
What You Need to Know
for Project Three

Steve Muckle
Wednesday, February 19th 2003

15-412 Spring 2003



Carnegie Mellon University 2

Overview

Introduction to the Kernel Project
Mundane Details in x86
registers, paging, the life of a memory access, context 
switching, system calls, kernel stacks

Loading Executables
A Quick Debug Story
Style Recommendations (or pleas)
Attack Strategy



Carnegie Mellon University 3

Introduction to the Kernel 
Project

P3 is the most conceptually challenging
You will need to adjust how you think about 
program execution
P1 introduced you to programming without 
making commonly made assumptions
In P3 you need to provide assumptions to 
users



Carnegie Mellon University 4

Introduction to the Kernel 
Project: Kernel Features

Your kernels will feature:
- preemptive multitasking
- multiple virtual address spaces
- a “small” selection of useful system calls
- robustness (hopefully)



Carnegie Mellon University 5

Introduction to the Kernel Project: 
Preemptive Multitasking 

Preemptive multitasking is 
forcing multiple user 
processes to share the CPU
You will use the timer 
interrupt to do this
Reuse your timer code from 
P1 if possible



Carnegie Mellon University 6

Introduction to the Kernel Project: 
Preemptive Multitasking

Simple round robin scheduling will suffice
Context switching is tricky but cool



Carnegie Mellon University 7

Introduction to the Kernel Project: 
Multiple Virtual Address Spaces

The x86 architecture supports paging
You will use this to provide a virtual address 
space for each user process
Each user process will be isolated from other 
user processes
We will also use paging to provide protection 
for the kernel



Carnegie Mellon University 8

Introduction to the Kernel 
Project: System Calls

You used them in P2
Now you get to implement them
Examples include fork, exec, and of course, 
minclone
There are easier ones like getpid



Carnegie Mellon University 9

Mundane Details in x86

We looked at some of these for P1
Now it is time to get the rest of the story
How do we control processor features?
What does an x86 page table look like?
What route does a memory access take?
How do you switch from one process to 
another?



Carnegie Mellon University 10

Mundane Details in x86: 
Registers

General purpose regs (not interesting)
- %eax, %ebx, %ecx, etc…
Segment Selectors (somewhat interesting)
- %cs, %ss, %ds, %es, %fs, %gs
%eip (interesting)
EFLAGS (interesting)
Control Registers (very interesting)
- %cr0, %cr1, %cr2, %cr3, %cr4



Carnegie Mellon University 11

Mundane Details in x86: 
General Purpose Registers

The most boring kind of register
%eax, %ebx, %ecx, %edx, %edi, %esi, 
%ebp, %esp
%eax, %ebp, and %esp are exceptions, they 
are slightly interesting
- %eax is used for return values
- %esp is the stack pointer
- %ebp is the base pointer



Carnegie Mellon University 12

Mundane Details in x86: 
Segment Selector Registers

Slightly more interesting
%cs specifies the segment used to access 
code (also specifies privilege level)
%ss specifies the segment used for stack 
related operations (pushl, popl, etc)
%ds, %es, %fs, %gs specify segments used 
to access regular data
Mind these during context switches…



Carnegie Mellon University 13

Mundane Details in x86:
The Instruction Pointer (%eip)

It’s interesting
Cannot be read from or written to
Controls what instructions get executed
‘nuf said.



Carnegie Mellon University 14

Mundane Details in x86: 
The EFLAGS Register

It’s interesting

Contains a bunch of flags, including interrupt-
enable, arithmetic flags



Carnegie Mellon University 15

Mundane Details in x86: 
Control Registers

Very interesting!
An assortment of important flags and values
%cr0 contains powerful system flags that 
control things like paging, protected mode
%cr1 is reserved (now that’s really 
interesting)
%cr2 contains the address that caused the 
last page fault



Carnegie Mellon University 16

Mundane Details in x86: 
Control Registers, cont’

%cr3 contains the address of the current 
page directory, as well as a couple paging 
related flags
%cr4 contains… more flags (not as 
interesting though)
- protected mode virtual interrupts?
- virtual-8086 mode extensions?
- No thanks



Carnegie Mellon University 17

Mundane Details in x86: 
Registers

How do you write to a special register?
Most of them can simply be written to using 
the movl instruction
Some (like CRs) you need PL0 to access
We will provide inline assembly wrappers
EFLAGS is a little different, but you will not 
be writing to it anyway



Carnegie Mellon University 18

Mundane Details in x86: 
Paging

The x86 offers several page sizes
We will use 4k pages
The x86 uses a two level paging scheme
The top of the paging structure is called a 
page directory
The second level structures are called page 
tables



Carnegie Mellon University 19

Mundane Details in x86:
Page Directories and Tables

CR3

Page 
Directory

Page 
Table

Page 
Table

Page 
Table

Current Process’
Page Directory Address



Carnegie Mellon University 20

Mundane Details in x86: 
Page Directory

The page directory is 
4k in size
Contains 
pointers 
to page tables
Not all entries 
have to be 
valid

Figure from page 87 of intel-sys.pdf



Carnegie Mellon University 21

Mundane Details in x86: 
Page Table

The page table is also 
4k in size
Contains 
pointers 
to pages
Not all entries 
have to be 
valid

Figure from page 87 of intel-sys.pdf



Carnegie Mellon University 22

Mundane Details in x86: 
The Life of a Memory Access

Logical Address

Linear Address

Physical Address

Segmentation

Paging

(consists of 16 bit segment selector, 32 bit offset)

(32 bit offset)

(32 bit offset)



Carnegie Mellon University 23

Mundane Details in x86: 
The Life of a Memory Access

Logical Address

Linear Address

Segmentation

(consists of 16 bit segment selector, 32 bit offset)

(32 bit offset)

The 16 bit segment selector comes from 
a segment register
The 32 bit offset is added to the base 
address of the segment
That gives us a 32 bit offset into the 
virtual address space



Carnegie Mellon University 24

Mundane Details in x86:
Segmentation

Segments need not be backed by physical 
memory and can overlap
Segments defined for these projects:

Kernel Code Kernel Data User Code User Data

0xFFFFFFFF

0x00000000



Carnegie Mellon University 25

Mundane Details in x86: 
The Life of a Memory Access

Linear Address

Physical Address

Paging

(32 bit offset)

(32 bit offset)

Top 10 bits index into page directory, 
point us to a page table
The next 10 bits index into page table, 
point us to a page
The last 12 bits are an offset into that 
page



Carnegie Mellon University 26

Mundane Details in x86: 
The Life of a Memory Access

Whoa there slick… what if the page directory 
entry isn’t there?
What happens if the page table entry isn’t 
there?
It’s called a page fault, it’s an exception, and 
it lives in IDT entry 13
You will have to write a handler for this 
exception and do something intelligent



Carnegie Mellon University 27

Mundane Details in x86: 
The Life of a Memory Access

Logical Address

Linear Address

Physical Address

Segmentation

Paging

(consists of 16 bit segment selector, 32 bit offset)

(32 bit offset)

(32 bit offset)



Carnegie Mellon University 28

Mundane Details in x86: 
Context Switching

We all know that 
processes take turns 
running on the CPU
This means they have 
to be stopped and 
started over and over
How does this occur?



Carnegie Mellon University 29

Mundane Details in x86: 
Context Switching

The x86 architecture provides a hardware 
mechanism for “tasks”
This makes context switching easy
It is actually faster to manage processes in 
software
We can also tailor our process abstraction to 
our particular needs
You must have at least one hardware task 
defined, OSKit takes care of this for you



Carnegie Mellon University 30

Mundane Details in x86: 
Context Switching

Context switching is a very delicate 
procedure
Great care must be taken so that when the 
process is started, it does not know it ever 
stopped
Registers must be exactly the same (%cr3 is 
the only control register you have to update)
It’s stack must be exactly the same
It’s page directory must be in place



Carnegie Mellon University 31

Mundane Details in x86: 
Context Switching

Hints on context switching:
- use the stack, it is a convenient place to 
store things
- if you do all your switching in one location, 
you have eliminated one thing you have to 
save (%eip)
- new processes will require some special 
care



Carnegie Mellon University 32

Mundane Details in x86: 
System Calls

System calls use software interrupts
Install a handler just as you did for the timer, 
keyboard
Use one software interrupt to implement all of 
your system calls
If you are rusty on the IDT refer back to P1



Carnegie Mellon University 33

Mundane Details in x86: 
Kernel Stacks

User processes should have a separate stack 
for their kernel activities
It should be located in kernel space
How does the stack pointer get switched to 
the kernel stack?

User-Level
Stack

Kernel Stack PCB



Carnegie Mellon University 34

Mundane Details in x86: 
Kernel Stacks

When the CPU switches from user mode to 
kernel mode the stack pointer is changed
The new stack pointer is stored in the 
configuration of the CPU hardware task
We provide a function to change this value
set_esp0(void* ptr)



Carnegie Mellon University 35

Loading Executables

You are probably 
expecting a file system
But… you have not 
written one yet
We have cooked up a 
small utility to help you



Carnegie Mellon University 36

Loading Executables:
exec2obj

Takes a file as input
Spits out a .c file containing a char array 
initialized to the contents of the input file
You can compile this into your kernel



Carnegie Mellon University 37

Loading Executables:
The Loader

You have access to the bytes
You need to load them into the process’ 
address space
Guess what… you get to write a loader!

Don’t worry, it’s not hard
The executables will be in NMAGIC a.out
format
References to resources are in the handout



Carnegie Mellon University 38

A Quick Debug Story

Ha! You’ll have to have 
been to lecture to hear 
this story. 



Carnegie Mellon University 39

A Quick Debug Story

The moral is, please 
start early. 



Carnegie Mellon University 40

Style Recommendations

Do not use a global when a local would do.
Comment where comments are needed
- not “comment everywhere”
- not “do not comment”
Do NOT hand in your project in one file called 
kernel.c
- Do not hand in your project in one file called 
anything, actually
- Dave might bite your kneecaps



Carnegie Mellon University 41

Attack Strategy

There is an attack 
strategy in the handout
It represents where we 
think you should be in 
each of the four weeks
You WILL have to turn 
in checkpoint two



Carnegie Mellon University 42

Attack Strategy

Please read the handout a couple times over 
the next few days
Then start writing pseudocode! 



Carnegie Mellon University 43

Good Luck on 
Project 2!


