starve for sure!

Detection & Recovery
• Less structural starvation
• Silll must make good choices

