
Memory Management

Dave Eckhardt
de0u@andrew.cmu.edu

Synchronization

� Project 2
� I called sys_minclone() and something bad happened!

� You all saw the change notice on the bboard, right?

� “Pop Quiz”
� What does “ld” do?

� Outline
� ~ Chapter 9 (with occasional disagreement)

� Also read Chapter 10

Who emits addresses?

� Program counter (%eip): code area
� Straight-line code

� Loops, conditionals

� Procedure calls

� Stack pointer (%esp, %ebp): stack area
� Registers: data/bss/heap

Initialized how?

� Program counter
� Set to “entry point” by OS program loader

� Stack pointer
� Set to “top of stack” by OS program loader

� Registers
� Code segment (“immediate” constants)

� Data/BSS/heap

� Computed from other values

Birth of an Address

int k = 3;
int foo(void) {
 return (k);
}

int a = 0;
int b = 12;
int bar (void) {
 return (a + b);
}

 3
12

0bss

data

movl _k, %eax
leave
ret
...

code

0

4096

8192

Image File vs. Memory Image

 3
12

0bss

data

movl _k, %eax
leave
ret
...

code

0

4096

8192 3
12

data

movl _k, %eax
leave
ret
...

code

0
4096
8192

4

Multi-file Programs?

� “Link editor” combines into one image file
� Unix “link editor” called “ld”

� Memory range allocation?
� Each file uses same memory map!

� Linker can “fix up”
� relocation directive

� address, bit field
� reference type
� symbol name

Logical vs. Physical Addresses

� Logical address
� According to programmer, compiler, linker

� Physical address
� Where your program ends up in memory

� They can't all be in the same place!

� How to reconcile?
� Relocate “one last time”?

� Use hardware!

Static Linking

� Must link a program before running
� User program

� Necessary library routines

� Duplication on disk
� Every program uses printf()!

� Duplication in memory
� Hard to patch every printf()

Dynamic Linking

� Defer “final link” as much as possible
� The instant before execution

� Program startup invokes “shared object loader”
� Locates library files

� Includes in address space

� Links, often incrementally
� Self-modifying “stub” routines

“Shared libraries”

� Extension/optimization of dynamic linking
� Basic idea

� Why have N copies of printf() in memory?

� Allow processes to share memory pages
� “Intelligent” mmap()

� Must avoid address-map conflicts
� Library issued an address range
� Position-independent code

Swapping

� Multiple user processes
� Sum of memory demands exceeds system memory

� Don't want say “no” too early
� Allow each process 100% of system memory

� Take turns
� Temporarily evict process(es) to disk

� Not runnable
� Blocked on implicit I/O request

Swapping vs. CPU Scheduling

� Textbook claims
� Dispatcher notices swapped-out process

� Just before resuming execution!
� Implication: huge stalls

� Two-level scheduling process
� CPU scheduler schedules in-core processes

� Swapper decides when to evict/reinstate
� Cannot swap a process with pending DMA

Contiguous Memory Allocation

� Goal: share system
memory among
processes

� Approach: concatenate
in memory

� Two new CPU
registers
� Memory base

� Memory limit

Process 3

Process 4

Process 1

OS Kernel

Process 2

Mapping & Protecting Regions

� Program uses logical
addresses

� Memory Management
Unit (MMU) maps to
physical addresses

If V < limit
 P = base + V;
Else
 ERROR

Process 3

Process 4

Process 1

OS Kernel

0

8192

1100
9292

Allocating Regions

� Swapping out creates
“holes”

� Swapping in creates
smaller holes

� Various policies
� First fit

� Best fit

� Worst fit

Process 3

Process 4

Process 1

OS Kernel

Process 2

Fragmentation

� External fragmentation
� Scattered holes can't

be combined
� Without costly

“compaction” step

� Some memory is
unusable

Process 4

Process 1

OS Kernel

Process 2

Fragmentation

� Internal fragmentation
� Allocators often round

up
� 8K boundary (some

power of 2!)

� Some memory is
wasted inside each
segment

Process 3

Process 4

Process 1

OS Kernel

0

8192

1100
9292

Paging

� Solve two problems
� External memory fragmentation

� Long delay to swap a whole process

� Divide memory more finely
� Page = small logical memory region (4K)

� Frame = small physical memory region

� Any page can map to any frame

Paging – Address Mapping

Logical Address

Page Offset

....
f29
f34
....

Frame Offset

Page table
Physical Address

Paging – Address Mapping

� User view
� Memory is a linear array

� OS view
� Each process requires N frames

� Fragmentation?
� Zero external fragmentation

� Internal fragmentation: maybe average ½ page

Bookkeeping

� One page table for each process
� One frame table

� Manage free pages

� Remember who owns a page

� Context switch
� Must install process page table

Hardware Techniques

� Small number of pages?
� “Page table” can be a few registers

� Typical case
� Large page tables, live in memory

� Processor register: Page Table Base Register

� Double trouble?
� Program requests memory access
� Processor makes two memory accesses!

Translation Lookaside Buffer (TLB)

� Problem
� Cannot afford double memory latency

� Observation - “locality of reference”
� Program accesses “nearby” memory

� Solution
� Cache virtual-to-physical mappings

� Small, fast on-chip memory
� Don't forget context switch!

Page Table Entry (PTE) mechanics

� PTE flags
� Protection

� Read/Write/Execute bits

� Valid bit

� Dirty bit

� Page Table Length Register (PTLR)
� Programs don't use entire virtual space

� On-chip register detects out-of-bounds reference
� Allows small PTs for small processes

Page Table Structure

� Problem
� Assume 4 KByte pages, 4 Byte PTEs

� Ratio: 1000:1
� 4 GByte virtual address (32 bits) -> 4 MByte page table

� Per process!

� Solutions
� Multi-level page table

� Hashed page table

� Inverted page table

Multi-level page table

P1 Offset

....
f29
f34
f25

Frame Offset

Page tables

....
f99
f87
....

P2
f07
f08
....

Outer PT

Hashing & Clustering

� Hashed Page Table
� PT is “just” a hash table

� Bucket chain entries: virtual page #, frame #, next-pointer

� Useful for sparse PTs (64-bit addresses)

� Clustering
� Hash table entry is a miniature PT

� e.g., 16 PTEs
� Entry can map 1..16 (aligned) pages

Inverted page table

� Problem
� Page table size depends on virtual address space

� N processes * large fixed size

� Observation
� Physical memory (# frames) is a boot-time constant

� No matter how many processes!

� Approach
� One PTE per frame, maps (process #, page#) to index

Inverted Page Table

Logical Address

Page Offset

....
#1 p29
#3 p34
....

Frame i Offset

Hash table
Physical AddressPid #

Hash

Segmentation

� Physical memory is (mostly) linear
� Is virtual memory linear?

� Typically a set of regions
� “Module” = code region + data region
� Region per stack
� Heap region

� Why do regions matter?
� Natural protection boundary

� Natural sharing boundary

Segmentation: Mapping

Seg # Offset

<=

Physical Address
Limit Base

+

Segmentation + Paging

� 80386 (does it all!)
� Processor address directed to one of six segments

� CS: Code Segment, DS: Data Segment
� CS register holds 16-bit selector

� 32-bit offset within a segment -- CS:EIP

� Table maps selector to segment descriptor

� Offset fed to segment descriptor, generates linear
address

� Linear address fed through segment's page table
� 2-level, of course

Is there another way?

� Could we have no page tables?
� How would hardware map virtual to physical?

Software TLBs

� Reasoning
� We need a TLB for performance reasons

� OS defines each process's memory structure
� Which memory ranges, permissions

� Why impose a semantic middle-man?

� Approach
� TLB miss generates special trap

� OS quickly fills in correct v->p mapping

Software TLB features

� Mapping entries can be computed many ways
� Imagine a system with one process memory size

� TLB miss becomes a matter of arithmetic

� Mapping entries can be locked in TLB
� Great for real-time systems

� Further reading
� http://yarchive.net/comp/software_tlb.html

Summary

� Processes emit virtual addresses
� segment-based or linear

� A magic process maps virtual to physical
� No, it's not magic

� Address validity verified

� Permissions checked

� Mapping may fail temporarily (trap handler)

� Mapping results cached in TLB

