
IPC

Dave Eckhardt
de0u@andrew.cmu.edu



P3 interlude

� Don't forget about Chapter 4
� What if a multi-threaded process calls fork()?

� You do not need to “copy all the threads”
� (What could make this impossible?)

� Copy the whole memory image

� Copy the fork()ing thread



P3 interlude

� What if a multi-threaded process calls exec()?
� Several reasonable answers

� What is not a reasonable answer?

� Design & document “something reasonable”



Outline



Scope of “IPC”

� Communicating process on one machine
� Multiple machines?

� Virtualize single-machine IPC

� Switch to a “network” model
� Failures happen
� Administrative domain switch
� ...



IPC parts

� Naming
� Synchronization/buffering
� Copy/reference/size



Naming

� Message sent to process or to mailbox?
� Process model

� send(P, msg)

� receive(Q, &msg) or receive(&id, &msg)

� No need to set up “communication link”
� But you need to know process id's
� You get only one “link” per process pair



Naming

� Mailbox model
� send(box1, msg)

� receive(box1, &msg) or receive(&box, &msg)

� Where do mailbox id's come from?
� “name server” approach

� box = createmailbox();
� register(box1, “Terry's process”);
� boxT = lookup(“Terry's process”);

� File system approach



Multiple Senders

� Problem
� Receiver needs to know who sent request

� Typical solution
� “Message” not just a byte array

� OS imposes structure
� sender id (maybe process id and mailbox id)
� maybe: type, priority, ...



Multiple Receivers

� Problem
� Service may be “multi-threaded”

� Multiple receives posted to one mailbox

� Typical solution
� OS “arbitrarily” chooses receiver per message

� (Can you guess how?)



Synchronization

� Issue
� Does communication imply synchronization?

� Blocking send()?
� Ok for request/response pattern

� Provides assurance of message delivery

� Bad for producer/consumer pattern

� Non-blocking send()?
� Raises buffering issue (below)



Synchronization

� Blocking receive()?
� Ok/good for “server thread”

� Remember, de-scheduling is a kernel service

� Ok/good for request/response pattern

� Awkward for some servers
� Abort connection when client is “too idle”

� Pure-non-blocking receive?
� Ok for polling

� Polling is costly



Synchronization

� Receive-with-timeout
� Wait for message

� Abort if timeout expires

� Can be good for real-time systems

� What timeout value is appropriate?



Synchronization

� Meta-receive
� Specify a group of mailboxes

� Wake up on first message

� Receive-scan
� Specify list of mailboxes, timeout

� OS indicates which mailbox(es) are “ready”

� Unix: select(), poll()



Buffering

� Issue
� How much “free space” does OS provide?

� “Kernel memory” limited

� Options
� No buffering

� implies blocking send

� Fixed size, undefined size
� send may or may not block



A buffering problem

� P1
� send(P2, p1-my-status)

� receive(P2, &p1-peer-status)

� P2
� send(P1, p2-my-status)

� receive(P1, &p2-peer-status)

� What's the problem?



Copy/reference/size

� Issue
� Ok to copy small messages sender -> receiver

� Bad to copy 1-megabyte messages

� “Chop up large messages” evades the issue

� “Out of line” message part
� Page-aligned, multiple-page memory regions

� Can transfer ownership to receiver

� Can share the physical memory
� Mooooo!



Rendezvous

� Concept
� Blocking send

� Blocking receive



Example: Mach IPC

� Why study Mach?
� “Pure” “clean” capability/message-passing system

� Low abstraction count

� This is CMU...

� Why not?
� Failed to reach market

� Performance problems with multi-server approach?

� Verdict: hmm... (GNU Hurd?)



Mach IPC – ports

� Port: Mach “mailbox” object
� One receiver

� One “backup” receiver

� Potentially many senders

� Ports identify system objects
� Each task identified/controlled by a port

� Each thread identified/controlled by a port

� Kernel exceptions delivered to “exception port”



Mach IPC – port rights

� Receive rights
� “Receive end” of a port

� Held by one task

� Capability typically unpublished
� receive rights imply ownership

� Send rights
� “Send end” - ability to transmit message to mailbox

� Frequently published via “name server” task

� Confer no rights (beyond “denial of service”)



Mach IPC – message

� Memory region
� In-line for “small” messages (copied)

� Out-of-line for “large” messages
� Sender may de-allocate on send
� Otherwise, copy-on-write

� Port rights
� Sender specifies task-local port #

� OS translates to internal port-id while queued

� Receiver observes task-local port #



Mach IPC – operations

� send
� block, block(n milliseconds), don't-block

� “send just one”
� when destination full, queue 1 message in sender thread
� sender notified when transfer completes

� receive
� receive from port

� receive from port set

� block, block(n milliseconds), don't-block



Mach IPC – RPC

� Common pattern: “Remote” Procedure Call
� Client synchronization/message flow

� Blocking send, blocking receive

� Client must allow server to respond
� Transfer “send rights” in message

� “Send-once rights” speed hack

� Server message flow (N threads)
� Blocking receive, non-blocking send



Mach IPC – naming

� Port send rights are OS-managed capabilities
� unguessable, unforgeable

� How to contact a server?
� Ask the name server task

� Trusted – source of all capabilities

� How to contact the name server?
� Task creator specifies name server for new task

� Can create custom environment for task tree



Summary

� Naming
� Name server?

� File system?

� Queueing/blocking
� Copy/share/transfer
� A Unix surprise

� sendmsg()/recvmsg() pass file descriptors!


